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ARL3 Mutations Cause Joubert Syndrome
by Disrupting Ciliary Protein Composition

Sumaya Alkanderi,1,10 Elisa Molinari,1,10 Ranad Shaheen,2,10 Yasmin Elmaghloob,3 Louise A. Stephen,3

Veronica Sammut,1 Simon A. Ramsbottom,1 Shalabh Srivastava,1,4 George Cairns,1 Noel Edwards,1

Sarah J. Rice,1 Nour Ewida,2 Amal Alhashem,5,6 Kathryn White,7 Colin G. Miles,1 David H. Steel,1,8

Fowzan S. Alkuraya,2,6,11 Shehab Ismail,3,9,11,* and John A. Sayer1,4,11,*

Joubert syndrome (JBTS) is a genetically heterogeneous autosomal-recessive neurodevelopmental ciliopathy.We investigated further the

underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic

variants in known JBTS-associated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromo-

some 10 (chr10: 101569997–109106128, UCSCGenome Browser hg 19), and exome sequencing revealed twomissense variants in ARL3

within the candidate locus. The encoded protein, ADP ribosylation factor-like GTPase 3 (ARL3), is a small GTP-binding protein that is

involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly

conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B,

such that the mutant protein is associated with reduced INPP5E and NPHP3 localization in cilia. We propose that ARL3 provides a po-

tential hub in the network of proteins implicated in ciliopathies, whereby perturbation of ARL3 leads to the mislocalization of multiple

ciliary proteins as a result of abnormal displacement of lipidated protein cargo.
Mutations in genes that are involved in the structure or

function of the primary cilium give rise to a range of disor-

ders known as ciliopathies.1 These are typically multi-sys-

tem disorders, as seen in the archetypal ciliopathy Joubert

syndrome (JBTS), which is characterized clinically by brain

malformations that result in developmental delay, oculo-

motor apraxia, and hypotonia.2 In addition to the neuro-

developmental phenotype, retinal and renal diseases are

often associated with JBTS.3 Now more than 35 genes are

known to cause JBTS whenmutated in an autosomal-reces-

sive or X-linked manner4–7 (also see GeneReviews in Web

Resources). Genetic approaches have moved from tradi-

tional linkage studies and homozygosity mapping to

exome sequencing strategies, protein interaction net-

works,8 and genome-wide small interfering RNA screens,9

allowing a rapid rate of gene discovery. Despite these ad-

vancements, which made it possible for the majority of

JBTS cases to have a genetic diagnosis,10 many cases of

JBTS remain genetically unsolved, and critically, the in-

ter-relationships between the proteins encoded by these

genes and the underlying disease mechanisms remain

poorly understood. Here, we used a combination of

autozygosity mapping and whole-exome sequencing

(WES)11,12 in two unsolved JBTS-affected families and

identified likely deleterious variants in ARL3 (MIM:

60495). We further investigate the mechanistic impact of

this mutation and show that the mutant ARL3 is irrespon-
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sive to the guanine nucleotide exchange factor (GEF)

activity of ARL13B and causes associated defects in ciliary

proteins in affected individuals’ fibroblasts.

Family 1 is a Saudi Arabian family comprising first-

cousin healthy parents and six children, including the

5-year-old male index individual (II:5; Figure 1). His clin-

ical features include developmental delay, multicystic

dysplastic left kidney, night blindness, and mild dysmor-

phic features, including ptosis (Figure 1 and Table 1). Mag-

netic resonance imaging (MRI) of the brain showed severe

vermis hypoplasia with abnormal thick cerebellar pedun-

cles configured in the shape of a typical molar tooth sign

(Figure 1B), as well as abnormal configuration of the

midbrain, thinning of the pontomesencephalic junction

and midportion of the midbrain, and mild decreased brain

volume with a paucity of white matter in the frontotempo-

ral region and dilated ventricular system. This family is

part of a large ciliopathy cohort (enrolled in a research pro-

tocol approved by King Faisal Specialist Hospital and

Research Center research advisory council 2080006 after

providing informed consent). Family 2, originating from

Pakistan, is also consanguineous and comprises three

affected children with a clinical syndrome in keeping

with JBTS (II;1, II:4, and II:5; Table 1 and Figure 1). The

eldest sibling (II:1) presented with hypotonia and psycho-

motor delay. Subsequently, the child developed night

blindness and bilateral visual loss by 4 years of age. She
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Figure 1. Clinical and Radiological Images of the Affected Members of the Two Families Included in This Study
(A) A pedigree of the two families shows the number of affected siblings in each family and the outcome of segregation analysis (affected,
shaded; carriers, half-shaded; and WT, unshaded). The proband in each family is indicated by a black arrow. Genotypes for the proband
and their siblings are shown.
(B–E) BrainMRI of the four affected individuals (B, II:5 in family 1; C, D, and E, II:1, II:4, and II:5 in family 2) in this study shows evidence
of a molar tooth sign, cerebellar vermis hypoplasia, and elongation of the superior cerebellar peduncles (arrowed).
(F) Facial photo of the proband (II:5) in family 1 shows dysmorphic features (depressed nasal bridge, upturned nares, ptosis, arched eye-
brows, synophrys, telecanthus, and low-set ears).
(G and H) Ultrasound scan image of the kidneys of the affected member in family 1 (II:5) shows an echogenic left multicystic dysplastic
kidney (G) and an unaffected right kidney (H).
(I–R) Retinal imaging, including multicolor scanning laser fundal images of the eyes, of the three affected siblings in family 2 (II:1, II:4,
and II:5) shows granular alterations of the retinal pigment epithelium and subtle spicule formation, particularly around the major
vascular arcades, and arteriolar attenuation (I, II:1; J, II:4; K, II:5). Autofluorescence images show stippled hypo-autofluorescence areas
concentrated around the arcades (L, II:1) and hyper-autofluorescence around fovea (M, II:4; N, II:5). Horizontal optical coherence tomog-
raphy scans demonstrate thinning of the outer nuclear layer and loss of ellipsoid and external limiting membrane lines with preserva-
tion of inner retinal lamination in all three siblings (O, II:1; P, II:4; Q, II:5). A horizontal optical coherence tomography scan of a healthy
control individual is shown for comparison (R).
also had recurrent urinary-tract infections (Table 1). Clin-

ical investigations revealed the molar tooth sign that is

typical of JBTS on brain MRI, as well as retinal dystrophy

(Figure 1). The other two affected siblings (II:4 and II:5)

had very similar presentations with predominating brain

and retinal features (Table 1 and Figure 1). Siblings II:1

and II:4 experienced problems with thermoregulation,

which implies brainstem involvement, as well as the

known cerebellar defects typical of JBTS. This family was

enrolled in a research protocol approved by the National

Research Ethics Service (09/H0903/36) after providing

informed consent.

Exome sequencing of the index individual in each fam-

ily and variant filtering were performed as previously

described.7 In brief, WES was performed with the TruSeq

Exome Enrichment Kit from Illumina. Coding and splicing

homozygous variants were considered as candidates only if

they were present within the candidate locus, had a fre-

quency < 0.1% in publicly available variant databases

(1000 Genomes, NHLBI Exome Sequencing Project

Exome Variant Server, and Genome Aggregation Database

[gnomAD]) and a database of in-house ethnically matched

exomes (Saudi Human Genome Program; totaling 2,379

exomes), and were predicted to be pathogenic in silico.
The America
Interestingly, both families were flagged by the corre-

sponding research group because exome sequencing did

not reveal a likely deleterious bi-allelic variant in any of

the established JBTS-related genes. Through an investi-

gator-initiated collaboration, an attempt was made to

exploit the consanguineous nature of both families, which

can readily reveal a potentially unifying etiology if

they have an overlapping autozygome, as previously

described.7 Inbrief,weperformedgenome-wide genotyping

with theAxiomSNPChip platform fromAffymetrix and the

Sure Select V4 platform fromAgilent Technologies and then

determined autozygomes by using HomozygosityMapper

on all available family members. This revealed a single

critical locus (chr10: 101,569,997–109,106,128, UCSC

Genome Browser hg 19) (Figure 2A). This locus spans 57

genes, none of which is known to be linked to a ciliopathy

phenotype. After re-analyzing the exome variants by

only considering variants within this locus (Tables S1 and

S2), we found a single previously unreported variant in

ARL3 in each index individual: c.445C>T (p.Arg149Cys)

(GenBank: NM_004311.3) in family 1 and c.446G>A

(p.Arg149His) (GenBank: NM_004311.3) in family 2

(Figure 2B). Both homozygous variants fully co-segregated

with the JBTS phenotype in each family.
n Journal of Human Genetics 103, 612–620, October 4, 2018 613



Table 1. Clinical Features of JBTS in Affected Family Members

Family 1 Family 2

II:5 II:1 II:4 II:5

Age (years) 5 21 12 9

Central nervous
symptoms

developmental delay,
ataxia

developmental delay,
ataxia

developmental delay,
ataxia

developmental delay,
ataxia

Ocular symptoms ptosis, rod-cone dystrophy,
night blindness,
bilateral visual pathway
involvement

rod-cone dystrophy,
night blindness,
progressive visual loss

rod-cone dystrophy,
night blindness, progressive
visual loss

rod-cone dystrophy, night
blindness, progressive visual
loss, oculomotor apraxia

eGFR (mL/min/1.73 m2) NA 75 >90 >90

Renal symptoms none recurrent UTI none recurrent UTI

USS renal left multicystic dysplastic
kidney, right grade I
hydronephrosis

bilateral renal scarring normal USS unequal kidney size

Other single palmar crease, pectus
carinatum, normal ABR

thermoregulation problems,
episode of transverse myelitis

thermoregulation problems,
sleep apnea

none

Abbreviations are as follows: ABR, auditory brainstem response; eGFR, estimated glomerular filtration rate; NA, not available; USS, ultrasound scan; and UTI, uri-
nary-tract infection.
ARL3 is a highly conserved gene, and its encoded pro-

tein, the small G-protein ARL3, localizes to the cilium

and is crucial for ciliogenesis and axoneme formation, as

well as cargo displacement of lipidated proteins in the

cilium.13 ARL3 variants have also been reported in asso-

ciation with retinal dystrophy.14 Among ARL3 effectors

are the GDI-like solubilizing factors (GSFs) PDE6D,

UNC119A, and UNC119B, whose interactions are guano-

sine triphosphate (GTP) dependent. GSFs bind to and sol-

ubilize prenylated and myristoylated proteins, which are

released by ARL3-GTP acting as an allosteric release fac-

tor.15,16 The cilia-specific protein ARL13B acts as a specific

GEF for ARL3, whereas retinitis protein 2 (RP2) functions

as an ARL3 GTPase-activating protein (GAP) and is local-

ized in the pre-ciliary compartment.17,18 This segregation

of a GEF and a GAP is proposed to create an ARL3-GTP

gradient inside the cilium,19 which ensures the destina-

tion-specific release of lipid-modified ciliary proteins, solu-

bilized by GSFs.20

The ARL3 Arg149 residue is highly conserved

throughout evolution (Figure 2C), and in silico prediction

tools suggest that either missense change is likely to be

pathogenic (Table S3). Homology models of ARL3 reveal

that the two variants, which are located in a loop between

the a4 and b6 domains (Figure 3A), are predicted to

disrupt the interaction of ARL13B with ARL3 because it re-

quires this precise residue (Arg149) for its interaction

(Figure 3B). Superimposing all known structures of ARL3

in complex with its effectors, GAP and GEFS, the ARL3

Arg149 residue is exclusively present in the interface

between ARL3 and ARL13B and is involved in an ionic

interaction with the conserved ARL13B Glu88 residue

(Figure 3B). To functionally investigate the effect of

the mutation on the interaction with ARL13B, we per-

formed a GEF fluorescence-based polarization experi-
614 The American Journal of Human Genetics 103, 612–620, Octobe
ment.19 Wild-type (WT) and mutant p.Arg149His versions

of murine ARL3 (98.35% sequence identity to human

ARL3) were bound to fluorescently labeled GDP, and an

excess of unlabeled GTP was added in the presence or

absence of human ARL13B. We then followed the capa-

bility for nucleotide exchange of both versions of the pro-

tein by recording the fluorescence polarization over time.

Upon addition of the ARL13B GEF, WT ARL3 showed a

clear acceleration of nucleotide exchange. Under similar

conditions, mutant p.Arg149His ARL3 failed to show accel-

eration of nucleotide exchange in the presence of ARL13B

(Figure 3C). The integrity of the mutant protein was

confirmed by pull-down, whereby both WT and

p.Arg149His ARL3 proteins were pulled down equally by

UNC119A (Figure 3F and Figure S1). Furthermore, we

confirmed our results by using the highly conserved

C. reinhardtii ARL3 (WT and mutant p.Arg148His) and

ARL13B (Figure 3D). To further investigate the importance

of the ARL3-ARL13B interaction, we carried out the

reverse charge variant p.Glu86Arg in ARL13B by using

C. reinhardtii proteins. As expected, p.Glu86Arg ARL13B

was not able to accelerate the nucleotide exchange of WT

ARL3 (Figure 3E). From these experiments, we conclude

that p.Arg149His ARL3 disrupts the interaction with

ARL13B and is defective in ARL13B-assisted nucleotide

exchange.

To determine ciliary morphology, we obtained fibro-

blasts from all three affected individuals in family 2 (II:1,

II:4, and II:5) plus control individuals (both parents [I:1

and I:2] and an unaffected sibling [II:3]). Primary cilia iden-

tified by ARL13B antibodies were of normal length in

affected individuals (mean length ¼ 5.9, 7.8, and 6.8 mm

in II:1, II:4, and II:5, respectively) and control individuals

(mean length ¼ 5.7 and 6.0 mm in the parents and

6.1 mm in the unaffected sibling), and there were no
r 4, 2018



Figure 2. Molecular Genetic Investigations of the Two JBTS-Affected Families
(A) Genome-wide homozygosity mapping shows the shared homozygous region between the affected members of the two families on
chromosome 10 (blue rectangle). Regions of homozygosity are shown in red, and the position of ARL3 is marked with a black arrow.
(B) Schematic representation to ARL3 with the homozygous missense variants located in exon 5.
(C) Evolutionary conservation of residue Arg149, which is highly conserved throughout all species shown except D. melanogaster.
(D) Sequence chromatograms of the two different ARL3 variants described in this study.
significant differences between the two groups (Figure S2).

There was also no difference in the percentage of ciliation

rates between affected and control fibroblasts (Figure S2).

Scanning electron microscopy confirmed these findings

of no significant changes in cilia length or structural

appearance (Figure S3).

ARL3 functions as an allosteric release factor of all GSFs

members: PDE6D, UNC119A, and UNC119B. Whereas

PDE6D is involved in the trafficking of prenylated pro-

teins, UNC119A and UNC119B traffic myristoylated pro-

teins.19 Given that ARL3 exerts its releasing function

only when bound to GTP, we expected the ciliary localiza-

tion of the GSF cargo to be impaired. The INPP5E, GRK1,

and PDE6 catalytic subunits are among the prenylated

GSF ciliary cargo,20 whereas the myristoylated ciliary cargo

includes NPHP3, GNAT1, and Cystin1.22 To test our hy-

pothesis, we examined cilia for protein content of both

the prenylated INPP5E and myristoylated NPHP3. ARL3-

mutant cilia demonstrated a significant loss of both

INPP5E and NPHP3 content (Figure 4 and Figures S4–S6),

indicating that WT ARL3 is required for normal release of

these cargos into the ciliary axoneme. To confirm these

phenotypes as specific to the loss of ARL3 function, we

sought to determine the ciliary content of GLI3 in WT

and ARL3-mutant cilia. GLI3 translocation is independent
The America
of GSF transport and relies upon intraflagellar transport

proteins and Sonic Hedgehog signal transduction.23

Consistent with morphologically normal cilia in ARL3-

mutant fibroblasts, no defect in ciliary GLI3 was observed

after stimulation with SAG, a Hedgehog pathway agonist.

The amounts of total ciliary GLI3 and ciliary tip GLI3

were unchanged between affected and control individuals

(Figure S7), confirming that the ciliary Hedgehog signaling

pathway is not disturbed by this particular ARL3mutation.

Together, these data substantiate a role for ARL3 in the

release of both prenylated and myristoylated ciliary cargo,

which is disrupted by the p.Arg149His ARL3 variant.

We present ARL3 as a ciliopathy- and JBTS-associated

gene. LdARL-3A, a Leishmania homolog of ARL3, is an

essential component of flagellum formation.24 Arl3 knock-

down has previously been investigated in a gene-trap mu-

rine model, where Arl3 was disrupted after the first exon.25

These Arl3�/� mice, which represent a null allele, devel-

oped a severe ciliopathy phenotype with pronounced

cystic kidney disease, pancreatic hypoplasia, ductal plate

malformation within the liver, and retinal dystrophy

with impaired photoreceptor development.25 The mice

died within 3 weeks of age, indicating a severe phenotype,

which is much more detrimental than that of our human

subjects, who carry a missense mutation. We speculate
n Journal of Human Genetics 103, 612–620, October 4, 2018 615



Figure 3. The Human ARL13B-ARL3
Complex Is Predicted to Involve an Inter-
action between Evolutionarily Conserved
Glutamate and Arginine Residues
(A) Partial amino acid sequence alignments
of the ciliary GEF, ARL13B, and ARL3.
Highlighted in red are the evolution-
arily conserved glutamate residue located
in the switch II domain of ARL13B
(E86 [Glu86] in C. reinhardtii ARL13B
[CrARL13B]) and the arginine residue in
the loop region between the a4 and b6 do-
mains of ARL3 (R148 [Arg148] in CrARL3).
(B) Superimposition of the crystal struc-
tures of ARL3 (gray) in complex with
its known interactors: the effectors
UNC119A (salmon; PDB: 4GOJ15) and
BARTL1 (yellow; PDB: 4ZI221), the GAP
RP2 (orange; PDB: 3BH617), and GEF
ARL13B (blue; PDB: 5DI319). On the right
side is a zoomed-in view of the salt
bridge between Glu86 and Arg148 at the
CrARL13B-CrARL3 complex interface.
(C) Assay of GEF activity for murine WT
ARL3 (ARL3WT) and p.Arg149His ARL3
(ARL3R149H). Fluorescence polarization
was measured for 1 mM mantGDP-loaded
ARL3, to which 400 mM GppNHp and
5 mM H. sapiens ARL13B (HsARL13B) were
added. Nucleotide exchange was shown
by only ARL3WT.
(D) Assay of GEF activity with fluores-
cence polarization measurements of
0.5 mM mantGDP-loaded CrARL3WT and
CrARL3R148H, to which 10 mM GppNHp
(GTP analog) and 5 mM CrARL13B$
GppNHp were added at the indicated
time points. Only CrARL3WT showed
nucleotide exchange, as indicated by the
drop in fluorescence polarization.
(E) Assay of GEF activity with fluorescence
polarization measurements of 0.5 mM
mantGDP-loaded CrARL3WT and 5 mM
CrARL13B$GppNHpWT or CrArl13bE86R, to
which 10 mM GppNHp (GTP analog) was
added at the indicated time points. Only

CrArl13bWT showed nucleotide exchange, as indicated by the drop in fluorescence polarization.
(F) 30 mg of full-length UNC119A-GST was used to pull down 60 mg of murine ARL3WT and ARL3R149H that were loaded with the GTP
analog GppNHp. Proteins were detected on immunoblots with anti-GST (red) and anti-His (green) antibodies.
that nonsense mutations in ARL3 in humans could cause

more pronounced ciliopathy phenotypes, such as the peri-

natally lethal ciliopathy Meckel syndrome,26 and could go

some way to explaining why such a fundamental gene has

previously not been identified in ciliopathy syndromes. It

is noteworthy that the ExAC Browser and gnomAD do

not have any homozygous pathogenic variants reported

within ARL3 and that the gene is relatively intolerant to

variation (positive Z score of 0.44). We did not identify

any additional ARL3 pathogenic variants in our WES data-

bases, which are relatively enriched with autozygosity, or

in a cohort of 35 unsolved JBTS-affected individuals.

In humans, Strom et al. previously reported the hetero-

zygous missense variant c.269A>G (p.Tyr90Cys) in ARL3

in a European-descent pedigree with non-syndromic reti-

nitis pigmentosa.27 The variant, which was rare, appeared
616 The American Journal of Human Genetics 103, 612–620, Octobe
de novo and was predicted to be pathogenic, was confirmed

as heterozygous in three affected individuals, and was

transmitted in an autosomal-dominant fashion. A second

allele was not identified, and mechanistic evaluation was

not carried out. On the other hand, here we have identified

bi-allelic ARL3 changes that fully segregate with a clas-

sical JBTS phenotype, including retinal changes. Thus,

although the connection between the de novo ARL3 variant

and retinitis pigmentosa remains unexplained, it seems

that bi-allelic ARL3 deleterious variants are sufficient to

cause JBTS. The involvement of ciliopathy-associated

genes in non-syndromic retinitis pigmentosa has been

well described, so it would be of interest for the affected in-

dividual reported by Strom et al. to be investigated for the

possibility of a second deleterious allele in trans in ARL3. It

is also possible that, as reported here, bi-allelic mutations
r 4, 2018



Figure 4. Characterization of Ciliary Phenotype in ARL3-Mutant Fibroblasts from Family 2
(A and C) Affected and control fibroblasts were observed under high-power immunofluorescence for determining ciliary expression of
(A) INPP5E and (C) NPHP3. Cilia were localized with anti-ARL13B (red) and anti-PERICENTRIN (magenta) for the identification of the
ciliary membrane and the base of cilia, respectively. Scale bars, 10 mm.
(B) Quantification of ciliary localization of INPP5E (**p < 0.0001, unpaired t test, n > 150 cilia for each group). Total cilia INPP5E in
control fibroblast (II:3) cilia is higher than in heterozygous fibroblast (I:1 and II:2) cilia.
(D) Quantification of ciliary localization of NPHP3 (**p < 0.0001, unpaired t test, n > 150 cilia for each group).
inARL3 give rise to an extended phenotype compared with

its reported dominant phenotype. A growing number of

genes are known to cause distinct phenotypes according

to whether dominant or recessive variants are inherited.

For retinitis pigmentosa, mutations (typically nonsense)

in RP1 were initially described in an autosomal-dominant

pattern,28 followed by autosomal-recessive (homozygous

missense) variants.29 For Gillespie syndrome, a form

of non-progressive cerebellar ataxia, both bi-allelic and

mono-allelic mutations in ITPR1 (MIM: 147265) have

been reported,30 and the single heterozygous mutations

were thought to exert a dominant-negative effect. In addi-

tion, variants in genes known only to be related to auto-

somal-dominant disease have been found in association

with recessive mutations, both where the phenotypes

are similar but more severe (ACTG2-related visceral myop-

athy [MIM: 102545]) and where distinctly different pheno-

types have been observed (FBN2-related myopathy [MIM:

612570] and CSF1R-related brain malformation [MIM:

164770]).31

Interestingly, pathogenic variants in the ARL3 interac-

tion partners ARL13B and PDE6D also cause JBTS.

ARL13B (MIM: 608922) mutations were reported in indi-

viduals with a classical neurodevelopmental JBTS pheno-

type (JBTS8) without prominent renal phenotypes.32 It is

particularly noteworthy that some affected individuals

had a small occipital encephalocele, indicating that more

severe brain phenotypes could be likely. PDE6D (MIM:

602676) mutations have been reported in three siblings

with JBTS (JBTS22) and associated retinal and post-axial

polydactyly phenotypes, as well as kidney hypoplasia.33

Furthermore, the disrupted ciliary cargo proteins (INPP5E

and NPHP3) we identified are also responsible for JBTS

phenotypes when their encoding genes are mutated.

INPP5E (MIM: 613037) mutations cause JBTS1 and were

identified in a cohort of JBTS-affected individuals with
The America
mainly neurological features and some retinopathy but

without kidney disease or polydactyly,34 suggesting a lack

of Hedgehog signaling defects.35,36 In contrast, NPHP3

(MIM: 608002) mutations were initially identified as

causing an adolescent form of nephronophthisis, a pro-

gressive form of renal failure.37 Since this initial report,

NPHP3 mutations have been associated with a wider spec-

trum of disease, including infantile nephronophthisis (re-

sulting in end-stage renal failure before 5 years of age38)

and Meckel syndrome.39 The full spectrum of disease phe-

notypes secondary to ARL3 mutation therefore remains to

be determined, but ARL3 is widely expressed and funda-

mental to the ciliary localization of a wide range of pro-

teins. Therefore, one could predict that any severity of

JBTS disease with retinal and renal involvement is possible.

It will be important to study the tissue-specific roles of

ARL3 and the implications of disrupting expression in

these tissues.

The primary cilium exerts its function by concentrating

certain proteins and lipids, thereby maintaining a distinct

composition and function. ARL13B is specifically localized

in the cilium, creating a high ciliary concentration of

ARL3-GTP, which in turn produces a hotspot for releasing

GSF-bound cargo. Our study underscores the physiological

importance of this mechanism because the human muta-

tion we characterize, c.446G>A (p.Arg149His), disrupts

the interaction between ARL13B and ARL3 and results in

loss of GSF cargo concentration in the cilia (Figure 5). As

we have described, ciliopathies such as JBTS show overlap-

ping phenotypes, and one gene can be involved in a broad

range of ciliopathy phenotypes. A cause of this overlap is

most likely the fact that proteins do not work in isolation

but in networks. Indeed, it has been shown that ciliopathy-

associated proteins form different modules that cross talk

and interact together.8,40 Through the identification of

ARL3 variants as a cause of JBTS, we show that ARL3
n Journal of Human Genetics 103, 612–620, October 4, 2018 617



Figure 5. Model of GSF-Cargo Release in Cilia with WT ARL3
versus p.Arg149 ARL3 Missense Variants
ARL13B assists ARL3 in cilia to exchange its bound GDP to GTP.
The specific localization of ARL13B in the cilia creates a high con-
centration of ARL3-GTP. ARL3-GTP in turn can release the cargo
bound to its cognate GSF, resulting in ciliary localization. Missense
variants of ARL3 (including p.Arg149His and p.Arg149Cys) are not
able to interact with ARL13B, and the ARL3GTP concentration is
therefore low in the cilia, resulting in inefficient release of GSF
cargo in the cilia.
provides a hub within the network of ciliopathy-associated

genes, whereby perturbation of ARL3 results in the misloc-

alization of multiple ciliary proteins, including INPP5E

and NPHP3. Our mechanistic model might provide good

starting points for therapeutic intervention where small

molecules can be used to release GSF-bound cargo and

compensate for the loss of ARL3 release activity. Direct-

ing such therapies to the kidney in individuals with

JBTS-associated renal dysfunction and to the retina in cases

of progressive visual loss secondary to JBTS would be desir-

able. Using small molecules to disrupt GSF-cargo interac-

tion has been reported,41,42 and it will be important to

test those small molecules with regard to cilia function

and their application in ciliopathies. Nevertheless, a chal-

lenge will be to target these small molecules specifically

to the cilia, where the function of ARL3 is concentrated,

to assure the correct targeting of ciliary GSF cargo.

In conclusion, we have identified ARL3 missense vari-

ants as a likely cause of JBTS. On the basis of limited obser-

vations, the phenotype related to variants in this gene

seem to be a cerebello-retinal presentation similar to that

caused, for instance, by pathogenic variants in AHI1

(MIM: 608894).43,44 In fact, none of the affected individ-

uals presented with any striking additional features, and

renal involvement was inconstant. Because effective treat-

ments for JBTS are lacking at present, genotype-phenotype

correlations could prove useful in giving prognostic indica-

tions to families. We have shown that substitution of argi-

nine at position 149 disrupts the known interaction be-

tween ARL3 and ARL13B and thus prevents the correct

release of intra-ciliary cargos, including INPP5E and

NPHP3. Furthermore, we propose that therapeutic manip-
618 The American Journal of Human Genetics 103, 612–620, Octobe
ulation of ciliary cargo release could provide an innovative

treatmentmechanism for human ciliopathies such as JBTS.
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