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Abstract: Background: Dystonia and ataxia are manifestations of numerous disorders, and indeed, an ever-
expanding spectrum of genes causing diseases that encompass dystonia and ataxia are discovered with the
advances of genetic techniques. In recent years, a pathophysiological link between both clinical features and
the role of the cerebellum in the genesis of dystonia, in some cases, has been proposed. In clinical practice, the
genetic diagnosis of dystonia-ataxia syndromes is a major issue for genetic counseling, prognosis and,
occasionally, specific treatment.
Methods: For this pragmatic and educational review, we conducted a comprehensive and structured literature
search in Pubmed, OMIM, and GeneReviews using the key words “dystonia” and “ataxia” to identify those
genetic diseases that may combine dystonia with ataxia.
Results: There are a plethora of genetic diseases causing dystonia and ataxia. We propose a series of clinico-
radiological algorithms to guide their differential diagnosis depending on the age of onset, additional
neurological or systemic features, and imaging findings. We suggest a sequential diagnostic approach to
dystonia-ataxia syndromes. We briefly highlight the pathophysiological links between dystonia and ataxia and
conclude with a review of specific treatment implications.
Conclusions: The clinical approach presented in this review is intended to improve the diagnostic success of
clinicians when faced with patients with dystonia-ataxia syndromes.

Introduction
Dystonia is characterized by “sustained or intermittent muscle

contractions causing abnormal, often repetitive, movements, pos-

tures, or both.”1 It can be the manifestation of a plethora of dis-

eases, and with the advances of genetic techniques, we recognize

an ever-expanding spectrum of genes causing various dystonia

syndromes.2 For clinical practice, the new classification of

dystonia fosters a phenomenological approach with categorization

according to recognizable common associations, which allows

narrowing down the differential diagnosis.1 Such associations are,

for example, combined dystonia syndromes such as dystonia-

myoclonus and dystonia-parkinsonism, with well-described dif-

ferential diagnoses.3 In contrast, scarce information exists about

the combination of dystonia and ataxia. Interestingly, there is also

a pathophysiological link between both phenotypes, and the role
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of the cerebellum in the genesis of dystonia has been the focus of

research lately.4–6 Based on a broad and exhaustive literature

review, here we review the spectrum of disorders that can present

with dystonia and ataxia, and propose a clinico-radiological diag-

nostic algorithm. We examine existing evidence regarding differ-

ent pathophysiological mechanisms and discuss specific treatment

implications.

Methods
We conducted a comprehensive and structured search in

PubMed, OMIM, and GeneReviews using the key words

“dystonia” and “ataxia” to identify those genetic diseases that may

combine dystonia with ataxia. Publications written in English and

Spanish and published up to December 31, 2017, were reviewed.

FIG. 1. Clinical diagnostic algorithm for genetic dystonia-ataxia syndromes with infancy or childhood onset.
Abbreviations: AD: autosomal dominant; AR: autosomal recessive; BG: basal ganglia; GLUT1: glucose transporter type 1.
Note: Red flags are shown in bold and possible symptoms are in italic type.
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Diagnostic Approach to Genetic
Causes of Dystonia-ataxia
There are a plethora of more than 100 genetic disorders giving

rise to dystonia-ataxia syndromes. In clinical practice, when eval-

uating patients with dystonia-ataxia, the differential diagnosis can

be largely guided by the age of onset, additional neurological or

systemic features, and radiological findings. Clinical diagnostic

algorithms that take into account the presence or absence of addi-

tional clinical clues and relevant complementary studies are illus-

trated in Fig. 1 (infancy/childhood onset) and Fig. 2 (adulthood

onset). For didactic purposes, both figures include disorders that

are most prevalent or relevant from a therapeutic perspective and

therefore should be suspected first, according to the authors’ opin-

ion. Table 1 provides a more comprehensive list of differential

diagnoses. Entities, where dystonia and ataxia are prominent and

frequent, are considered first, before disorders where the combi-

nation of dystonia and ataxia is only found occasionally. A com-

prehensive summary of all diseases in which dystonia and ataxia

were reported with their respective clinical features and relevant

complementary studies are presented according to the mode of

inheritance in Supporting Table 1. Sometimes, there are certain

clinical clues (“red flags”) that can guide the differential diagnostic

considerations (Table 2) and should therefore not be missed. Sim-

ilarly, imaging findings are often helpful in directing further diag-

nostic evaluation (Fig. 3).

Dystonia and ataxia may develop during the disease course

sequentially, or in rare cases simultaneously. Interestingly, some

disorders that usually present with specific features, including

ataxia in ataxia-telangiectasia can also have a very different clinical

picture, with isolated or predominant dystonia without ataxia.7,8

In line with this, some complex phenotypic disorders may initially

mimic isolated dystonia before other clinical characteristics

become evident (e.g., Wilson’s disease or several spinocerebellar

ataxias).9,10

Different types or forms of dystonia were described in the

genetic diseases listed: focal, segmental, generalized, and hemi-

dystonia (e.g., in autosomal dominant progressive external

ophthalmoplegia type 1 due to POLG mutations11 and in

Coats plus syndrome12) as well as task-specific dystonia (e.g.,

in several spinocerebellar ataxias,10,13 mitochondrial disor-

ders,14 ataxia-telangiectasia-like disorder type 1,15 and in L-2-

hydroxyglutaric aciduria16), paroxysmal, or episodic dystonia

(paroxysmal kinesigenic dyskinesia due to PRRT2 muta-

tions,17 episodic ataxia type 2,18 and biotin-thiamine-

responsive basal ganglia disease due to SLC19A3 mutations19).

Supporting Table 1 lists the various forms of dystonia described

in genetic dystonia-ataxia syndromes. In some cases, dystonia

can spontaneously attenuate over time as occurs in ataxia-

oculomotor apraxia type 4,20,21 or is induced by different trig-

gers (e.g., exercise, infections, or emotional stress [PxMD-

SLC2A1 disorders,22,23 pyruvate dehydrogenase E1-alpha defi-

ciency,24 biotin-thiamine-responsive basal ganglia disease25]).

In some unusual cases, a phenotype of dystonia can replace or

overshadow ataxia during the disease course (e.g., in ataxia

with vitamin E deficiency26) or vice versa (SCA-CAC-

NA1A27). Last, the combination of dystonia and ataxia often

correlates with disease course or severity. For example, the

FIG. 2. Clinical diagnostic algorithm for genetic dystonia-ataxia syndromes with adulthood onset.
Abbreviations: AD: autosomal dominant; AR: autosomal recessive; DRPLA: dentatorubral-pallidoluysian atrophy; SCA: spinocerebellar
ataxia type.
Note: Red flags are shown in bold and possible symptoms are in italic type.
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presence of dystonia was associated with greater severity of

ataxia in the spinocerebellar ataxias SCA-ATXN1, SCA-

ATXN2, and SCA-ATXN3.28 Also, SCA-ATXN2 and SCA-

ATXN3 patients with dystonia showed greater CAG repeat

expansion.28,29 In contrast, dystonia was associated a slower

progression in SCA-CACNA1A.29

Diagnostic Management
After careful clinical examination, MR imaging is essential as the

presence or absence of cerebellar atrophy and other structural

abnormalities will crucially guide differential diagnostic considera-

tions. An initial screening of certain biochemical markers would

TABLE 1 Genetic dystonia-ataxia syndromes

(A) Concomitant dystonia and ataxia
Spinocerebellar ataxias: SCA-ATN1*; SCA-ATXN2*; SCA-ATXN3* and SCA-TBP*
Friedreich ataxia (FXN)*
Ataxia-telangiectasia (ATM)*
Ataxia with isolated vitamin E deficiency (TTPA)*
Niemann-Pick disease type C (NPC)*
Wilson disease (ATP7B)*
POLG-disorders (POLG)*
L-2-hydroxyglutaric aciduria (L2HGDH)*
TUBB4A-disorders (TUBB4A)*
ATP1A3-disorders (ATP1A3)*
PLA2G6-associated neurodegeneration (PLA2G6)*
Glucose transporter type 1 deficiency syndrome (SLC2A1)*
Ataxia-oculomotor apraxia type 4 (PNKP)
Autosomal recessive spastic paraplegia type 48 (KIAA0415)
Autosomal recessive spastic ataxia type 3 (MARS2)
Autosomal recessive spastic ataxia with hypomyelinating leukodystrophy (NKX6-2)
Cerebroretinal microangiopathy with calcifications and cysts or Coats plus syndrome (CTC1)
Childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy (SQSTM1)
Birk-Landau-Perez syndrome (SLC30A9)
Pyruvate dehydrogenase E2 deficiency (DLAT)
Recessive dystonia-ataxia syndrome due to mitochondrial complex IV deficiency (COX20)
Mitochondrial complex III deficiency, nuclear type 4 (UQCRQ)

B) Occasional dystonia-ataxia combination
Spinocerebellar ataxias: SCA-ATXN1; SCA-SPTBN2; SCA-CACNA1A; SCA-ATXN7; SCA-ATXN8OS; SCA-ATXN10; SCA-PPP2R2B; SCA-KCNC3;

SCA-PRKCG; SCA-KCND3; SCA-AFG3L2; SCA-TGM6; SCA-NOP56 and SCA/HSP-VAMP1
Ataxia-oculomotor apraxia type 1 (APTX) and type 2 (SETX)
Gaucher disease, type III (GBA)
Chediak-Higashi syndrome (LYST)
Cockayne syndrome (ERCC)
Tay-Sachs disease or GM2-gangliosidosis type I (HEXA)
Biotin-thiamine-responsive basal ganglia disease (SLC19A3)
PRRT2-associated disease spectrum (PRRT2)
Myoclonic epilepsy of Unverricht and Lundborg (CSTB)
Fatty acid hydroxylase-associated neurodegeneration or autosomal recessive spastic paraplegia-35 (FA2H)
Neurodegeneration with brain iron accumulation-1 or pantothenate kinase-associated neurodegeneration (PANK2)
Mitochondrial complex I deficiency (multiple genes)
Mitochondrial complex III deficiency, nuclear type 2 (TTC19)
Mitochondrial disorder due to genomic rearrangements affecting the ATAD3 gene
Mitochondrial DNA depletion syndrome type 13 (FBXL4)
Combined oxidative phosphorylation deficiency type 29 (TXN2)
Pyruvate dehydrogenase E1-alpha deficiency (PDHA1)
Allan-Herndon-Dudley syndrome or monocarboxylate transporter type 8 deficiency (SLC16A2)
Sulfocysteinuria or sulfite oxidase deficiency (SUOX)
Primary coenzyme Q10 deficiency type 4 (ADCK3)
Autosomal recessive spinocerebellar ataxia type 5 or Galloway-Mowat syndrome (WDR73)
Autosomal recessive spastic ataxia type 5 (AFG3L2)
Brain-lung-thyroid syndrome and benign hereditary chorea (NKX2-1)
Congenital disorder of glycosylation type Ia (PMM2)
Ataxia-telangiectasia-like disorder-1 (MRE11A)
Pelizaeus-Merzbacher disease or hypomyelinating leukodystrophy type 1 (PLP1)
Progressive leukoencephalopathy with ovarian failure (AARS2)
Progressive encephalopathy with or without lipodystrophy (BSCL2)
Episodic encephalopathy due to thiamine pyrophosphokinase deficiency (TPK1)
Limb-girdle muscular dystrophy type 2S (TRAPPC11)
Juvenile amyotrophic lateral sclerosis-2 (ALS2)
X-linked spinocerebellar ataxia type 1 (ATP2B3)
X-linked syndromic mental retardation, Christianson type or Angelman-like syndrome (SLC9A6)
Kallmann syndrome (KAL1)

*Most frequent causes of concomitant dystonia and ataxia.
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TABLE 2 Clinical clues associated with main genetic dystonia-ataxia syndromes

Clinical features Disease (gene name)

Developmental delay/mental
retardation

Glucose transporter type 1 deficiency syndrome (SLC2A1)
PLA2G6-associated neurodegeneration (PLA2G6)
TUBB4A-disorders (TUBB4A)
L-2-hydroxyglutaric aciduria or academia (L2HGDH)
Recessive dystonia-ataxia syndrome due to mitochondrial complex IV deficiency (COX20)
Pyruvate dehydrogenase E2 deficiency (DLAT)

Cognitive decline Wilson disease (ATP7B)
Niemann-Pick disease (NPC)
PLA2G6-associated neurodegeneration (PLA2G6)
Glucose transporter type 1 deficiency syndrome (SLC2A1)
Autosomal recessive spastic ataxia type 3 (MARS2)
Cerebroretinal microangiopathy with calcifications and cysts syndrome (CTC1)
Childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy (SQSTM1)
Ataxia-oculomotor apraxia type 4 (PNKP)
Dentatorubral-pallidoluysian atrophy (ATN1)
Spinocerebellar ataxia type 17 (TBP)

Opthalmoparesis Spinocerebellar ataxia type 1 (ATXN1)
Spinocerebellar ataxia type 2 (ATXN2)
Spinocerebellar ataxia type 3 (ATXN3)
Niemann-Pick disease (NPC)
Gaucher disease, type III (GBA)
POLG-disorders (POLG)
Childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy (SQSTM1)

Oculomotor apraxia Ataxia-telangiectasia (ATM)
Ataxia-oculomotor apraxia type 1 (APTX)
Ataxia-oculomotor apraxia type 2 (SETX)
Ataxia-oculomotor apraxia type 4 (PNKP)
Gaucher disease, type III (GBA)
Childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy (SQSTM1)

Retinopathy Cerebroretinal microangiopathy with calcifications and cysts (CTC1)
Ataxia with isolated vitamin E deficiency (TTPA)

Optic atrophy Friedreich ataxia (FXN)
PLA2G6-associated neurodegeneration (PLA2G6)
L-2-hydroxyglutaric aciduria or academia (L2HGDH)
Cerebroretinal microangiopathy with calcifications and cysts (CTC1)
ATP1A3-disorders (ATP1A3)

Abnormal eye movement
saccades

Spinocerebellar ataxia type 1 (ATXN1)
Spinocerebellar ataxia type 2 (ATXN2)
Spinocerebellar ataxia type 3 (ATXN3)
Spinocerebellar ataxia type 6 (CACNA1A)
Friedreich ataxia (FXN)
PLA2G6-associated neurodegeneration (PLA2G6)

Seizures Niemann-Pick disease (NPC)
PLA2G6-associated neurodegeneration (PLA2G6)
Dentatorubral-pallidoluysian atrophy (ATN1)
Spinocerebellar ataxia type 17 (TBP)
TUBB4A-disorders (TUBB4A)
Glucose transporter type 1 deficiency syndrome (SLC2A1)
L-2-hydroxyglutaric aciduria or academia (L2HGDH)

Peripheral neuropathy Friedreich ataxia (FXN)
Ataxia with isolated vitamin E deficiency (TTPA)
Ataxia-telangiectasia (ATM)
Ataxia-oculomotor apraxia type 1 (APTX)
Ataxia-oculomotor apraxia type 2 (SETX)
Ataxia-oculomotor apraxia type 4 (PNKP)
PLA2G6-associated neurodegeneration (PLA2G6)
POLG-disorders (POLG)
ATP1A3-disorders (ATP1A3)

Spasticity Spinocerebellar ataxia type 2 (ATXN2)
Spinocerebellar ataxia type 3 (ATXN3)
TUBB4A-disorders (TUBB4A)
Autosomal recessive spastic ataxia type 3 (MARS2)
Autosomal recessive spastic paraplegia type 48 (KIAA0415)
Cerebroretinal microangiopathy with calcifications and cysts (CTC1)
PLA2G6-associated neurodegeneration (PLA2G6)
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depend on age of onset and clinical suspicion, but should always

include serum copper and ceruloplasmin (plus 24 h urinary copper

excretion, depending on the level of probability). Other parame-

ters in peripheral blood are used to screen for more common

conditions, with specific treatment implications that include vita-

min E levels (ataxia with vitamin E deficiency), glucocerebrosi-

dase enzyme activity in leukocytes (reduced in Gaucher disease),

and triol levels (elevated in Niemann-Pick disease type C). If the

Table 2: Continued

Clinical features Disease (gene name)

Glucose transporter type 1 deficiency syndrome (SLC2A1)
Niemann-Pick disease (NPC)

Myoclonus Wilson disease (ATP7B)
Ataxia-telangiectasia (ATM)
Niemann-Pick disease (NPC)
Dentatorubral-pallidoluysian atrophy (ATN1)
Glucose transporter type 1 deficiency syndrome (SLC2A1)

Parkinsonism Spinocerebellar ataxia type 2 (ATXN2)
Spinocerebellar ataxia type 3 (ATXN3)
Spinocerebellar ataxia type 17 (TBP)
Wilson disease (ATP7B)
ATP1A3-disorders (ATP1A3)
PLA2G6-associated neurodegeneration (PLA2G6)
Childhood-onset neurodegeneration with ataxia, dystonia, and gaze palsy (SQSTM1)

Chorea Wilson disease (ATP7B)
PLA2G6-associated neurodegeneration (PLA2G6)
Ataxia-telangiectasia (ATM)
Dentatorubral-pallidoluysian atrophy (ATN1)
Spinocerebellar ataxia type 17 (TBP)

Gelastic cataplexy Niemann-Pick disease (NPC)

Hypogonadism Ataxia-telangiectasia (ATM)
Congenital disorder of glycosylation type Ia (PMM2)
Kallmann syndrome (KAL1)

Telangiectasias Ataxia-telangiectasia (ATM)

Macrocephaly Mitochondrial complex I deficiency (multiple genes)

Anosmia Kallmann syndrome (KAL1)

Hepatic disease Niemann-Pick disease (NPC)
Wilson disease (ATP7B)
Mitochondrial complex I deficiency (multiple genes)

FIG. 3. Predominant imaging findings in genetic dystonia-ataxia syndromes.
Abbreviations: BG: basal ganglia; NBIA: neurodegeneration with brain iron accumulation. For didactic purposes we show only the
predominant imaging findings of the diseases that can present with dystonia and ataxia that are most representative, either by its
frequency or its ability to be treatable.
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differential diagnosis includes ataxia telangiectasia (AT) and its

lookalikes, serum testing should include alpha-fetoprotein (ele-

vated in AT and ataxia-oculomotor apraxia type 2), immunoglob-

ulin levels (often reduced in AT), albumin (reduced in ataxia-

oculomotor apraxia type 1), and cholesterol (increased in ataxia-

oculomotor apraxia type 1). In a case of suspected glucose trans-

porter type 1 deficiency syndrome, serum and CSF should be

tested for the glucose levels (CSF glucose concentration < 60

mg/dL) and its ratio (< 0.4). If these tests were negative, genetic

testing of most frequent causes of dystonia-ataxia syndromes,

including Friedreich ataxia and several spinocerebellar ataxias

(SCA-ATN1, SCA-ATXN2, SCA-ATXN3, SCA-CACNA1A,

SCA-TBP, and SCA-ATXN1) should be explored first (again

depending on clinical features and age). These are all disorders

caused by repeat expansions and are therefore not detectable by

next-sequencing genetic tests. After these common causes are

ruled out, genetic testing should be continued with whole exome

sequencing or comprehensive dystonia and ataxia panels that

include the dystonia-ataxia syndromes here described.

The Role of the Cerebellar
Dysfunction in Dystonia
Dystonia is usually associated with dysfunction of basal ganglia cir-

cuits, rather than alteration of the cerebellum.30 Many of the

genetic diseases reviewed here encompass complex phenotypes

due to neurodegeneration of multiple systems and structures,

including the alteration of both basal ganglia and cerebellum,

which may explain the occurrence of dystonia in the setting of

ataxia and other neurological features. There is growing evidence

of an important role of the cerebellar dysfunction in dysto-

nia.4–6,31–36 Animal models of generalized dystonia showed

abnormal cerebellar activity,37–39 and dystonia can be independ-

ent of the basal ganglia and can be alleviated or abolished by inac-

tivation of the cerebellum.40–42 Moreover, a sophisticated

network approach strongly suggested that the molecular pathways

of ataxia and dystonia are closely related.43 Thus, the large num-

bers of disorders featuring both dystonia and ataxia are not too

surprising. However, correlational studies, such as these network

approaches cannot dissect cause and effect.

Treatment
Physical, occupational, and speech rehabilitation therapy are usu-

ally combined with pharmacological treatment where appropri-

ate.44,45 Unfortunately, there currently exists no medication that

has been approved for the treatment of cerebellar ataxia or that

can prevent or slow-down neurodegenerative processes that are

not related to metabolic diseases (with the exception of aminopyr-

idines and acetazolamide for episodic ataxia in episodic ataxia type

2).44 Most drugs used to treat ataxia or other cerebellar features

failed to achieve significant and sustained improvement.44,45 For

patients with Friedreich ataxia or spinocerebellar ataxia, riluzole

showed modest improvement in ataxia at 12 months in a Class I

study (Supporting Table 2).46 Careful attention should be paid to

drugs that can exacerbate ataxia, such as alcohol, lithium, phenyt-

oin, and phenobarbital47 or factors that can precipitate episodic

ataxia in paroxysmal kinesigenic dyskinesia and episodic ataxia

type 2, including physical or emotional stressful situations, alco-

hol, fatigue, or exertion. Likewise, drugs that are capable of exac-

erbating dystonic symptoms, including neuroleptics, piperazine

derivatives with calcium antagonist properties (cinnarizine, flunar-

izine), or antiemetics (metoclopramide; among others) should be

avoided.48

Disorders with Specific Management
Implications
Some of the genetic dystonia-ataxia syndromes are preventable by

avoiding triggers or are treatable either by reduction of toxic prod-

ucts, dietary interventions, or vitamin supplements.49 Early diagnosis

and therapy may slow or halt the clinical course, partially reverse

symptoms, or prevent their development altogether (Supporting

Table 2). In general, the response to treatment is more likely at early

stages of the disease and in children rather than adults.

Symptomatic Therapy of Dystonia
Treatment of dystonic features remains difficult. In very rare cases,

they can resolve spontaneously and completely over time (e.g., in

ataxia-oculomotor apraxia type 4 and SCA-CACNA1A)21,27

Without counting on these exceptions, dystonic symptoms are

always persistent and hardly alleviated with drugs such as levo-

dopa, anticholinergics, or botulinum toxin.13,26,50–53 It is impor-

tant to emphasize that botulinum toxin use can be dangerous in

the treatment of cervical or oromandibular dystonia in patients

with spinocerebellar ataxias; this is because dysphagia is very com-

mon in this group of neurodegenerative diseases.54 In some of the

genetic dystonia-ataxia syndromes, including SCA-ATXN2,

SCA-ATXN3, and ataxia-telangiectasia, dystonic features can

show a marked response to levodopa8,55,56 and illustrate the

rationale of a trial with this drug.10,11,13,57–59 Indeed, dopamine

replacement therapy was established in 16 of 140 (11%) patients

with spinocerebellar ataxia, with a partial response in 75% of the

cases.13 Pharmacological treatment with trihexyphenidyl, baclo-

fen, benzhexol, diazepam, or clonazepam may also produce vari-

able relief of dystonic postures.26,60–62 Currently, there is lack of

evidence for the efficacy of non-invasive brain stimulation techni-

ques, like transcranial magnetic stimulation and transcranial

direct/alternating current stimulation in patients with dystonia.63

In contrast, surgical interventions for dystonia such as GPi-DBS

have been found effective to some extent in patients with Wilson

disease,64,65 ataxia-telangiectasia and its variant64,66 spinocerebellar

ataxias,64,67–69 episodic ataxia type 2,70 Cockayne syndrome,71,72

PLA2G6-associated neurodegeneration,73 and neurodegeneration

with brain iron accumulation type 1 due to mutations in the

PANK2 gene.74–77 Responses are often transient or partial, usu-

ally in the range of 10 to 30% of improvement, which is far less

than the benefit reported in patients with primary generalized dys-

tonia,64,76 but greater improvements of approximately 70% during

the first years after surgery were also found.74,75 Patients with
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dystonia combined with parkinsonism showed a greater response

than those with dystonia-ataxia syndromes.64 Surgical outcome

seems to be independent from age at surgery, duration of disease,

dystonic features at surgery, or dystonia severity.64

Conclusions
The dystonia-ataxia syndromes are a clinically and genetically het-

erogeneous group of disorders that hold a major diagnostic chal-

lenge for neurologists. In clinical practice, the etiological diagnosis

of dystonia-ataxia syndromes is key in guiding genetic counseling,

prognosis, and in some cases49 specific treatment. Clinico-

radiological algorithms serve to narrow down the differential

diagnosis for genetic testing and are crucial to avoid unnecessary

complementary studies in scenarios where next-generation tech-

niques are inaccessible to physicians or unaffordable to

patients.2,9,78–80 In addition, algorithms and lists of genes associ-

ated with dystonia-ataxia syndromes may direct genetic research

and are also important to assist molecular geneticists in the inter-

pretation of whole exome or genome sequencing data to achieve

high diagnostic accuracy.80 For example, as more than 100 genes

and genetic diseases need to be screened to diagnose dystonia-

ataxia syndromes, clinico-radiological algorithms may facilitate

the implementation of disease-focused gene panels or dedicated

exome strategies to prioritize those genes that overlap between

dystonia and ataxia.43 Most important useful handles in guiding

diagnosis with the herein proposed clinical algorithms for

dystonia-ataxia syndromes include the age of disease onset, some

associated clinical clues and particular imaging findings. However,

major criticism to clinical algorithms arise on the clinical and

genetic heterogeneity81 (e.g., many entities or combined syn-

dromes are not distinct conditions), but may represent a contin-

uum between different phenotypes, as is the case for ATP1A3-,

or PLA2G6-related disorders.82–86 In addition, clinical algorithms

may not fit for atypical phenotypes or be useless if they are too

simplistic or rigid, as they may delay or obstruct the identification

of the underlying genetic cause in a determined patient.80,81 In

our opinion, clinical algorithms should be used as tools that can

orient to specific disorders and they may also be useful to validate

genetic findings. The modern next-sequencing genetic tests do

not eradicate the need for an exhaustive clinical assessment and

are not extent of limitations, for example, the inability to detect

copy number variations or repeat expansions that cause ataxias

(e.g., Friedreich ataxia and several spinocerebellar ataxias).79,80

The list of genetic diseases that display either dystonia or ataxia

or both in combination as dystonia-ataxia syndromes will con-

tinue to increase with the widespread access to next-generation

sequencing techniques. Continuous updating of dystonia-ataxia

syndromes will be possible with online resources, such as Gen-

eReviews (available at https://www.ncbi.nlm.nih.gov/books/

NBK1116/) and the International Parkinson and Movement Dis-

order Society Genetic Mutation Online Database (available at

http://www.mdsgene.org/).87

In conclusion, the clinical approach presented here is intended

to improve diagnostic success of clinicians when facing with

patients with dystonia-ataxia syndromes. Future perspectives

resides in research that would provide a better understanding of

the role of the cerebellum in dystonia that may in turn result in

targeted treatment approaches to help both dystonia and ataxia

features.
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