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Abstract

BACKGROUND—Increased breast density is a significant independent risk factor for breast 

cancer, and recent studies show that this risk is modifiable. Hence, breast density measures 

sensitive to small changes are desired.
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PURPOSE—Utilizing fat-water decomposition MRI, we propose an automated, reproducible 

breast density measurement, which is non-ionizing and directly comparable to mammographic 

density (MD).

STUDY TYPE—Retrospective study.

POPULATION—The study included two sample sets of breast cancer patients enrolled in a 

clinical trial, for concordance analysis with MD (40 patients) and reproducibility analysis (10 

patients).

FIELD STRENGTH/SEQUENCE—The majority of MRI scans (59 scans) were performed on a 

1.5T GE Signa scanner using radial IDEAL-GRASE sequence, while the remaining (7 scans) were 

performed on a 3T Siemens Skyra using 3D Cartesian 6-echo GRE sequence with a similar fat-

water separation technique.

ASSESSMENT—After automated breast segmentation, breast density was calculated using 

FraGW, a new measure developed to reliably reflect the amount of fibroglandular tissue and total 

water content in the entire breast. Based on its concordance with MD, FraGW was calibrated to 

MR-based breast density (MRD) to be comparable to MD. A previous breast density 

measurement, Fra80—the ratio of breast voxels with <80% fat fraction—was also calculated for 

comparison with FraGW.

STATISTICAL TESTS—Pearson correlation was performed between MD (reference standard) 

and FraGW (and Fra80). Test-retest reproducibility of MRD was evaluated using the difference 

between test-retest measures (Δ1–2) and intra-class correlation coefficient (ICC).

RESULTS—Both FraGW and Fra80 were strongly correlated with MD (Pearson ρ: 0.96 v.s. 0.90, 

both p<0.0001). MRD converted from FraGW showed higher test-retest reproducibility (Δ1–2 

variation: 1.1%±1.2%; ICC: 0.99) compared to MD itself (literature intrareader ICC ≤0.96) and 

Fra80.

DATA CONCLUSION—The proposed MRD is directly comparable with MD and highly 

reproducible, which enables the early detection of small breast density changes and treatment 

response.
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prevention

Introduction

Breast cancer is the most commonly diagnosed cancer and second most common cause of 

cancer death among women in the U.S (1). Higher mammographic density (MD) has been 

consistently associated with elevated breast cancer risk (2–5). Consistent with this risk 

relationship, breast cancer patients with high MD have been reported to have a two-fold 

greater risk of developing a new primary contralateral breast cancer compared to low MD 

(6). In a recent study of 18,437 breast cancer cases and 184,309 controls, having extremely 

dense breasts was identified as the most prevalent risk factor for breast cancer (3), with the 

population attributable risk proportion of ~39% for premenopausal women and ~26% for 
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postmenopausal women. These authors concluded that a sizable fraction of breast cancer 

could be prevented by decreasing MD. Based on this positive association between MD and 

breast cancer, MD has been suggested as an intermediate risk biomarker for breast cancer 

that is potentially modifiable (7–11) such as by tamoxifen and other pharmaceuticals.

As such, accurate breast density estimation has emerged as a priority for assessing breast 

cancer risk. Breast tissue is composed of adipose and fibroglandular tissue where MD is a 

radiologic measure of the proportion of these two types of tissues. Dense breasts have more 

fibroglandular tissue and less fatty tissue (12). Currently, MD is obtained by exposing a 

compressed breast to low dose x-rays, which leads to several limitations. Slight differences 

in x-ray exposure calibration and the degree of compression can induce high variation in 

MD (13) with low and wide intrareader reliability [intra-class correlation coefficient (ICC): 

0.88~0.96] (14–16). Further, even using 3D tomosynthesis (17), the images are still acquired 

from a compressed breast at limited angles which causes overlapping of the breast tissue and 

impacts the accuracy of MD (18). These factors, and the underlying concerns regarding the 

undesirable exposure to ionizing radiation, limit mammography for accurate and sensitive 

measurement of small changes in breast density over short periods of time, as would be 

desirable in intervention studies aimed at reducing breast density.

Magnetic resonance imaging (MRI) provides a safer alternative for breast density estimation 

of the entire breast volume, as it is free of ionizing radiation. Most current studies used 

standard T1-weighted MRI for breast density evaluation (13,19–22). However, none are 

considered to actually represent true breast tissue composition (23). In contrast, fat-water 

decomposition MRI is particularly useful because of its ability to separate the MRI signals 

from protons in water and in fat using a Dixon-like approach (24–26). Recently, a technique 

called “iterative decomposition of water and fat with echo asymmetric and least-squares 

estimation” (IDEAL) (27,28) incorporated the asymmetric acquisition of multi-echo data 

with an iterative least-squares decomposition algorithm for fat-water separation with 

optimized noise performance. IDEAL has been applied to the gradient- and spin-echo 

(GRASE) technique to reduce scan time (29). The radial IDEAL-GRASE technique (30) 

combines IDEAL-GRASE with radial data acquisition to reduce motion effects. With this 

MRI acquisition technique, fat-only images and water-only images can be quickly 

reconstructed from multi-echo data by applying a signal model to the phase evolution at 

different echo times.

Breast segmentation is the first and an important step for accurate and reproducible BD 

estimation. The conventional cumbersome and bias-prone manually drawn regions-of-

interest (ROIs) need to be improved using an automated segmentation method (9,31–34). In 

addition, the consistency between manual and automated segmentation needs to be validated 

not only by comparing the breast ROIs but also for the purpose of assessing breast density.

Based on fat-water decomposition MRI, previous publications have studied breast density 

measurements using thresholding methods. Tagliafico et al. (23) used a semi-automated 

technique where the radiologists adjusted the intensity threshold for determining the dense 

region, and the breast density measurement was calculated as the percentage of the dense 

region in the whole breast volume. Thomson et al. (9,35) established a breast density 
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measurement termed Fra80, which was representative of the ratio of breast voxels with < 

80% apparent fat fraction (the ratio of the fat signal to the sum of the fat and water signals). 

This method used a hard threshold of 80% in the fat fraction map to identify the dense breast 

region. Wengert et al. (34,36) recently developed an automated approach by assigning each 

voxel to either fatty tissue or fibroglandular tissue based on its intensity in the fat-only image 

and water-only image, and the breast density was measured by the percentage of the 

fibroglandular tissue volume within the entire breast. This technique, effectively, is also a 

thresholding method with a self-adjusted threshold. All these previous thresholding methods, 

however, have several limitations: Using a threshold to determine whether the breast voxel is 

dense (fibroglandular) tissue causes the breast density quantification to be susceptible to 

partial volume effect. Consequently, this type of technique may have difficulty detecting 

changes of small structures in the breast tissue composition. In addition, the chemical-shift 

based Dixon fat-water decomposition MRI technique has intrinsic limitations due to the 

imperfection of the signal model, which causes fat-water signal intensity bias and fat-water 

signal shine-through. Meanwhile, due to the differences in proton density between fat and 

water and the fact that fat signal is stronger than water in gradient echo MRI images, the 

amount of fat would be misestimated if no correction is performed. All three methods 

mentioned above did not calibrate this fat-water signal intensity bias, leading to potentially 

inaccurate breast density estimations. Furthermore and more importantly, MD is still the 

most widely used breast density measurement in clinical practice. Previous MRI-derived 

methods were not directly comparable to the existing MD (23,35) and, in fact, a significant 

difference was shown (34), which limited their applications in clinical breast cancer studies.

The purpose of this study is to develop a new automated breast density measurement based 

on fat-water decomposition MRI, which overcomes the limitations of the previous methods 

as described above. One of the previous thresholding measurements, Fra80, was calculated 

for comparison.

Materials and Methods

Study Population

This study used de-identified data from a completed clinical trial (clinical trials number: 

NCT01391689, from February 2011 to July 2016) which was approved by the Institutional 

Review Board. The study sample included two sample sets (see Table 1) of pre- and post-

menopausal women who were enrolled in the randomized, placebo-controlled trial, receiving 

tamoxifen as either adjuvant therapy after primary treatment of early-stage breast cancer 

(stage 0–III) or primary chemoprevention due to the high risk of breast cancer. Sample 1 

included 40 patients receiving digital mammography within 6 months from the data of MRI 

scan and with MD change ≤10% between baseline and follow-up mammograms (1–2 years 

apart). The purpose of Sample 1 was to evaluate the concordance of MRI-derived breast 

density with MD. Sample 2 included 26 test-retest scans from 10 patients (7 patients with 

test-retest at 3 time-points, 2 with test-retest at 2 time-points, 1 with test-retest at 1 time-

point; for the same patient, scans at different time-points are approximately 6 months apart), 

which was used to assess the test-retest reproducibility of the breast density measures based 

on fat-water decomposition MRI. For each repeated scan, the patient completely left the 
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scanner and was immediately repositioned in the scanner, re-registered and re-localized by 

the same technician. Breasts containing implants or treated with radiation therapy in both 

samples were excluded from the study. Only the unaffected breasts (without cancer) were 

analyzed.

MR Imaging Protocol

As demonstrated in Table 1, the majority of MRI scans in both Sample 1 and 2 were 

performed on a 1.5T GE Signa NV-CV/i scanner with an 8 channel breast coil (GE HD 

Breast) using the radial IDEAL-GRASE sequence in the axial orientation with acquisition 

parameters: 19 slices, acquisition matrix 256×256, pixel size = 1.33×1.33 mm2, slice 

thickness/gapping = 7mm/1mm, 8 spin echoes with 4 gradient echoes per spin echo, 1 

average, repetition time (TR) = 6s, acquisition time = 198s, bandwidth = ±125kHz. A 

saturation band was placed on the heart to reduce motion-induced image artifacts. The 

remaining MRI scans were performed on a 3T Siemens Skyra with a 16 channel breast coil 

(Sentinel) using a 3D Cartesian 6-echo gradient echo pulse sequence. The following 

acquisition parameters were used: 48 slices, acquisition matrix 256×152 (80% phase 

sampling), pixel size = 1.63×1.63 mm2, slice thickness/gapping = 4mm/0mm, flip angle = 

6°, TR = 9.67ms, 6 echoes with echo time (TE) = 1.18, 2.38, 4.76, 5.94, 7.10, 8.26ms, 1 

average, acquisition time = 24s, bandwidth = 1220Hz/pixel, a saturation band was placed on 

the heart.

MR Imaging Processing

For images acquired on the GE scanner, IDEAL fat-water separation was performed using a 

Multi-mask Multi-seed Free Growing algorithm (37). For images acquired on the Siemens 

scanner, a similar fat-water separation technique with T2* correction was performed with 

multipeak (38). The fat-water separation was processed using in-house software written in 

Matlab to ensure long-term compatibility, which generates the fat-only images, water-only 

images and fat fraction maps (reflecting the relative percentage amount of fat signal in each 

voxel) of the entire breast volume. Images of a breast slice collected on the GE scanner are 

shown in Figure 1A.

Breast Segmentation—A fully automated breast segmentation (39) was applied to all 

scans. This automated technique is similar to the method of Rosado-Toro J, et al (31), where 

k-means++ and dynamic programming were used to identify the breast boundary by taking 

advantage of the different tissue contrasts in the fat-only and water-only images [Figure 

1A(e) and (f)]. A 3D regularization was performed with a 3D order-statistic filtering (40) to 

smooth the breast mask and eliminate the nipple region, which is an improvement over the 

previous method (31). See Appendix 1 for details of the automated breast segmentation 

method. Manual ROIs were drawn (20–35 minutes per volume) according to the manual 

tracing protocol in the study by Rosado-Toro J, et al (31). The automated breast 

segmentation was quantitatively examined against manual ROI drawings by Dice index 

using the data from Sample 1 (41), which measures the similarity for two image 

segmentation results, and was further validated by a task-based comparison on the 

reproducibility of the breast density measures using the data from Sample 2.
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Fat-water Decomposition MRI-based Breast Density Measures

Fra80: Fra80 (9,35) was a previously proposed MRI-based breast density measure 

calculated as the ratio of breast voxels with < 80% apparent fat fraction for the data collected 

on the GE scanner as in the previous study. We chose Fra80 to be the representative method 

of the previous thresholding-based breast density measurements to compare with our 

proposed method. Fra80 uses 80% as the threshold on apparent fat fraction maps to quantify 

the proportional amount of “dense” tissues in the breast. Due to scanner hardware and 

acquisition sequence differences, the data collected on the Siemens scanner were fit to a 

different threshold that was matched to the GE Fra80 using data from five volunteers whose 

images were acquired on both the GE and Siemens scanners on the same day.

FraGW: Because MD depends on both the amount of fibroglandular tissue and its 

distribution, we propose a new MRI-based breast density measure that accounts for both: 

FraGW = (FraGland + FraWater).

FraGland is the volumetric fraction of fibroglandular tissues present in the breast, which is 

a measure representing the distribution of fibroglandular tissues. See Appendix 2 for details.

FraWater is a measure quantifying the amount of water signal in the breast (vs. fat signal), 

which is a measure of the amount of fibroglandular tissues. Due to the limitation of IDEAL-

GRASE, the inaccurate separation occurred with the residual fat signal appearing in water 

images. Here, the apparent fat fraction maps were calibrated to reflect their true volume 

fraction using a linear signal model.

For each pixel in the breast region,

Sfat = aVfat + bVwater
Swater = cVfat + dVwater

, [1]

where Sfat is the fat signal intensity, Swater is the water signal intensity, Vfat is the fat 

volume, and Vwater is the water volume. Four correction factors a, b, c, and d were solved 

based on the image intensities in “pure” fat (subcutaneous fat) and “pure” water regions 

(muscle). See Appendix 2 for details of the linear correction.

Mammographic Density (MD) measures

MD was used as the reference standard as it is currently the accepted measure of breast 

density. Craniocaudal views of mammograms were obtained during the study for breast 

density analysis using a previously published method (42,43). No personal identifiers were 

contained in the digital mammograms. MD was measured using a computer-assisted 

thresholding software called Cumulus (42). All mammograms for each patient were assessed 

during the same session. Based on this interactive software, the reader selected a first 

threshold value (grayscale on the screen) to distinguish the breast region from the dark 

background and a second threshold value to identify the edges of the mammographic dense 

areas within the breast outline. The total breast area and the dense area were measured by 
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the number of pixels in the two areas, and MD for each breast was the percent density 

calculated as the ratio of dense to total breast area. Quality control was performed using 27 

images assessed in duplicate readings of the same radiologist; the intrareader reliability 

(measured by Spearman correlation coefficients) for total breast area, dense breast area, and 

MD were 0.99, 0.96, and 0.92, respectively.

Statistical Analysis

Concordance with MD (reference standard)—To test the concordance of Fra80 and 

FraGW, Pearson correlation analysis was performed to compare Fra80 or FraGW and MD 

using Sample 1. Further, based on their correlation relationships, both Fra80 and FraGW 

measures were converted to an “MR-based breast density” (MRD) using a conversion 

function y = axb. To evaluate the concordance of MRD derived from FraGW and Fra80, the 

root mean square errors (RMSEs) of leave-one-out cross-validation were calculated 

respectively.

Reproducibility—Based on the 26 repeated scans in Sample 2, the Δ1–2 values, calculated 

as the difference between the test and retest measures, were generated to represent the 

within-subject discrepancy. Test-retest reproducibility was evaluated statistically using the 

mean of |Δ1–2| and standard deviation of Δ1–2 and ICC analyses in Matlab. ICC (44) was 

performed on the logarithm of the Fra80 and FraGW. The same test-retest analyses were 

performed using the converted MRD, to determine if these converted MRD can be directly 

compared with MD for use in clinical practice.

Results

Imaging Processing

Figure 1B shows that the manual and automated segmentation have excellent agreement 

visually. Based on the data from Sample 1, the average Dice index between the manual and 

automated ROIs was 0.91 with a standard deviation of 0.03. Our automated breast 

segmentation was further validated on the reproducibility of Fra80 and FraGW to objectively 

compare the manual and automated segmentation (task-based comparison) using Sample 2 

as discussed in the next section (Table 2).

To obtain FraWater for the proposed FraGW measure, the calibration procedure was 

performed as mentioned in materials and Methods. For the same breast slice shown in 

Figure 1, the apparent fat fraction map and the corresponding calibrated fat fraction map and 

the calibrated FraWater map are shown in Figure 2A. The fat fraction in the subcutaneous fat 

region increased from 86% to 100% after correction, and fat fraction in the muscle region 

decreased from 17% to 2%. Figure 2B shows the Fra80 mask, FraGland mask, and corrected 

FraWater map. The Fra80 mask shows the proportion of the voxels with <80% fat fraction 

within the breast. The FraGland mask captures the amount of the voxels with predominant 

fibroglandular tissues, while the corrected FraWater mask provides the true volume fraction 

of the water signals in the entire breast after correcting the signal bias.
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Concordance of FraGW with MD and Reproducibility

A total of 42 unaffected breasts without prior surgery were identified from 40 patients (both 

breasts of 2 patients were unaffected) in Sample 1. Table 2 shows the concordance and 

reproducibility analyses of Fra80 and FraGW based on manual and automated segmentation 

algorithms. As shown, based on the data from Sample1, both Fra80 and FraGW were 

strongly correlated with MD, with FraGW having a stronger correlation using automated 

breast segmentation (Pearson correlation coefficient = 0.96, p-value < 0.0001). Based on 26 

repeated scans in Sample 2 (multiple test-retest scans from the same patients were treated as 

independent scans), both Fra80 and FraGW exhibit superior test-retest reproducibility (both 

ICCs > 0.985 using automated breast segmentation) compared to MD values from the 

literature (reported intrareader ICC <=0.96) (14–16). FraGW was superior to Fra80 in all 

measures tested. In addition, our automated breast segmentation protocol was associated 

with more concordant and reproducible breast density estimations compared to the labor-

intense manual segmentation method.

MR-based breast density (MRD)

Figure 3A illustrates the correlation between MD and Fra80, MD and FraGW, respectively, 

of Sample 1 using automated breast segmentation method, with the data points fitted to 

exponential function y = axb as the calibration curve. RMSEs of the conversion based on 

leave-one-out cross-validation of Fra80 and FraGW were 6.64% and 4.17%, respectively. 

Using the calibration curves in Figure 3A, both Fra80 and FraGW were calibrated to MRD, 

to be directly comparable to MD. Using Sample 2, Figure 3B and Table 3 demonstrate the 

test-retest reproducibility of the converted MRD from Fra80 and FraGW. The MRD 

converted from our proposed FraGW method produced more reproducible breast density 

measurements with minimal test-retest variation (1.2%) and high ICC (0.99).

Discussion

In this work, we offer a new MRI-based breast density measure that has a superior 

concordance with MD and test-retest reproducibility compared to the previously published 

thresholding measure, Fra80. Further, we develop a fully automated breast segmentation 

protocol that yields more concordant and reproducible breast density measurements than 

manual segmentation. We also correct the fat-water signal intensity bias due to the intrinsic 

limitation of the fat-water decomposition MRI technique, and convert our method to an 

MRI-based breast density measurement, MRD, which is directly compared to MD obtained 

by mammography. In total, this non-contrast MRI method requires less than 5 minutes of 

scan time, avoids ionizing radiation, and provides more robust measurements of breast 

density compared to mammographically determined values, enabling the detection of 

individual breast density changes for clinical trials and treatment response assessment.

Breast density has been proposed as a risk biomarker and an intermediate surrogate 

biomarker for assessing strategies aimed at reducing breast cancer risk including 

determining the efficacy of hormone-modulating drugs for breast cancer prevention (7–11). 

In the IBIS-II Breast Cancer Chemoprevention Trial, a ≥10% decrease in MD after 12–18 

months of tamoxifen use was predictive of clinical benefit, especially in younger, 
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premenopausal women with baseline higher MD (45). In contrast, several attempts to 

demonstrate an effect of aromatase inhibitors on MD have failed. This may reflect the low 

sensitivity of MD to the smaller breast density changes in postmenopausal women who 

receive aromatase inhibitors or may indicate that the anti-cancer benefit of aromatase 

inhibitors is independent of an effect on breast density. Thus, the ability to detect small 

changes in breast density in response to therapeutic interventions and at earlier time points is 

highly desirable and may require more sensitive methods. The ability to do so with repeated 

measures and without ionizing radiation provides an opportunity to identify non- or poor-

responders early for dose modification or agent change, as well as to encourage drug 

adherence for responders.

The proposed MRD measurement derived from FraGW overcomes some of the limitations 

of MD and outperforms a representative previously published MRI-derived measurement of 

breast density based on thresholding methods, Fra80. FraGW is more strongly correlated 

with MD, with superior reproducibility compared to Fra80. In addition, based on the 

calibration curves of FraGW with MD (Figure 3A), MRD determined with FraGW enables a 

direct comparison to MD, achieves a 31% smaller test-retest standard deviation compared to 

that of Fra80 (1.20% v.s. 1.73%, Table 3) and an extremely high ICC of 0.99. Note that this 

calculation was based on 26 test-retest scans from 10 patients and might introduce biases to 

the result, however, the comparison is still valid since both measures were derived using the 

same data sets. Also note that in the quality control mentioned in the Materials and Methods, 

the intrareader correlation coefficient of MD was only 0.92. It is noteworthy to point out that 

MD test-retest difference is often > 4% (14–16). The improved concordance and 

reproducibility of breast density measurements presented in this work may allow clinicians 

to track changes in breast density as small as 1.2%. Further research is warranted to 

investigate if this enhanced quantitative concordance can be employed in clinical trials to 

guide treatment response assessments more quickly and drive chemoprevention strategies.

This study also exhibits other, methodological strengths compared with the previously 

published studies that developed fat-water decomposition MRI based breast density 

measurements (9,23,34–36). First, previous studies lacked the validation of their semi- or 

fully-automated breast segmentation against ground truth manual segmentation. In our 

method, we quantitatively validate our fully automated breast segmentation with manual 

segmentation using Dice index; moreover, we demonstrate that automated segmentation 

leads to more reproducible breast density measures. Second, as mentioned in the 

Introduction, previous thresholding methods, including Fra80, simply measured the amount 

of dense or fibroglandular breast tissue by assigning each voxel to a single class. This could 

be a potential limitation as the partial volume effect would influence the accuracy of their 

breast density estimation. In comparison, we quantify breast density based on the fraction of 

fibroglandular tissue and actual water content in each voxel after correcting the fat-water 

signal bias, enabling a more reliable estimation. Third, the previous breast density 

measurements were not directly comparable with MD, and Wengert et al. (34,36) along with 

other previous studies based on T1-weighted MRI (19–21) showed that their MRI-derived 

breast density measurements were systematically lower than MD. However, MD is still the 

most widely accepted method for breast density evaluation in clinical practice and clinical 

research, and a large number of studies reported their findings using MD, including clinical 
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trials. In this study, we calibrate our FraGW to an MRD measure, which is directly 

comparable to MD. This “backward compatibility” is another important strength of our 

measurement as it is much easier for clinicians to use and for patients to understand, 

especially when comparing with their previous MD and interpreting cancer risk associated 

breast density.

A limitation of this work is that the range of MRD in Sample 2 individuals with test-retest 

scans was not as broad as the distribution of individuals in Sample 1 used for correlation 

analysis (Figure 3A). Also, MR imaging processing is currently dependent on our in-house 

software, which limits the potential impact of MRD for research and clinical application; 

this is further limited by the fact that our work was conducted on two MRI scanners and on a 

cancer patient population. Further studies are needed to validate this new MRD measure on a 

larger sample including more women with no diagnosis of breast cancer for primary 

prevention, and across breast density distributions, scanners, centers, vendors, and field 

strengths. In addition, a true gold standard for breast density is lacking in this study, and the 

use of MD for this purpose could be controversial. Previous studies (36,46) developed 

anthropomorphic breast phantoms that can be used as the ground truth for breast density 

assessment. However, the similarity of these phantoms to real human breasts with more 

complex tissue composition needs to be further investigated. As MD is currently the most 

widely used method for breast density quantification in clinical practice, it is reasonable and 

potentially more relevant to use MD as a reference standard in this study. The data shown in 

this work prove that MRD derived from FraGW is superior to MD in terms of 

reproducibility, as discussed before.

In conclusion, the proposed automated MRI-based breast density measure derived from 

FraGW, which quantifies the entire fibroglandular and water content of the breast, is more 

reliable than the previously published MRI-derived method, Fra80, and is superior to MD. 

The next step is to apply this method in longitudinal studies to assess the detection of small 

changes in breast density. This will be useful for evaluating the efficacy of hormonal therapy 

or other chemoprevention strategies that mediate the anti-cancer actions through effects on 

breast density.
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Abbreviations Key

GRASE gradient- and spin-echo

ICC intra-class correlation coefficient
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MD mammographic density

MRD MR-based breast density

MRI magnetic resonance imaging

RMSE root mean square error

ROI region-of-interests

TE echo time

TR repetition time

References

1. Samson ME, Porter NG, Hurley DM, Adams SA, Eberth JM. Disparities in Breast Cancer 
Incidence, Mortality, and Quality of Care among African American and European American 
Women in South Carolina. Southern medical journal. 2016; 109(1):24–30. [PubMed: 26741869] 

2. Boyd NF, Martin LJ, Bronskill M, Yaffe MJ, Duric N, Minkin S. Breast tissue composition and 
susceptibility to breast cancer. Journal of the National Cancer Institute. 2010

3. Engmann NJ, Golmakani MK, Miglioretti DL, Sprague BL, Kerlikowske K. for the Breast Cancer 
Surveillance C. Population-attributable risk proportion of clinical risk factors for breast cancer. 
JAMA Oncology. 2017

4. Boyd NF, Dite GS, Stone J, et al. Heritability of mammographic density, a risk factor for breast 
cancer. New England Journal of Medicine. 2002; 347(12):886–894. [PubMed: 12239257] 

5. Boyd NF, Guo H, Martin LJ, et al. Mammographic density and the risk and detection of breast 
cancer. New England Journal of Medicine. 2007; 356(3):227–236. [PubMed: 17229950] 

6. Raghavendra A, Sinha AK, Le-Petross HT, et al. Mammographic breast density is associated with 
the development of contralateral breast cancer. Cancer. 2017

7. Cuzick J, Warwick J, Pinney E, et al. Tamoxifen-induced reduction in mammographic density and 
breast cancer risk reduction: a nested case–control study. Journal of the National Cancer Institute. 
2011

8. Prowell TM, Blackford AL, Byrne C, et al. Changes in breast density and circulating estrogens in 
postmenopausal women receiving adjuvant anastrozole. Cancer Prevention Research. 2011; 4(12):
1993–2001. [PubMed: 21885816] 

9. Thomson CA, Chow HS, Wertheim BC, et al. A randomized, placebo-controlled trial of 
diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen. Breast 
Cancer Research and Treatment. 2017:1–11.

10. Cuzick J, Warwick J, Pinney E, Warren RM, Duffy SW. Tamoxifen and breast density in women at 
increased risk of breast cancer. Journal of the National Cancer Institute. 2004; 96(8):621–628. 
[PubMed: 15100340] 

11. Mousa NA, Crystal P, Wolfman WL, Bedaiwy MA, Casper RF. Aromatase inhibitors and 
mammographic breast density in postmenopausal women receiving hormone therapy. Menopause. 
2008; 15(5):875–884. [PubMed: 18480735] 

12. McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast 
cancer risk: a meta-analysis. Cancer Epidemiology Biomarkers & Prevention. 2006; 15(6):1159–
1169.

13. Nie K, Chen J-H, Chan S, et al. Development of a quantitative method for analysis of breast 
density based on three-dimensional breast MRI. Medical physics. 2008; 35(12):5253–5262. 
[PubMed: 19175084] 

14. Haars G, van Noord PA, van Gils CH, Grobbee DE, Peeters PH. Measurements of breast density: 
no ratio for a ratio. Cancer Epidemiology Biomarkers & Prevention. 2005; 14(11):2634–2640.

Ding et al. Page 11

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Stone J, Ding J, Warren RM, Duffy SW, Hopper JL. Using mammographic density to predict breast 
cancer risk: dense area or percentage dense area. Breast Cancer Research. 2010; 12(6):R97. 
[PubMed: 21087468] 

16. Sohn G, Lee JW, Park SW, et al. Reliability of the percent density in digital mammography with a 
semi-automated thresholding method. Journal of breast cancer. 2014; 17(2):174–179. [PubMed: 
25013440] 

17. Niklason LT, Christian BT, Niklason LE, et al. Digital tomosynthesis in breast imaging. Radiology. 
1997; 205(2):399–406. [PubMed: 9356620] 

18. Teertstra HJ, Loo CE, van den Bosch MA, et al. Breast tomosynthesis in clinical practice: initial 
results. European radiology. 2010; 20(1):16–24. [PubMed: 19657655] 

19. Klifa C, Carballido-Gamio J, Wilmes L, et al. Magnetic resonance imaging for secondary 
assessment of breast density in a high-risk cohort. Magnetic resonance imaging. 2010; 28(1):8–15. 
[PubMed: 19631485] 

20. Thompson DJ, Leach MO, Kwan-Lim G, et al. Assessing the usefulness of a novel MRI-based 
breast density estimation algorithm in a cohort of women at high genetic risk of breast cancer: the 
UK MARIBS study. Breast Cancer Res. 2009; 11(6):R80. [PubMed: 19903338] 

21. Khazen M, Warren RML, Boggis CRM, et al. A pilot study of compositional analysis of the breast 
and estimation of breast mammographic density using three-dimensional T1-weighted magnetic 
resonance imaging. Cancer Epidemiology Biomarkers & Prevention. 2008; 17(9):2268–2274.

22. Wang J, Azziz A, Fan B, et al. Agreement of mammographic measures of volumetric breast density 
to MRI. PLoS One. 2013; 8(12):e81653. [PubMed: 24324712] 

23. Tagliafico A, Bignotti B, Tagliafico G, et al. Breast density assessment using a 3T MRI system: 
comparison among different sequences. PloS one. 2014; 9(6):e99027. [PubMed: 24892933] 

24. Glover G, Schneider E. Three-point dixon technique for true water/fat decomposition with B0 
inhomogeneity correction. Magnetic resonance in medicine. 1991; 18(2):371–383. [PubMed: 
2046518] 

25. Glover GH. Multipoint Dixon technique for water and fat proton and susceptibility imaging. 
Journal of Magnetic Resonance Imaging. 1991; 1(5):521–530. [PubMed: 1790376] 

26. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984; 153(1):189–194. [PubMed: 
6089263] 

27. Reeder SB, Wen Z, Yu H, et al. Multicoil Dixon chemical species separation with an iterative least-
squares estimation method. Magnetic resonance in medicine. 2004; 51(1):35–45. [PubMed: 
14705043] 

28. Reeder SB, Pineda AR, Wen Z, et al. Iterative decomposition of water and fat with echo 
asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. 
Magnetic resonance in medicine. 2005; 54(3):636–644. [PubMed: 16092103] 

29. Li Z, Gmitro AF, Bilgin A, Altbach MI. Fast decomposition of water and lipid using a GRASE 
technique with the IDEAL algorithm. Magnetic Resonance in Medicine. 2007; 57(6):1047–1057. 
[PubMed: 17534901] 

30. Li Z, Graff C, Gmitro AF, et al. Rapid water and lipid imaging with T2 mapping using a radial 
IDEAL-GRASE technique. Magnetic resonance in medicine. 2009; 61(6):1415–1424. [PubMed: 
19353651] 

31. Rosado-Toro JA, Barr T, Galons J-P, et al. Automated breast segmentation of fat and water MR 
images using dynamic programming. Academic radiology. 2015; 22(2):139–148. [PubMed: 
25572926] 

32. Lin M, Chen J-H, Wang X, Chan S, Chen S, Su M-Y. Template-based automatic breast 
segmentation on MRI by excluding the chest region. Medical physics. 2013; 40(12):122301. 
[PubMed: 24320532] 

33. Gubern-Mérida A, Kallenberg M, Mann RM, Marti R, Karssemeijer N. Breast segmentation and 
density estimation in breast MRI: a fully automatic framework. Biomedical and Health 
Informatics, IEEE Journal of. 2015; 19(1):349–357.

34. Wengert GJ, Helbich TH, Vogl W-D, et al. Introduction of an Automated User–Independent 
Quantitative Volumetric Magnetic Resonance Imaging Breast Density Measurement System Using 

Ding et al. Page 12

J Magn Reson Imaging. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the Dixon Sequence: Comparison With Mammographic Breast Density Assessment. Investigative 
radiology. 2015; 50(2):73–80. [PubMed: 25333307] 

35. Thomson CA, Thompson PA, Wertheim BC, et al. Abstract P6-01-18: 2-Hydroxyestrone is 
associated with breast density measured by mammography and fat: water ratio magnetic resonance 
imaging in women taking tamoxifen. Cancer Research. 2015; 75(9 Supplement):P6-01-18–
P06-01-18.

36. Wengert GJ, Pinker K, Helbich TH, et al. Accuracy of fully automated, quantitative, volumetric 
measurement of the amount of fibroglandular breast tissue using MRI: correlation with 
anthropomorphic breast phantoms. NMR in Biomedicine. 2017; 30(6)

37. Huang C, Altbach MI. Multi-Mask Multi-Seed Free Growing Field Map Estimation Algorithm for 
Iterative Multi-Point Water-Fat Decomposition. ISMRM 17th Annual Scientific Meeting & 
Exhibition; Honolulu, Hawaii, USA. 2009; 

38. Hernando D, Kellman P, Haldar J, Liang ZP. Robust water/fat separation in the presence of large 
field inhomogeneities using a graph cut algorithm. Magnetic resonance in medicine. 2010; 63(1):
79–90. [PubMed: 19859956] 

39. Ding J, Thompson PA, Marron MT. , et al. The test-retest reliability of fat-water ratio MRI derived 
breast density measurements and automated breast segmentation. ISMRM 24th Annual Scientific 
Meeting & Exhibition; Singapore. 2016; 

40. Arce GR. Multistage order statistic filters for image sequence processing. IEEE Transactions on 
Signal Processing. 1991; 39(5):1146–1163.

41. Dice LR. Measures of the amount of ecologic association between species. Ecology. 1945; 26(3):
297–302.

42. Byng JW, Yaffe MJ, Jong RA, et al. Analysis of mammographic density and breast cancer risk 
from digitized mammograms. Radiographics. 1998; 18(6):1587–1598. [PubMed: 9821201] 

43. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast 
cancer risk. Cancer Epidemiology Biomarkers & Prevention. 1998; 7(12):1133–1144.

44. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. 
Psychological methods. 1996; 1(1):30.

45. Cuzick J, Warwick J, Pinney E, et al. Tamoxifen-induced reduction in mammographic density and 
breast cancer risk reduction: a nested case–control study. Journal of the National Cancer Institute. 
2011

46. Freed M, Zwart JA, Loud JT, et al. An anthropomorphic phantom for quantitative evaluation of 
breast MRI. Medical physics. 2011; 38(2):743–753. [PubMed: 21452712] 

47. Arthur D, Vassilvitskii S. k-means++: The advantages of careful seeding. Proceedings of the 
eighteenth annual ACM-SIAM symposium on Discrete algorithms: Society for Industrial and 
Applied Mathematics; 2007; 1027–1035. 

48. Zhu L, Kolesov I, Gao Y, Kikinis R, Tannenbaum A. An effective interactive medical image 
segmentation method using fast growcut. MICCAI Workshop on Interactive Medical Image 
Computing; 2014; 

Appendix 1: Fully Automated Breast Segmentation

Breast segmentation is the first and very critical step for accurate and reproducible BD 

estimation. The automated segmentation was developed based on the different features in the 

fat-only and water-only images, which is similar to the method of Rosado-Toro et al.(31) but 

with an improved 3D regularization. It includes the following steps:

Step 1: In the fat-only images, as the example shown in Figure 1A(e), the signal 

intensities of pectoral muscle are much lower than those of the breast tissue, which 

provides a clear boundary. This lower pectoral muscle boundary thus can be captured 

in the image gradient (y direction) of the fat-only images using a linear programming 

algorithm with a smoothing window to minimize the penalty (31).
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Step 2: In the water-only images, as shown in Figure 1A(f), the k-means++ approach 

(47) is applied to classify the image pixels into three clusters. This method is a 

variation of the original k-means classification and the centroids for each cluster are 

not selected at random but based on its distance to the existing centroids to reduce the 

probability of finding incorrect centroids. After the k-means++ classification in the 

water-only images, the cluster with the lowest mean signal intensity is the non-object 

region and can be excluded. In this way, the upper boundary of the breast is 

identified.

Step 3: After combing the lower and upper boundaries, the chest tissue between two 

breasts can be automatically removed by a 3D region growing method by setting the 

distance between the left and right breasts.

Step 4: The inclusion of nipple region is a limitation of the segmentation method of 

Rosado-Toro et al.(31). In the last step, we perform a 3D regularization using a 3D 

order-statistic filtering (40) to automatically smooth the breast mask and successfully 

eliminate the nipple region.

Appendix 2: Fat-water Decomposition MRI-based Breast Density Measure: 

FraGW

FraGW

We propose a new MRI-based breast density measure that accounts for the amount of 

fibroglandular tissue and its distribution, FraGW = (FraGland + FraWater).

FraGland measures the volumetric fraction of fibroglandular tissues in the entire breast, 

representing the distribution of fibroglandular tissues. A 3D automated segmentation based 

on localized robust statistics of the image intensity is utilized for extracting the glandular 

region on the fat-only image. In particular, a few seeds (the initial points selected to start the 

algorithm) are placed inside the glandular region automatically based on the fat signal 

intensity. At each seed point, a 3× 3× 3 neighborhood is scanned through and the three local 

robust statistics are computed. Specifically, the local median intensity, the median absolute 

deviation, and the interquartile range are computed to represent the local characteristics of 

the intensity distribution as well as the robust variance around the seed region. Then, a non-

parametric density estimation is performed to compute the distribution of the three features. 

In particular, the kernel density estimation is performed with a Gaussian kernel whose 

standard deviation is 1/10 of that of each feature. The estimated probability density function 

will further be used to evaluate the similarity of a new location with the seeded region. Then, 

for any non-determined point in the entire volume, the shortest path is constructed from the 

seeded region. The distance along the path is determined by both the spatial and image 

discrepancy along the path. As such, the distance between two points in the image not only 

represent their spatial distance but also the accumulated intensity difference along the path 

connecting them. Specifically, at any non-determined point, its local robust statistics feature 

vector is computed. The 3D feature vector is fed into the pdf computed above and the 

probability is computed. This probability value evaluates the similarity of the features 

between the current point with those seed points. However, this value does not take the 
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spatial distance of the current point with the seed points. In order to consider both the 

appearance similarity and the spatial vicinity, an optimal path connecting this point (and any 

other non-determined point) to any seed point, is computed. Such optimal path is computed 

from the local distance between each point and its neighbors, detailed as follows. The 

distance between any point and its neighbor is defined as the absolute difference between 

their probability value computed above, then the dynamic programming is used to trace back 

to the seed points and find the optimal path. If the final optimal path connects it to the few 

gland seeds, it is determined to be within the gland region. On the other hand, if the optimal 

path connects it to the background non-breast region, it is categorized into background(48).

FraWater represents volumetric water fraction after correcting the fat-water signal 

contamination in the fat fraction maps due to the intrinsic limitations of this fat-water 

decomposition technique. The relationship (assumed linear) between the signal fraction and 

volume fraction can be established as below:

For each pixel in the breast region,

Sfat = aVfat + bVwater
Swater = cVfat + dVwater

, [Eq.1]

where Sfat is the fat signal intensity, Swater is the water signal intensity, Vfat is the fat 

volume, and Vwater is the water volume. Four correction factors a,b,c,d refer to the volume 

contribution to the signal intensity. The fat signal faction, S fat % =
S fat

S fat + Swater
 can be 

obtained directly from the fat fraction map [Figure 1A(g)]. Our goal is to find the water 

volume fraction in each pixel, Vwater % =
Vwater

V fat + Vwater
, which requires the determination of 

a,b,c and d.

On the fat fraction map (Figure 2A), we take a small region in pectoral muscle tissue as pure 

water region, and take another small region in the nearby subcutaneous fat tissue as a pure 

fat region. By taking the average of the signal intensity in each region, we acquire two fat 

signal fraction values frapw and frapf. In order to make the values more accurate, this 

procedure was repeated on four patients’ images to get the average frapw and frapf. Then, the 

fat fraction map can be normalized using frapw and frapf: values smaller than frapw are set as 

frapw whereas values greater than frapf are set as frapf. In order to set up enough equations to 

solve the four coefficients:

First,

in pure water region: Vfat = 0, Vwater = 1, plug into Equation [1]⇒ Sfat = b, Swater = d 
⇒
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S fat % =
S fat

S fat + Swater
= b

b + d = frapw [Eq.2]

in pure fat region: : Vfat = 1, Vwater = 0, plug into Equation [1]⇒ Sfat = a, Swater = c 
⇒

S fat % =
S fat

S fat + Swater
= a

a + c = frap f [Eq.3]

Next, the fat image [Figure 1A(e)] and the water image [Figure 1A(f)] are added, and the 

same method is conducted on this “fat+water image” to find a pure water region and a pure 

fat region. Then, the ratio of the signal intensity in pure fat region and the signal intensity in 

pure water region, r, can be determined,

S fat + Swater, pure fat region

S fat + Swater, pure water region = a + c
b + d = r [Eq.4]

This procedure was also repeated on four patients’ images to determine a more accurate r.

Since what we care about here is the “fraction”, one of the coefficients can be set as 1.

Here we take d = 1. [Eq.5]

Combing the [Eq.2] ~ [Eq.5], the four correction factors a,b,c,d were solved. Therefore, 

FraWater, the averaged water volume fraction in the entire breast volume, could be easily 

achieved by solving the matrix equations (Eq.1) for each pixel based on the normalized fat 

fraction maps.
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Figure 1. 
Derivation of the fat fraction map from data acquired using the radial IDEAL-GRASE 

technique and the breast segmentation results. A, (a)–(d) Images obtained from data 

acquired with each of the 4 gradients echoes of the radial IDEAL-GRASE sequence and the 

calculated (e) fat-only image, (f) water-only image and (g) fat fraction map (calculated 

voxel-wise as the ratio of the fat signal to the sum of the fat and water signals). B, the 

corresponding manual, and automated breast segmentation results. The average Dice index 

was 0.9121 with a standard deviation of 0.0306 based on the data from Sample 1.
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Figure 2. 
Fat-water decomposition MRI-based breast density estimation. A, correction for the signal 

intensity bias to calculate FraWater, the original fat fraction map (left), and the 

corresponding calibrated fat fraction map (middle) and calibrated FraWater map (right). The 

red and green regions in the original fat fraction map (left) represent the subcutaneous fat 

and muscle regions used for calibration, respectively. B, breast density measures. Fra80 

mask (left), FraGland mask (middle), and FraWater map after correction for fat-water signal 

contamination (right). Blue regions in Fra80 mask (left) and FraGland mask (middle) 

indicate the dense areas with <80% fat fraction and the fibroglandular tissue, respectively.
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Figure 3. Concordance and test-retest reproducibility assessment
A, correlation plot between MD and Fra80 (left) and FraGW (right) based on the automated 

segmentation. The statistics are shown in Table 2. The red line represents the fitted 

calibration curve. B, test-retest reproducibility plot of MRD measures converted from Fra80 

(left) and FraGW (right). The statistics are shown in Table 3.
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Table 1

Summary characteristics of the samples used in the different analysis.

Study samples Sample 1 Sample 2

Purpose
To evaluate the concordance by comparing with 

MDa To assess the test-retest reproducibility

Inclusion criteria Patients underwent digital mammography within 
6 months from the date of MRI scan

Patients received test-retest scans (For each test-retest scan, 
the patient left the scanner and was immediately repositioned 

in the scanner, re-registered and re-localized)

Exclusion criteria for the 
analysis

The change of MD was larger than 10% between 
baseline and follow-up mammograms (1–2 years 

apart).b
n/a

Number of patients (age) n=40 (age mean ± SD: 56.1 ± 8.4 years)

n=10 (age mean ± SD: 56.4 ± 10.4 years); 7 with test-retest at 
3 time-points, 2 with test-retest at 2 time-points, 1 with test-

retest at 1 time-point; for the same patient, scans are 6 months 
apart

Number of scans 40 (35 from GE scanner, 5 from Siemens 
scanner) 26 × 2 (24 from GE scanner, 2 from Siemens scanner)

Number of unaffected 
breasts

42 (both breasts of 2 patients from GE scanner 
were unaffected) 26 × 2 (all patients had one unaffected breast)

a
MD: mammographic density

b
This is to exclude patients with large breast density fluctuations
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Table 3
Reproducibility analyses of the MRD measures converted from Fra80 and FraGW

based on automated breast segmentation.

MRD converted from Fra80 FraGW

Test-retest reproducibility

mean |Δ1–2| 1.43% 1.10%

standard deviation Δ1–2 1.73% 1.20%

ICCa [95% confidence interval] (logarithm) 0.9870 [0.9715,0.9941] 0.9901 [0.9783,0.9955]

a
ICC: intra-class correlation coefficient
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