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Abstract
Mechanical properties of the cells are among the most highlighted area of interests among researchers for decades. Not 
only many of the cells’ crucial functional characteristics such as adherence to the cellular substrate, migration abilities and 
morphological factors are directly influenced by their mechanical properties but also changes in these traits could have 
importance in diagnosis and even treatments of some serious diseases. The general mechanical properties of the cells are 
associated with some intercellular characteristics such as arrangement and organization of the actin fibers and cytoskeleton 
architecture. Any changes due to pathological conditions in the molecular and cellular processes related to these elements 
can alter the cells’ mechanical characteristics. In this paper, the viscoelastic properties of diabetic and normal lymphocytes 
were analyzed and compared by application of the iron nanoparticles attached to the cellular membrane and putting the cells 
in a magnetic field with certain frequency and intensity. Step force was applied to the normal and diabetic lymphocytes and 
their membrane displacement was tracked by special software and plotted with respect to time. Fitting the experimental 
data on theoretical formulation of standard linear viscoelastic model, it was demonstrated that diabetic lymphocytes have 
significantly different viscoelastic characteristics. The results of this paper can be of importance in assessments of diabetic 
lymphocytes’ abilities to fulfill their immune surveillance tasks.
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Introduction

Cell mechanical properties play pivotal roles in vital char-
acteristics of cells. Many of the biophysical and biological 
peculiarities are determined by viscoelastic properties of 

cells (Hayot et al. 2012; Hecht et al. 2015). For instance, it 
has been illustrated that interaction of a cell and the extracel-
lular matrix is regulated by the cell’s mechanical properties 
(Trappmann and Chen 2013) or these mechanical traits have 
significant role in cell signaling (Humphrey et al. 2014). In 
addition, the cells’ mechanical properties can be regarded 
as markers of differentiation (González-Cruz et al. 2012; 
Mathieu and Loboa 2012), pathology (Lekka et al. 2012; 
Rebelo et al. 2013; Suresh et al. 2015) and transformation 
(Plodinec et al. 2012). Since different cell sources and dif-
ferent methods such as micropipette aspiration (Zhao et al. 
2009), atomic force microscopy (AFM) (Cartagena and 
Raman 2014; Hecht et al. 2015), magnetic beads micror-
heometry (Bausch et al. 1998) and others have been utilized 
for determination of cells’ viscoelastic properties, there is 
a relative incongruity in results. Therefore, the mechanical 
properties of cells can be regarded as biomarkers that can be 
used in diagnosis of some diseases and analyzing the appro-
priate functioning of cells. In contrast to other methods of 
measuring viscoelastic properties, the use of magnetic field 
encompasses the advantage of not having direct contact with 
the cell body. In the methods such as AFM which include 
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direct contact of an external tip or probe with the same 
dimension of a cell would lead to active cellular reaction 
that can easily change the mechanical properties (Guck et al. 
2005). In addition, special preparations that are included 
in some other methods can alter the physiological and bio-
logical conditions and lead to results which are significantly 
different from ordinary homeostatic conditions. Using nano-
magnetic adhesive beads accompanied with low-level field 
seems to have the lowest intervention and, therefore, gives 
rise to one of the most precise answers. Furthermore, mag-
netic-oriented approaches seem to be cheaper and simpler 
in comparison to other methods and so it can be widely and 
easily used in diagnostic and therapeutic purposes.

Lymphocytes are a small form of leukocytes that can 
make significant contribution in immune responses. The 
metabolism and natural biological processes within these 
cells change due to some diseases such as diabetes (Otton 
and Curi 2002; Otton and Curi 2002) and, therefore, it is 
expected to see alteration in membrane mechanical proper-
ties in normal and diabetic lymphocytes. In this research, the 
viscoelastic properties of normal and diabetic lymphocytes 
were determined and compared by low magnetic field.

Materials and methods

Cell culture

The lymphocytes in normal and diabetic groups were 
provided by Iranian Biological Research Center by ficoll 
method. RPMI 1640 media contained 10% FBS, 1% penicil-
lin/streptomycin and 1 μg/mL phytohemagglutinin (PHA). 
The cell suspensions of two groups were incubated sepa-
rately in culture medium for 18 h, followed by addition of 

magnetic Fe3O4 nanoparticles and glucose with certain 
concentration. The cells of both groups were incubated for 
another 24 h in CO2 incubator for absorption of the magnetic 
nanoparticles.

Magnetic field application

Since the lymphocytes are characterized as non-adhesive cell 
types, for test one droplet of the cell suspension was applied 
to the laboratory neubauer lam. Cells were transferred on 
neubauer lam and their displacements were recorded after 
application of the magnetic field under the optical micro-
scope (1600×). For each test, first a single cell has been 
located and different magnitudes of forces were applied 
under the effect of different magnetic fields. The displace-
ment of cells under the effect of forces was recorded by a 2 
mega pixels 60 frames per second camera. Figure 1 shows 
the schematic view of the inductance system. A teslameter 
device (Pazhoohesh Nasir Model 1394) was used for assess-
ing the intensity of the magnetic system. This teslameter can 
sense the intensity of the magnetic field in three Cartesian 
coordinates with the accuracy of 0.001. The cells were sub-
jected to 840 µT magnetic field of 0.2 sq.Hz.

Magnetic inductance system

With the use of a function generator, the desired wave form 
could be produced and after amplification to 4 A the elec-
trical current was applied to a coil. Magnetic field has the 
effects on magnetic nanoparticles which are connected to 
cell membrane. The coil has two cores. The central iron core 
has the radius of 2.5 cm and the length of 7 cm and the sec-
ondary Si core has the length of 2.5 cm and wrapped around 
the central core. The copper wire of 1.1 mm was twisted 400 

Fig. 1   The schematic view of 
the system and its elements’ 
arrangement
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times around the cores. A teslameter with the accuracy of 
0.001 was located in an appropriate location for determina-
tion of the magnitude of magnetic field.

Date processing

The videos are transferred into computer for processing. On 
the computer, four specific softwares for this purpose have 
been installed. The function generator software induces the 
desired wave form to the generator, Teslameter software that 
shows the magnitude of the magnetic field in micro Tesla in 
three Cartesian directions, video recording software that is 
related to the microscope and finally the software of Tracker 
(version 4.81) analyzing the displacement.

Viscoelastic model

Standard linear model was considered for force and displace-
ment relation. This model consists of a spring and a Kelvin 
model in series. This model is shown in Fig. 2a.

The relation between stress and strain can be readily 
obtained as below (Eq. 1). This model has been widely used 
in previous biological researches (Lim et al. 2006).

By substituting the coefficients with p1, q0 and q1 we have 
Eq. 2.
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And by applying the step function with amplitude of σ0 
for the σ function we will have Eq. 3.

The parameters p1, q0 and q1 should be determined in 
practical experiment. Figure 2b shows the applied force. 
The frequency was 0.2 Hz, 4 A electrical current and the 
magnetic field 840 μT. The samples were exposed to this 
field for 15 s.

Statistical analysis

All the tests were performed three times and in each test at 
least ten cells from each group were selected. T test-paired 
statistical analysis was done for the three constants of the 
Eq. 3 and P value below 0.05 was set as the criterion of 
significant difference.

Results

The displacement of the cell membrane in different nor-
mal and diabetic groups was analyzed after application of 
magnetic field. Figure 3 shows the medium of the Tracker 
software which includes the one specific cell. The x- and 
y-direction displacements with time for the membrane have 
been depicted in Fig. 3.

Figure 4 shows the experimental and theoretical displace-
ment variations with respect to time. Experimental points 
have been plotted and connected together and the theoretical 
curve was fitted by MATLAB software version (version 7.3) 
to the experimental data by obtaining the most appropriate 
constant values of Eq. 3. Figure 4a depicts the experimental 
and theoretical displacement curves with respect to time for 
normal lymphocyte and Fig. 4b is related to the diabetic 
lymphocyte.

Table 1 shows the constant values of Eq. 3 for normal 
and diabetic lymphocytes based on the fitted curve to the 
experimental data.

Discussion

The mechanical properties of cells and tissues have 
attracted many scientists’ and researchers’ attention. It 
has been demonstrated that changes in mechanical char-
acteristics of cell can be one of the best criteria in early 
diagnosis of many diseases. In addition, cellular well-
functioning is attributed directly to mechanical properties 
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Fig. 2   a The standard linear model for viscoelastic materials. This 
model consists of two springs and a dashpot. b The applied square 
shape force with time. The samples were exposed for 15 s
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of those cells. Due to these facts, recently some papers 
have been published on measuring viscoelastic proper-
ties of lymphocytes. To the best of our knowledge, this 
is the first time that the viscoelastic properties of normal 
and diabetic lymphocytes were measured and analyzed by 
this approach. While many researchers use micropipette 
aspiration or AFM method, in this research the viscoelas-
tic properties of normal and diabetic lymphocytes have 
been investigated by application of magnetic field on iron 
nanoparticles-loaded cells. In this research, the viscoelas-
tic properties of normal and diabetic lymphocytes were 
assessed and obtained. Magnetic iron nanoparticles have 
been added to the culture medium of the lymphocytes with 
certain concentration and by application of magnetic field 
in the graph of membrane displacement with respect to 
the time was plotted. By utilization of standard linear vis-
coelastic model, the mechanical properties of normal and 
diabetic lymphocytes were investigated and compared.

The results demonstrated that diabetes can change 
the mechanical properties of lymphocytes. Any physical 
(Rebelo et al. 2013; Rianna and Radmacher 2016) and 
chemical (Peetla et al. 2013) alterations at the cells’ sur-
face can readily lead to intervention in cells’ vital func-
tions, malfunction of entering and exit process of the 
necessary chemicals and even disorder in secretion of 
enzymes, proteins and other substances. As the previous 
researches have illustrated that diabetes can change some 
pivotal traits of lymphocytes such as metabolism rate 
(Otton and Curi 2002) or apoptosis (Otton et al. 2004), and 
also because of the interconnected physical and functional 

characteristics of the cells it was expected to see different 
mechanical properties for normal and diabetic lympho-
cytes. Our results have proven this hypothesis.

There are evidences that demonstrate the close relation-
ship between the mechanical properties of cells’ mem-
brane and the organization and arrangement of their actin 
cytoskeleton (Lekka et al. 2011, 2012). It means that any 
change in actin fibers’ arrangement and organization will 
cause change in mechanical properties of the whole cell. 
In addition, there are sufficient clues which illustrate the 
direct connection between the actin cytoskeleton remodeling 
properties and the cell motility. Past research works have 
shown that the remodeling of the dynamic filament mesh-
work is one of the primary influential factors in the cells’ 
migration abilities (Gardel et al. 2010; Ridley et al. 2003). 
Therefore, the mechanical characteristics of cells including 
viscoelastic properties can be regarded as one of the essen-
tial parameters which depict the migration capability. This 
issue even becomes more highlighted for lymphocytes as 
their immune surveillance tasks are closely interconnected 
with their motile abilities (Dupré et al. 2015).

The results of this paper show a significant difference 
between the viscoelastic properties of normal and diabetic 
lymphocytes. Based on the previous discussion, this means 
a discrepancy exists between some vitally important char-
acteristics of normal and diabetic lymphocytes such as their 
migration ability and, therefore, it can jeopardize diabetic 
lymphocytes’ efficiency in immune responses.

By the hypothesis of regarding the architecture of the 
cytoskeleton as one the primary influential factors in 

Fig. 3   The displacement of the cell membrane in x and y directions. Ten random cells were selected and the final result is the average of dis-
placement in each group
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total mechanical properties of a cell, we can associate the 
changes in viscoelastic properties of diabetic lymphocytes 
to the molecular and chemical mechanism which control 
the structure of cytoskeleton. Many proteins such as the 
family of ERM (ezrin, radixin, moesin) which contribute 

as actors in remodeling of cytoskeleton (Chen et al. 2013) 
can change in diabetic situation (Nishida et al. 2014).

Conclusion

In this research, the viscoelastic properties of normal and 
diabetic lymphocytes have been investigated and signifi-
cant differences have been identified. It has been under-
stood that the mechanical properties of healthy and dis-
eased lymphocytes are different in terms of their energy 
storing and dissipating rates. While cellular migration 
includes continuous membrane bending and deforma-
tion, it can be deduced that the diabetic cells have differ-
ent migration pattern. Finally, while the most important 
function of the lymphocytes necessitates their facilitated 
movement, diabetic cells seem to have problems in per-
forming their tasks.

Fig. 4   Membrane displacement 
with respect to the time after 
application of magnetic field 
for normal (a) and diabetic (b) 
lymphocytes. In both graphs the 
experimental data have been 
depicted together with theoreti-
cal data derived by the standard 
viscoelastic model

Table 1   The constants of the standard linear model of viscoelastic 
material for normal and diabetic lymphocytes

Constants 
of Eq. 3

Normal lymphocytes Diabetic lymphocytes P value

p1 0.0074 ± 0.0008 0.2522 ± 0.0036 ≤ 0.05
q0 0.1852 ± 0.03145 0.8528 ± 0.0752 ≤ 0.05
q1 0.0003 ± 4.1 × 10−5 0.0175 ± 0.00277 ≤ 0.05
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