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Abstract

The presentation of virus-derived peptides by MHC molecules constitutes the earliest signals for 

immune recognition by T cells. In HIV infection, immune responses elicited during infection do 

not enable to clear infection and correlates of immune protection are not well defined. Here we 

review features of antigen processing and presentation specific to HIV, analyze how HIV has 

adapted to the antigen processing machinery and discuss how advances in biochemical and 

computational protein degradation analyses and in immunopeptidome definition may help identify 

targets for efficient immune clearance and vaccine immunogen design.
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HIV traffic and antigen processing pathways in cell subsets

The antigen processing machinery serves many purposes critical to cell maintenance, 

degrading retiree and misfolded proteins, recycling amino acids for protein synthesis and 

producing peptides for MHC-I and MHC-II display and immune monitoring (1). Each 

subcellular compartment contains several proteases and peptidases involved in protein 

degradation. Cytosolic constitutive proteasomes and immunoproteasomes can unfold and 

degrade proteins into fragments further processed into peptides by cytosolic 

aminopeptidases and endopeptidases, some of which are transferred into the ER for further 

trimming by ER-resident aminopeptidases, ERAP1 and ERAP2, and loading onto MHC-I 

(2). Exogenous antigens such as proteins, free or antibody-coated viruses, cell debris 

endocytosed or phagocytosed may be degraded by cathepsins in endosomes and lysosomes. 

Degradation peptides transferred in the cytosol and endoplasmic reticulum (ER) for further 

degradation are cross-presented in the vesicular pathway by MHC-I or, in professional 

antigen presenting cells, transported into the MIIC compartment for MHC-II loading and 

presentation (1, 3, 4). MHC-II complexes also present endogenous antigens during 

autophagy, when cytosolic and nuclear antigens are engulfed in autophagosomes fusing with 

lysosomes for degradation and MHC-II presentation. Autophagy during HIV infection leads 
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to HIV MHC-II presentation by dendritic cells (DC) (5). Proteasomes, tripeptidyl peptidase 

II (TPPII), thimet oligopeptidase (TOP), nardilysin and ERAP1, cathepsins are involved in 

the processing of some HIV epitopes but few HIV epitopes have been studied with respect to 

peptidase requirements for production or degradation (6–10). Direct and cross-presentation 

pathways intersect in many points, as evidenced by the generation of MHC-II-restricted 

cancer antigen-derived epitopes requiring proteasome processing (11). The role of 

intracellular antigen traffic in the definition of the MHC peptidome and kinetics of 

presentation of peptides to immune cells is still poorly understood despite its critical role for 

immune recognition.

HIV infects cell subsets expressing CD4 and co-receptors CCR5 or CXCR4: CD4 T cells, 

monocytes, macrophages and dendritic cells (12, 13). Productive infection requires that HIV 

fuses at the plasma membrane delivering the viral core into the cytosol, proceeds to 

uncoating and reverse transcription during its transport to the nucleus, and eventually the 

DNA provirus integrates into the cell genome. The provirus is eventually transcribed and 

translated into new proteins assembling into immature virions budding at the plasma 

membrane. Conversely, HIV provirus can enter quiescence and become part of reservoirs 

persisting despite antiretroviral treatments (14, 15). Productive infection is a rare event since 

many HIV entry events lead to abortive infection due to the antiviral activity of host 

restriction factors and of the degradation machinery (16–19). Free HIV virions or antibody-

coated particles may be endocytosed or phagocytosed and degraded into endolysosomes or 

phagosomes. Particles entering in the cytosol can also be subjected to degradation by 

proteasomes during uncoating (20). After provirus expression, neosynthesized proteins may 

be degraded and lead to MHC-I presentation (21, 22), while autophagy in HIV-infected cells 

may lead to MHC-II presentation (23). However, the exact peptides processed and presented 

by cells have not been extensively defined, rather mostly inferred based on T cell responses 

in HIV-infected persons. Virus traffic influences both the outcome of viral replication and its 

degradation, but we still do not comprehend how it contributes to defining the HIV MHC-

peptidome and the immunogenicity of HIV proteins. HIV proteins are variably 

immunogenic within an individual and at the population level (24). HIV Gag p24, Env, Nef 

are the most immunogenic while Tat or Vpu are poorly immunogenic. The density of 

putative MHC-I peptide anchors in HIV proteome and the conservation of the proteins 

across variants or strains do not fully account for such differences. The analysis of 

degradation patterns of HIV antigens by purified proteasomes (7, 8, 10, 25, 26), or in the 

cytosol or endolysosomes of primary cells (9, 27–30) identifies areas of proteins quickly 

degraded into fragments too short be loaded onto MHC-I, while other areas are degraded 

slower and generate nested degradation peptides of various lengths. The timing of 

production of epitopes within a protein, even for overlapping epitopes, is variable and in part 

determined by motifs flanking epitopes (9). These variable degradation patterns and kinetics 

of production of epitopes may contribute to the variable density of CD8 immune responses 

within a HIV protein (8–10), but motifs predicting the production of degradation fragments 

of various lengths and peptide presentation by MHC-I or MHC-II remain to be identified. 

Aside from degradation patterns, the intracellular stability of degradation peptides also 

contribute to defining the amount of peptides available of MHC loading (31). The stability 

of short HIV peptides is surprisingly variable (few seconds to hour), defined by motifs 
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associated with stability or instability. Algorithms like NetChOP predicting proteasomal 

cleavage sites (32, 33), sometime in combination with algorithms for TAP or MHC binding 

(34, 35), help identify some degradation features. But they do not account for other 

peptidases involved in protein degradation (2), the specificity of the degradation machinery 

in each cell subset or cellular compartments (7, 27, 28, 36), and viral diversity. Comparison 

of HIV antigen degradation patterns in cytosol, endosomes and lysosomes identified 

expected variations in degradation patterns across compartments and showed that some 

epitopes were produced in all compartments while others were exclusively produced in the 

cytosol or in the endolysosomal compartment (8, 27–30). These data suggest that the traffic 

path followed by HIV after entry will shape not only the outcome of infection, but also the 

timing and nature of degradation peptides available for MHC presentation. Aside from 

differences during intracellular traffic, the different cell subsets targeted by the virus display 

variable levels of peptidases activities. As expected from studies in mice (37), macrophages 

present the highest levels of hydrolytic activities in endolysosomes in accordance with their 

clearance functions (27, 28). Dendritic cells present higher lysosomal activities than CD4 T 

cells but low cytosolic peptidase activities (27, 28, 36, 38). Differences in peptidase 

activities affected the degradation patterns of HIV antigens, the kinetics and amount of 

epitopes produced. While the surface peptidome of HIV-infected cell subsets has not yet 

been compared for matched CD4 T cells, DC, and macrophages, it is possible that 

differences in epitope production will affect the MHC-peptidome, and perhaps the efficiency 

of immune recognition of various cell subsets by epitope-specific CD8 T cells. Differences 

in antigen processing activities among cell subsets may be due to variable levels of 

expression of peptidases, and distinct and unknown mechanisms regulating peptidase 

hydrolytic activities across cell subsets. The variable effects of proteasome or cathepsin 

inhibitors on the processing and presentation of HIV peptides between matching monocyte-

derived DC and macrophages suggest that various sets of peptidases are involved in the 

processing and/or degradation of epitopes in each cell type (27). Cell-type specific 

peptidases, as illustrated for a serine protease unique to monocytic cell line (39), and their 

contribution to antigen processing and degradation are still poorly defined. The hydrolytic 

activities of the degradation machinery is finely tuned by external stimuli such as interferon 

gamma which increases the expression of certain interferon-induced peptidases such as 

ERAP1 or LAP, the expression of immunoproteasome catalytic subunits, TAP or MHC-I, 

altogether favoring the processing and display of MHC-peptides (40–42). Various stimuli 

relevant to HIV infection or vaccination modulate antigen processing. CD4 T cells activated 

with TCR-dependent or -independent stimuli present higher peptidase hydrolytic activities 

than resting CD4 T cells. Dendritic cells stimulated with LPS or TLR ligands 7 or 8 (such as 

CL097 or R848 used as adjuvants in vaccine preparation) decreased cathepsin activities 

while they increased all peptidases activities in macrophages. These TLR-induced 

alterations of peptidase activities modulated HIV antigen degradation patterns to various 

extents (27, 28). Differences in antigen degradation patterns between CD4 T cells and 

macrophages sustaining productive HIV infection, and DC presenting or cross-presenting 

HIV antigens during infection or vaccination may affect the pool of peptides available for 

display by MHC. Additional studies are needed to identify peptides commonly or differently 

processed in each cell subset, and specifically to assess whether peptides commonly 
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processed in all cell subsets may constitute better targets for immune clearance of infected 

cells.

Sources of antigens and the MHC-peptidome in HIV infection

Owing to the technical difficulties to isolate MHC-peptides from large numbers of HIV-

infected cells, limited datasets exist on the HIV-derived immunopeptidome, and all were 

published in the past 3 years (43–46). While the three groups used various experimental 

systems (cell line expressing soluble MHC, primary CD4 T cells infected with replicative 

HIV, B cells infected with non-replicative HIV, 293T cells transfected with HIV, cells 

infected with a MVA vector expression HIV antigen fragments), they all showed that HIV-

derived MHC-peptides come mostly from the structural and most abundant Gag proteins, but 

also from other less abundant proteins. Some areas of the Gag proteins seem efficiently 

presented across different cell types, HIV expression systems or HLA types. Mechanisms 

underlying differences in presentation of HIV peptides within Gag or across HIV proteins 

are still not understood despite their critical roles to identify targets for immune recognition 

and immunogen design. They may include variable degradation patterns of HIV proteins in 

various cell subsets and subcellular compartments as well as presence or absence of anchors 

for TAP and MHC binding.

HIV peptides presented by MHC-I included peptides of 8–11aa of optimal size for MHC-I 

loading, and peptides of non-canonical sizes of up to 16aa (43–45). The presentation of 

longer peptides is in agreement with findings on self-derived and cancer-associated peptides 

(47–50). The presentation of some longer peptides with extensions on the N- and/or C-

terminal side was not predictable based on potential anchors for MHC-I binding. These 

findings raise questions about the location and loading of such peptides onto MHC, the 

structure of the MHC-peptide complexes and stability of the MHC-peptide at the cell surface 

for potential CD8 recognition. However, the unbiased identification of MHC-bound peptides 

led to the identification of additional responses in HIV-infected persons and will be 

important to define targets for immune recognition of infected cells or peptides displayed by 

DC after vaccination. Strategies to clear HIV reservoirs aim at reactivating latently infected 

cells with various latency reversal agents (LRAs) and antiretroviral therapy, leading to HIV 

re-expression and peptide presentation for immune clearance (14, 51, 52). Pre-existing HIV 

immune responses elicited during HIV infection may not efficiently clear LRA-reactivated 

reservoirs (53–55). Thus, it will be important to identify HIV peptides displayed by latently 

infected cells after provirus reactivation with LRAs and assess whether new HIV-specific 

responses need to be induced in the context of therapeutic vaccination.

The antigenic sources of MHC-peptides derived from HIV may vary during viral replication 

but have not yet been precisely identified. Incoming virions provide functional HIV proteins 

for degradation in the cytosol, in endolysosomes or phagosomes leading to MHC 

presentation and T cell immune recognition (27, 56, 57). During provirus translation, in 

addition to complete proteins, defective ribosomal products (DRiPs) (58–60) may contribute 

to HIV peptide presentation (21, 61, 62). They could contribute to providing peptides for 

early MHC presentation and artificially directing HIV Gag to the DRiP pathway with a N-

end rule degradation signal increased MHC-I presentation of HIV (62). Alternate reading 
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frame translation products of HIV such as ASP (63) have been identified in HIV-infected 

cells and their role in HIV replication is unknown. While these products are difficult to 

isolate from cells, the existence of translation products derived from alternate reading frames 

is indirectly demonstrated through the identification of MHC-I restricted immune responses 

in HIV-infected persons (64, 65), and from HLA-restricted mutations within these reading 

frames (66–68). Recent studies on the self MHC-peptidome revealed novel categories of 

unexpected sources of MHC-peptide not coming from mistakes in protein translation (69) 

but from abnormalities during protein degradation or peptide loading onto MHC-I (70, 71). 

Spliced peptides made of two non-contiguous degradation fragments re-ligated in the 

proteasome during degradation were first identified in a few cancer antigens and shown to be 

immunogenic in patients (72–77). A recent study combining mass spectrometry and 

complex bioinformatics analysis (78) showed that spliced peptides account for up to 30% of 

the MHC-self-derived peptidome (70). CD8 T cell immune responses against spliced 

peptides derived from Listeria were also identified in Listeria-infected mice (79), suggesting 

that peptide splicing can occur during pathogen infection in vivo. A novel category of hybrid 

MHC-peptide was recently identified: the dual peptide occupancy of MHC-I by two short 

non-contiguous and separated short peptides of 2–7aa (71). Such peptides derived from two 

EBV antigens generated CD8 T cell responses, suggesting that mix-and-match of short 

peptides occupying MHC-I groove may contribute to the MHC-peptidome (71). It still 

remains to be investigated whether spliced peptides or mix-and-match peptides can be 

generated in HIV-infected cells, but the existence of potential new categories of 

unconventional peptides displayed by infected cells may help define novel HIV-specific 

immune responses relevant to vaccine design.

HIV adaptation to the antigen processing machinery and immune escape

HIV-specific CD8 and CD4 immune responses have been extensively identified in thousands 

of HIV-infected persons and defined in term of peptide specificity, HLA restriction, 

frequency of immune responses at the population level, TCR clonotypes, cytokine 

production, proliferative or killing capacities, yet the correlates of immune protection are 

still not well defined (80–84). HIV-specific T cells play a significant role in controlling viral 

load during acute infection and during spontaneous control in HIV controllers (81, 85–87). 

The temporal association between the reduction of viral load in acute infection and the 

appearance of T cell responses (88–90), and the HLA-restricted immune pressure driving 

HIV evolution (91–95) provide indirect evidence of the role of T cell in controlling viral 

load. However, these T cells do not clear infection. Factors contributing to their lack of 

efficacy include non-protective immunodominant responses (96), immune pressure exerted 

by T cell responses driving mutations in the virus and immune escape (92, 97, 98), long-

term antigen stimulation leading to T cell exhaustion (99), and rapid establishment of viral 

reservoirs invisible to immune cells (51, 100).

Specific HLA such HLA-B57 or -B27 and CD8 or CD4 T cell responses against Gag 

polyprotein (101–105), superior multifunctional T cell responses (81, 86, 106) and 

subdominant rather immunodominant immune responses (96, 107, 108) are associated with 

lower viral load and spontaneous control, but the mechanisms underlying these associations 

to viral control are not fully understood (109). The search for correlates of immune 
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protection has focused on the functionality and specificity of the CD4, CD8 T or NK cell 

responses elicited during infection but little is known on the contribution of antigen 

processing and presentation to the antiviral capacity or immunodominance of these immune 

responses. As T cell responses are activated through MHC-peptide recognition, fundamental 

outstanding questions are the nature and relative amount of HIV peptides displayed by HIV-

infected cells across multiple HLAs, and how efficiently HIV-specific T cells primed during 

infection detect HIV peptides naturally processed and presented by infected cell subsets. No 

comparative datasets exist on MHC-peptide displayed by CD4 T cells, macrophages and DC 

of the same donor after HIV infection. Differences in antigen processing activities and 

degradation patterns of HIV proteins between CD4 T cells and other cell subsets (7, 27–29) 

point toward potential variations in peptide presentation. If so, the most efficient immune 

responses should be defined as those targeting commonly presented peptides, in addition to 

the already described multifunctional capacity of HIV-specific immune cells.

It will be important to identify factors driving HIV immunodominance during infection to 

avoid reproducing such hierarchy during vaccination. Immunodominance in viral infection is 

multifactorial and, depending on the epitopes, may be attributed to differences in antigen 

processing, TAP, MHC or TCR binding affinity (110, 111). Similarly HIV T cell hierarchy 

may be shaped by the degradation patterns of antigens (9, 10), kinetics of epitope production 

in cell extracts or in DC endolysosomes (27, 31), as well as MHC and TCR binding affinity 

(112–114). Errors during retro-transcription of HIV RNA into DNA combined with HLA-

restricted immune pressure lead to a diversification of HIV within a person and across the 

population (91, 92, 115). Some HLA-restricted mutations reduce viral replication capacity 

(116–118). The impact of HLA-restricted mutations are some mitigated by additional 

compensatory mutations re-establishing sufficient viral fitness for propagation (119, 120), as 

only limited evolution is tolerated in structurally constraint sites of HIV proteins (118, 121). 

Mutations preventing proper peptide recognition by T cells render many immunodominant 

early responses irrelevant and lead to the broadening of immune responses in the chronic 

phase of infection (122–124). HIV has developed many mechanisms to avoid or limit its 

presentation to immune cells, including the down-modulation of MHC-I (125–127), and a 

remarkable adaptation to the antigen processing machinery. Many HLA-restricted 

intraepitopic mutations at anchor sites for MHC binding (113) or at residues required for 

contact to the TCR prevent T cell recognition while degeneracy is tolerated within epitopes 

at sites not critical for MHC or TCR binding (128). More recent studies have focused on 

identifying patterns defining antigen processing mutations during viral evolution. A study 

defining residues cleavable or non-cleavable by aminopeptidases showed that mutations 

toward to a poorly cleavable residue reduce epitope production (129). At the population 

level, residues flanking an HIV epitope tend to mutate under pressure of the restricting HLA 

toward poorly cleavable residues and are therefore predicable (129). HLA-restricted 

mutations within epitopes observed frequently in people sharing one HLA tend to reduce 

intracellular peptide stability, the amount of peptides available for CTL recognition and 

immune escape (31). As intracellular peptide stability or instability is determined by specific 

motifs, this pattern of immune escape could be predicted in a population (31). Studies on 

antigen degradation patterns of HIV variants showed that HIV of various clades adapt to the 

most frequent HLAs leading to immune evasion at the population level (26, 115, 129, 130). 
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A better understanding of antigen degradation and development of computational tools 

incorporating both diversity of the degradation machinery and sequence diversity of HIV 

will permit us to fully identify signatures of immune escape at the population level, and 

conversely to define motifs associated with efficient peptide presentation.

Exploiting the knowledge on HIV antigen processing to improve vaccine 

design

The ultimate purpose of HIV research is to create vaccines to prevent infection (prophylactic 

vaccine) or to enhance immune functions and clear viral reservoirs in HIV-infected persons 

to the point where they may not need antiretroviral treatments (therapeutic vaccines) (51, 

131, 132). Vaccine trials in humans have not been successful so far at achieving these goals, 

but it is likely that a successful vaccine strategy will encompass both antibody responses to 

block viral entry and T cell responses to prevent cell-to-cell transmission or clear reservoirs 

(131, 133). Multiple animal studies exploring various types of immunogens or viral vectors 

are showing encouraging results (134–138).

The high diversity and rapid evolution of HIV sequences within a person or across the 

population, the existence of different clades on different continents and the diversity of HLA 

combinations in the human population is a major challenge for the design of a universal HIV 

immunogen (115, 132, 139). Vaccine strategies should avoid reproducing the narrow 

immunodominance of immune responses elicited during infection and increase adequacy or 

breadth of immune responses. Two opposite approaches are being explored to design 

immunogens. The first design retains only the most conserved areas of HIV proteins in the 

immunogen plus the most frequent variant allowing coverage of the vast majority of 

conserved HIV areas across clades (140–142). The definition of conserved areas in HIV may 

include both conservation of the protein sequence, co-evolving areas in which mutations 

dramatically reducing viral fitness loss and compensatory mutations are detected 

consecutively (140, 142–145). Immunogens based on conserved elements encoded by a 

MVA-based viral vector yielded CD4, CD8 and antibody responses in mice and monkeys 

and clinical trials are underway to test their safety and efficacy (107, 143, 144, 146–148). 

Alternatively, mosaic immunogen design (139, 149) aims at including sequence variability 

of 9-mer epitopes by computationally assembling variants in mosaic constructs. Such 

immunogens encoded by adenovirus-based vectors elicited T cell and antibody responses 

and promising results in Macaque vaccination experiments (135) and are tested in clinical 

trials.

Perhaps the most intriguing and promising results in Macaque models came from a novel 

vaccine approach using an attenuated Rhesus CMV vector with limited cellular tropism 

(134, 150). While all Macaques vaccinated with the RhCMV expressing several complete 

SIV proteins developed SIV infection, 55% of them cleared SIV infection for at least 3 years 

post-challenge. All vaccinated Monkeys elicited broad and sustainable CD4 and CD8 T cell 

immune responses covering >65% of the SIV antigens used in vaccination (151, 152). 

Surprisingly CD8 T cell immune responses were restricted by MHC-II (153) and MHC-E 

(154). Mechanisms underlying the priming of unconventional and broad immune responses 
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and breaking the immunodominance observed during infection of vaccination with MVA- or 

adenoviral vectors expressing full proteins are still unknown. They may be related to the 

limited tropism of the attenuated RhCMV vector and specific cell subsets infected by the 

viral vectors in lymph nodes, the persistence of the antigen or any effect the vector may have 

on antigen processing and presentation. Whether a human CMV vector attenuated enough to 

be safe in the human population will trigger similar immunogenicity and clearance of HIV 

infection is still unknown.

These promising studies also highlight our incapacity to predict the outcome of vaccination 

in term of types and breadth of immune responses elicited by the vaccine and of its 

protectiveness after infection in the human population. They also provide guidelines for the 

definition of new correlates of immune protection and parameters to assess during vaccine 

design strategies. Immune responses elicited by the vaccine should be evaluated not only for 

their breadth and polyfunctionality but also to allow recognition of peptides naturally 

processed and presented by HIV-infected cells. It would therefore be important to assess 

whether vaccines processed and presented by dendritic cells lead to presentation of peptides 

similar or overlapping those presented by HIV-infected cells subsets. Considering the effect 

of viral infection (155) on the antigen processing machinery, it will be interesting to 

determine how viral vectors selected for HIV vaccines (MVA, adenoviruses, potential 

attenuated hCMV vector or other attenuated vectors derived from Lysteria or HSV (156–

158) and adjuvants (28, 159, 160) will affect immunogen processing and presentation. It will 

be essential to understand how peptide presentation by DC correlates with the breadth of 

immune responses, and to determine if and how peptide presentation by DC may be used to 

predict immunogenicity before proceeding to expensive animal studies. The use of flanking 

motifs to modulate and optimize peptide presentation (for instance linkers inserted between 

conserved areas of HIV proteins for conversed elements immunogen design) may provide an 

additional way to improve peptide presentation by DC (9, 161–163). The identification of 

MHC-E-restricted immune responses elicited by the RhCMV vector renewed interest in the 

HLA-E-restricted peptidome beyond the well-known presentation of MHC-derived sequence 

signal in immune tolerance (164–166). One HIV peptide predicted to be presented by HLA-

E (167) triggered cytolytic NK cell responses (168), supporting the role of HLA-E peptide 

presentation for immune clearance. A complete mapping of the HLA-E peptidome displayed 

by HIV-infected cells is necessary and may identify novel relevant targets for immune 

clearance. How to specifically induce HLA-E-restricted HIV immune responses during 

vaccination remains to be determined.

The expanding understanding of HIV antigen processing mechanisms and the unbiased 

identification of the HIV-derived immunopeptidome, together with better computational 

tools to predict antigen processing and presentation in the context of antigen variability, will 

help define the most relevant targets for immune recognition and help improve vaccine 

design. Knowledge, assays and bioinformatics tools developed to tackle these HIV-focused 

questions will also be relevant to the design of vaccines against other chronic infections or 

cancer.
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Highlights

• HIV antigen processing varies across cell subsets relevant to HIV infection or 

vaccination.

• HIV has adapted to the antigen processing machinery at the population to 

limit its presentation to immune cells.

• Sequence signatures of immune escape or of degradation patterns are being 

identified and may help predict peptides presentable by various MHC 

complexes.

• Recent studies on MHC---peptidome of HIV---infected cells identify peptides 

of unconventional lengths and novel targets for immune recognition.

• In---depth analyses of HIV---derived antigens and MHC---peptidome and 

better computational tools to predict antigen processing in the context of HIV 

variability will help design vaccine immunogens eliciting immune responses 

leading to early and efficient recognition of infected cells.
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