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Abstract

The first total synthesis of chaetoglobin A (1), which features a chiral axis between two identical 

highly oxygenated bicyclic cores, was successfully completed in 12 steps from 2,6-

dimethoxytoluene. Vanadium-catalyzed oxidative phenol coupling, as a key step, enabled 

generation of the axial chirality.

Abstract

Chaetoglobin A is one of the azaphilone dimers, which contains two identical oxygenated 

bicyclic cores incorporating tertiary alcohol stereocenters that are connected through a chiral 

axis (Figure 1). It is isolated from the endophytic fungus chaetomium globosum, which lives 

in the stem of Imperata cylindrical. In 2008, Tan et al. reported its inhibitory ability on the 

propagation of human breast cancer and colon cancer cell lines.1 Previous studies on the 

biosynthesis of azaphilone alkaloids indicate that its core backbone is of polyketide origin.2 

However, the nature of the dimerization and generation of attendant axial chiral 

stereochemistry has not been delineated. Specifically, it is unclear whether the 

stereochemistry of the chiral axis forms first and directs formation of the tertiary alcohol 
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centers (via 3), if the tertiary alcohol centers form first and then direct formation of the 

chiral axis (via 4), or if these stereoelements are formed independently.

Due to their intriguing structures and biological activities, numerous attempts to synthesize 

the azaphilone alkaloids have been reported since the early 1970s.3 Approaches to 

introducing the bicyclic core proceed from either a keto-formyl precursor or alkynyl-formyl 

precursor that generate benzopyrylium salts or pyronoquinones as key intermediates. Often, 

acid-catalyzed cycloisomerization, followed by oxidation, was used to construct the 2H-

isoquinoline-2,6-dione backbone. However, no synthetic efforts have been reported toward 

azaphilone dimers to date. Recently, we reported an efficient method to construct a chiral 

biaryl axis by means of vanadium-catalyzed enantioselective oxidative phenol coupling.4 

The oxidative coupling permits the formation of chiral axes effectively. Here, we describe 

the total synthesis of chaetoglobin A utilizing this stereooselective oxidative phenol coupling 

to generate an axial chiral bisphenol dimer 7 as a key intermediate.

In our retrosynthetic analysis, the final isoquinoline moiety could be prepared by amination 

of 5 (Scheme 1). Lewis acid-catalyzed dearomatization followed by oxidation would allow 

for construction of the corresponding bicyclic core from formylated dimer 6. We 

hypothesize that the axial chirality of 6 could direct formation of the tertiary alcohol centers 

of 5. In doing so, we could determine the feasibility one of the possible biosynthetic 

pathways (i.e. via 3)( Figure 1). Vilsmeier-Haack formylation could install the necessary 

formyl groups on tetraphenol 7. We envisioned the atroposelective oxidative phenol coupling 

of 8 to afford pure atropoisomer 7. We anticipated that the acetoxy stereocenters of 8 would 

have little effect on stereochemical course of the phenol coupling with the chiral catalyst 

exerting control. Internal alkynyl monomer 8 would be prepared from the Sonogashira cross-

coupling of bisphenol 9 and alkyne 10.

Synthetic efforts commenced with preparation of phenol 9 and alkyne 10 as shown in 

Scheme 2. Iridium-catalyzed borylation5 of commercially available 11, followed by 

halogenation allowed for the formation of bromide 13. Due to need for a more reactive 

electrophile for Sonogashira cross-coupling, halogen exchange was undertaken to generate 

iodophenol 9 after demethylation. Surprisingly, stepwise iodination via halogen exchange6 

from bromide 13 proved to be more efficient than direct iodination7 from boronic ester 12. 

Following a literature report8 to prepare enantiomerically pure hydroxyalkyne 17, a 

nucleophilic ring opening with commercially available propylene oxide 14 and butyne 15 
gave internal alkyne 16. Sequential alkyne isomerization was effected with a Li/KOt-Bu in 

1,3-diaminopropane. Acetate protection of the free hydroxyl group provided the desired 

alkyne 10 in 74% yield over three steps.

Optimization of Sonogashira coupling between iodide 9 and alkyne 10 led to the formation 

of oxidative phenol coupling precursor 8 in 98% yield (Scheme 3). Using our recently 

reported atroposelective oxidative coupling of phenols,4 vanadium catalyst 18 was applied to 

this transformation. Notably, complete catalyst control over the diastereoselectivity was 

observed with the opposite enantiomer of the catalyst providing the diastereomeric product 

with comparable dr. The additives, LiCl and HOAc, which are theorized to activate the 

vanadium catalyst result in significant improvements (Table 1). Treatment of 8 with LiCl as 
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an additive gave high diastereoselectivity (Table 1, entry 2). Increased catalyst loading 

showed neither a significant improvement in yield, nor selectivity (Table 1, entry 3). Among 

alternative solvents, chlorobenzene seemed a promising candidate in terms of improving 

yield (Table 1, entry 2 vs 4 and entry 5 vs 6). Improved yield and comparable selectivity of 

dimer were realized with HOAc as the additive and chlorobenzene as solvent (Table 1, entry 

6). Finally, further improved yield and diastereoselectivity was achieved under more 

concentrated reaction conditions (Table 1, entry 7). Use of chiral vanadyl catalyst 18 under 

the optimized conditions formed dimer 7 in 67% yield establishing the axial chiral element 

with >15:1 dr. The absolute stereochemistry of product 7 was confirmed by X-ray 

crystallographic analysis of the para-bromobenzoyl substituted derivative 19.9

With the coupled atropoisomer in hand, our attention turned to the key oxidative 

dearomatization reaction, developed by Porco and coworkers, to generate the bicyclic core 

featuring a tertiary alcohol stereocenter.11 Initially, we tested this transformation using 

monomeric formylated phenol 20, which was easily prepared from monomer 8 in 85% yield 

(Scheme 4). Based on the literature, Au(OAc)3 was the optimal Lewis acid for this 

transformation. These conditions efficiently provided the desired oxygenated core 21 upon 

IBX oxidation as assessed by a monomer 22 after acetylation (72% yield over three steps).

With dimer 7, several methods to formylate adjacent to the alkyne chain were surveyed.10 

Ultimately, the Vilsmeier-Haack formylation with preformed 

(chloromethylene)dimethyliminium chloride at −35 °C provided bisformylated product 6 in 

86% yield (Scheme 5) without acyl deprotection, which occurred in many of the other 

conditions screened due to acid byproducts formed during generation of the active acylating 

species.

With dimer 6, however, Au(OAc)3-catalyzed dearomatization did not generate desired 

product 5, but caused decomposition. After screening several Lewis acids, we found that 

AgOTf12 gave a similar result in the model system from Scheme 4 (63% overall yield from 

20). To our delight, cycloisomerization of 6 performed simlarly with AgOTf, and subsequent 

oxidation with a hypervalent iodine reagent, IBX, allowed access to bicyclic dimer 5 
(Scheme 5). We had theorized that the chiral axis would influence the stereochemistry 

during formation of this tertiary alcohol center with the bulk of the 2H-isoquinoline-2,6-

dione backbone blocking one stereoface. However, the reaction gave a 1:1:1 mixture of the 

three possible isomers (7S,7’S; 7S,7’R; 7R,7’R), indicating that the axial stereochemistry 

does not create a strong facial bias. Fortunately, sufficient amounts of each isomer could be 

obtained to proceed with the synthesis. The following section describes the results obtained 

with the faster eluting symmetric diastereomer, which could not be definitively assigned as 

7S,7’S or 7R,7’R at this stage.

At this juncture, selective acylation of the tertiary alcohol centers was needed, which could 

be achieved either by deacylation of the secondary alcohols followed by selective acylation 

of the tertiary alcohols or by global acetylation followed by selection deacylation of the less 

hindered secondary alcohols. The former possibility takes advantage of the greater reactivity 

of the alcohols adjacent to the ketone.13 Upon removal of the acetyl groups from 5, the 

resultant product was found to be prone to decomposition. As such, the latter alternative 
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became a focus. Acetylation of 5 afforded product 23 in 22% over three steps from 6, which 

represent six sets of chemical transformations due to the dimeric nature of the material 

(Scheme 4). Unexpectedly, selective deprotection of the secondary acetoxy group in the 

presence of the sterically congested tertiary acetoxy group was challenging. Attempted 

hydrolysis of 23 with acidic or basic conditions led decomposition that was faster than 

deprotection. We explored a wide range of hydrolysis conditions,14 including enzymatic 

methods,15 and finally established that 10 equiv of Ti(Oi-Pr)4 in CH2Cl2 at elevated 

temperature afforded free hydroxylated 24 in 52% yield (Scheme 4). Exposure of 

oxygenated bicycle 24 to excess NH4OAc furnished synthetic chaetoglobin A (1) in nearly 

quantitative yield.

The spectroscopic data from synthetic 1 was in accord with those reported in the literature 

for chaetoglobin A.1 In particular, the 13C NMR gave 17 differentiable carbons supporting 

the symmetric structure. The chemical shifts of those signals closely matched those from the 

natural product securing evidence that the correct diastereomeric relationship between the 

tertiary alcohols and the stereoaxis had been generated. Importantly, circular dichroism data 

obtained from the synthetic material proved identical to that from the natural product (Figure 

2), which indicates that both the same absolute and relative stereochemistries are 

established.

In conclusion, we have accomplished the first total synthesis of chaetoglobin A in 4.3% 

overall yield, with 12 steps in the longest linear sequence. A vanadium-catalyzed 

atroposelective oxidative phenol coupling serves as a key step in the formation of stereoaxis 

of chiral azaphilone dimer 1. The stereochemical results from oxidative cyclization after 

formation of the stereoaxis raise interesting questions about the operating biosynthetic 

pathways.
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Figure 1. 
Structure of chaetoglobin A (1) and B (2)
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Figure 2. 
Comparing circular dichroism of chaetoglobin A (1) (a) CD spectrum of natural product 

isolate. Adapted from reference 1 with permission of The Royal Society of Chemistry; (b) 

synthetic 1 CD spectrum.

Kang et al. Page 9

Org Lett. Author manuscript; available in PMC 2019 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Scheme 1. 
Retrosynthetic Analysis of Chaetoglobin A (1)
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Scheme 2. 
Syntheses of Sonogashira Coupling Fragments 9 and 10
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Scheme 3. 
Atroposelective Oxidative Phenol Coupling and Determination of Absolute Axial 

Stereochemistry
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Scheme 4. 
Oxidative Dearomatization with Monomer 22
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Scheme 5. 
Completion of Synthesis of Chaetoglobin A (1)

Kang et al. Page 14

Org Lett. Author manuscript; available in PMC 2019 September 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kang et al. Page 15

Ta
b

le
 1

.

D
ia

st
er

eo
se

le
ct

iv
e 

O
xi

da
tiv

e 
C

ou
pl

in
g 

of
 8

en
tr

y
V

-c
at

 1
8

ad
di

ti
ve

a
so

lv
en

tb
yi

el
d 

(%
)c

dr

1
20

 m
ol

 %
–

ch
lo

ro
be

nz
en

ed
34

 (
44

)
79

:2
1

2
20

 m
ol

 %
L

iC
l

to
lu

en
e

52
 (

59
)

92
:8

3
40

 m
ol

 %
L

iC
l

to
lu

en
e

49
 (

52
)

93
:7

4
20

 m
ol

 %
L

iC
l

ch
lo

ro
be

nz
en

e
54

 (
60

)
90

:1
0

5
20

 m
ol

 %
H

O
A

c
to

lu
en

e
49

 (
55

)
87

:1
3

6
20

 m
ol

 %
H

O
A

c
ch

lo
ro

be
nz

en
e

49
 (

64
)

90
:1

0

7
20

 m
ol

 %
H

O
A

c
ch

lo
ro

be
nz

en
ed

58
 (

67
)

94
:6

a 20
 m

ol
 %

b 0.
3 

M

c Is
ol

at
ed

 y
ie

ld
 b

as
ed

 o
n 

re
co

ve
ry

 o
f 

su
bs

tr
at

e 
in

 p
ar

en
th

es
es

d 0.
5 

M

Org Lett. Author manuscript; available in PMC 2019 September 21.


	Abstract
	Abstract
	References
	Figure 1.
	Figure 2.
	Scheme 1.
	Scheme 2.
	Scheme 3.
	Scheme 4.
	Scheme 5.
	Table 1.

