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ABSTRACT: We show that machine learning (ML) can be used to accurately reproduce
nonadiabatic excited-state dynamics with decoherence-corrected fewest switches surface
hopping in a 1-D model system. We propose to use ML to significantly reduce the
simulation time of realistic, high-dimensional systems with good reproduction of
observables obtained from reference simulations. Our approach is based on creating
approximate ML potentials for each adiabatic state using a small number of training
points. We investigate the feasibility of this approach by using adiabatic spin-boson
Hamiltonian models of various dimensions as reference methods.

Excited-state dynamics simulations of molecules and
molecular assemblies are as important as challenging.

Some of the primary processes in nature (photosynthesis, light
detection), medicine (phototherapy, DNA damage), and
technology (photovoltaics, photonics) have at least one
photoinduced reaction step occurring in the excited state.1−3

The main difficulties in modeling these processes arise from
the intricacies of excited-state electronic structure and from the
intrinsic nonadiabaticity caused by the coupling between
nuclear and electronic degrees of freedom driving the time
evolution.
Significant advances in the simulation of nonadiabatic

dynamics in excited states have been achieved in recent
years.4 The development of on-the-fly nonadiabatic mixed
quantum-classical (NA-MQC) strategies, in particular, has
boosted the research field in the past decade, allowing full-
dimensional simulations of systems with tens of atoms for
several picoseconds. In these methods, nonadiabatic phenom-
ena are introduced into a classical ensemble of trajectories
through averaging, spawning, or hopping of quantum
electronic information. At the same time, they rely on a local
approximation, allowing for the computation of electronic
properties only at the classical nuclear coordinates.
The on-the-fly strategy is a fundamental advantage because

it avoids the costly calculation of multidimensional potential
energy surfaces (PESs), a task that is the main bottleneck in
full quantum approaches. However, the on-the-fly propagation
of the dynamics is computationally demanding because
expensive quantum mechanical (QM) quantitiesenergies,
forces, and couplings between the electronic statesmust be
computed at each time step in the numerical integration of the
equations of motion. Consequently, an on-the-fly NA-MQC
simulation of a medium-sized molecule for several picoseconds

may require hundreds of thousands of CPU hours when using
first-principles QM methods.
The emergence of machine learning (ML) algorithms has

the potential to change this scenario, ideally leading to
situations where ML inexpensively predicts excited-state
energies, forces, and couplings for on-the-fly NA-MQC
dynamics. Encouragingly, ML has already been successfully
applied in many atomistic simulations, for example, to
represent PESs, to perform molecular dynamics in the ground
state, and to predict excited-state properties.5−22 However, the
application of ML to on-the-fly NA-MQC dynamics poses
unique challenges. Among the most crucial problems is the
higher complexity of the excited-state electronic structure,
often leading to a high density of coupled states, with a
strongly anharmonic dependence on nuclear coordinates.
Moreover, in many cases, the nonadiabatic processes happen
on time scales shorter than those of thermal equilibration,
requiring the propagation of microcanonical rather than
canonical ensembles, which are associated with much stricter
conservation requirements.
Only few recent studies have attempted to use ML for such

purposes. In a pilot study of ML-enhanced NA-MQC
dynamics, ML was used only for the representation of the
relevant PESs; however, the generation of training points was
rather tedious and time-consuming, whereas the number of
QM calculations performed during the training of the ML
models and during the dynamics was close to the number of
QM calculations typically required for a corresponding on-the-
fly QM simulation.6 In another study, the accuracy of direct
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quantum wavepacket dynamics with ML PESs was shown to
deteriorate quickly with increasing number of dimensions so
that it became problematic to achieve good accuracy even for
as few dimensions as six.17

The main aim of our work is to outline how ML can be used
to achieve a significant reduction of the number of required
QM calculations in practical on-the-fly NA-MQC simulations
of high-dimensional systems. For this purpose, we use the
popular decoherence-corrected fewest switches surface hop-
ping (DC-FSSH; see the Supporting Information (SI))
approach in on-the-fly NA-MQC dynamics and an ML
approach based on kernel ridge regression (KRR; see the SI
for details). To avoid any bias associated with the choice of a
specific QM method and a target molecule, we decided to use
the two-state spin-boson Hamiltonian in the adiabatic
representation (A-SBH; see the SI), which is easily adjustable
in terms of the number of degrees of freedom and couplings.
This choice of an analytical Hamiltonian allows for an
extensive and general assessment of ML capabilities because
we can compute many more trajectories and time steps than
we would be able to do with any on-the-fly electronic structure
method. Note, however, that the use of A-SBH does not lead
to any loss of generality, as every element of an atomistic two-
state simulation is present in this model, and the generalization
to more states is straightforward. As discussed later, because of
the strong coupling between different A-SBH dimensions, ML-
based NA-MQC dynamics may in some aspects be even more
challenging for A-SBH than for an atomistic model.
We start by demonstrating for the 1-D A-SBH model that it

is possible, in principle, to create a complete ML model, which
can accurately reproduce the reference A-SBH trajectory with
all hopping events (Figure 1). This is achieved when using at
least Ntr = 128 points in the training set (see the SI for further
details).

For high-dimensional systems, it is generally not feasible to
build such complete ML models. First, generating a sufficient
amount of accurate QM reference data quickly becomes too
costly due to the curse of dimensionality. For a realistic 33-D
model, it would be necessary to calculate reference values for
12833 = 3.45 × 1069 grid points to ensure sampling with the

same density as for our complete 1-D ML model (Figure 1).23

This is obviously impossible. Second, processing large amounts
of reference data is also very challenging, in terms of both
memory requirements and training time. Third, if the number
of training points for ML becomes too large, then it may be
more reasonable to run pure QM dynamics. Thus, for ML to
significantly speed up nonadiabatic dynamics simulations, the
training set has to be as small as possible and to be generated
as quickly as possible.
In practical terms, our first aim is to keep the number of

points in the training set preferably at most 10 000 points. For
comparison, ground-state ML potentials have been trained on
many fewer molecular geometries and used successfully for
various purposes such as molecular dynamics, calculation of
vibrational spectra, and geometry optimization.7,14,15 From our
experience with on-the-fly NA-MQC dynamics based on ab
initio and semiempirical methods, we know that these
simulations are typically run with about 100 trajectories with
a time step of 0.5 fs for 1 ps; that is, they require 200 000 QM
calculations. Therefore, 10 000 points represents merely 5% of
a typical on-the-fly NA-MQC project. Moreover, the gains are
potentially much larger. Although 100 trajectories are enough
to reveal all main reaction pathways, their pathway yields are
delivered with rather low precision. However, after training the
machine, it can be used to run thousands of trajectories,
producing highly precise results, which would simply be
unaffordable with conventional QM approaches.
Proposed approaches for generating training sets are often

iterative and rather time-consuming.15 Our second aim is to
avoid such handicaps and keep the construction of the training
set as simple and inexpensive as possible.
On the basis of these considerations, we target a relatively

sparse grid of training points, sampled with a low discrepancy
algorithm.7,24 Inevitably, this will lead to some loss of accuracy.
However, it is known that ML trained on points sampled along
vibrational modes can describe larger molecules and also give
rather accurate PESs.18 Furthermore, a very accurate ML PES
can be obtained for small molecules.7

The most serious additional challenge in the case of DC-
FSSH dynamics is that the nonadiabatic couplings feature
sharp, narrow spikes around certain geometries (Figure 2).

Figure 1. Comparison of A-SBH and complete ML surface hopping
trajectories for the 1-D model. The simulations started from the same
initial conditions and were run with the same random seed.

Figure 2. Comparison of nonadiabatic couplings calculated for the A-
SBH and ML models trained on an increasing number of points for
the 1-D model.
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This necessitates very small time steps or special treatments
even in the pure QM DC-FSSH dynamics.25 Sparse sampling
of ML training points will, in most cases, miss these spikes
(Figure 2), and, consequently, no or too few hops will happen
during ML dynamics.
Indeed, we find no hops at all in the 2 ps trajectory produced

with an ML model of the 1-D system trained on only 16 points
(Figure S1) compared with four hops when we calculate
nonadiabatic couplings with A-SBH throughout the trajectory
(Figure S2). In previous work on ML for FSSH,6 the Zhu−
Nakamura approach26 was used to avoid the calculation of
nonadiabatic couplings altogether. Here we solve this problem
by performing QM (in this work A-SBH) calculations of
nonadiabatic couplings instead of estimating them with ML
when the band gap estimated with ML is small. A similar
approach was tested for the Zhu−Nakamura dynamics for a
different reason (to avoid errors of the ML potential in the
vicinity of the conical intersections).6 In the case of our 1-D
ML model trained on 16 points, five hops occur if we switch
on A-SBH calculations for V2

est − V1
est < 0.03 hartree (Figure

S3). We use this cutoff in the following. Problems with sparse
sampling concerning total energy conservation are discussed in
the SI.
Next, we compare the performance of ML dynamics with A-

SBH simulations for a realistic 33-D system. This system is
rather challenging for ML, as exemplified by the fact that
during a 50 ps A-SBH trajectory the smallest Euclidian
distance between a point at a given time step to any point
visited during the first 80% of previous time steps remained
very large and did not decrease over time. This means that the
same region in the high-dimensional space was not visited
again during the 50 ps of nonadiabatic dynamics. Con-
sequently, all of our attempts to use on-the-fly or adaptive
learning strategies commonly employed in ground-state ML
dynamics for atomistic systems16,22 failed for our 33-D A-SBH
system. This may be attributed to the strong coupling between
different A-SBH dimensions, whereas in atomistic simulations
it is often possible to partition the system into smaller,
sufficiently independent substructures.13,15,18,22

To collect enough data for statistical analysis, we ran 1000
trajectories with A-SBH and two different ML models, each
starting on the S1 surface. The ML models were trained on
1000 and on 10 000 points. The evolution of the S1 state
population during 2 ps dynamics is reproduced very well by
both ML models (Figure 3) despite the relatively small training
sets generated in a simple, noniterative manner. The excited-
state lifetime is estimated (see the SI) to be 114 ± 1, 100 ± 1,
and 105 ± 1 fs with A-SBH, ML trained on 1000 points, and
ML trained on 10 000 points, respectively. The ML lifetimes
are thus in reasonable agreement with the A-SBH lifetime. An
additional comparative analysis is provided in the SI.
In our ML dynamics, A-SBH calculations during DC-FSSH

dynamics were invoked only in 13−16% of time steps for
V2
est − V1

est < 0.03 hartree. Such QM calculations should be
avoided in the future altogether by using local diabatization,
which eliminates the problem with narrow couplings.27 In this
case, the cost of ML nonadiabatic dynamics will be essentially
determined by the cost of training set generation.
In summary, we show that ML can be used to simulate

accurate, multidimensional nonadiabatic dynamics with
significant cost reduction. We suggest using fairly sparse
small training sets sampled from the high-dimensional space to
build approximate ML potentials for each adiabatic surface. We

show that dynamics runs with these ML potentials well
reproduce the time evolution of the adiabatic-state population
and the excited-state lifetime obtained from the dynamics with
the reference method.
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