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Background and aims: Repeated performance of some behaviors such as playing computer games could result in
addiction. The NMDA receptor is critically involved in the development of behavioral and drug addictions. It has
been claimed that the expression level of neurotransmitter receptors in the brain may be reflected in peripheral blood
lymphocytes (PBLs). Methods: Here, using a real-time PCR method, we have investigated the mRNA expression of
GluN2A, GluN2D, GluN3A, and GluN3B subunits of the NMDA receptor in PBLs of male online computer game
addicts (n= 25) in comparison with normal subjects (n= 26). Results: Expression levels of GluN2A, GluN2D, and
GluN3B subunits were not statistically different between game addicts and the control group. However, the mRNA
expression of the GluN3A subunit was downregulated in PBLs of game addicts. Discussion and conclusions:
Transcriptional levels of GluN2A and GluN2D subunits in online computer game addicts are similar to our previously
reported data of opioid addiction and are not different from the control group. However, unlike our earlier finding of
drug addiction, the mRNA expression levels of GluN3A and GluN3B subunits in PBLs of game addicts are reduced
and unchanged, respectively, compared with control subjects. It seems that the downregulated state of the GluN3A
subunit of NMDA receptor in online computer game addicts is a finding that deserves more studies in the future to see
whether it can serve as a peripheral biomarker in addiction studies, where the researcher wants to rule out the
confusing effects of abused drugs.
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INTRODUCTION

Behavioral addictions are disorders comparable with sub-
stance addiction, but with a behavioral core other than
consumption of a psychoactive drug. Several behavioral
addictions have been described, such as compulsive buy-
ing, pathological gambling, kleptomania, and sexual ad-
diction (Jorgenson, Hsiao, & Yen, 2016). A behavioral
addiction that has attracted society’s attention is computer
game addiction, which is described as an intense and
uncontrollable desire for playing computer games and
excessive involvement in this type of activity, despite
awareness of adverse outcomes, such as critical interfer-
ence with a person’s social and personal daily life. People
who are addicted to this behavior are ready to ignore
almost all other aspects of life to be able to play computer
games as much as possible, which would ultimately make

the person play 24 hr/7 days of the week (Ustinavičienė
et al., 2016).

Glutamate, the main excitatory neurotransmitter in the
brain, is a major component of the addiction phenomenon.
The neurotransmitter could be extensively found in many
parts of the brain, particularly the mesocorticolimbic path-
way, which is well known as the reward pathway (Spencer,
Scofield, & Kalivas, 2016). The core of the pathway is made
of dopaminergic neurons that originate in the ventral
tegmental area and project mainly to the nucleus accumbens
and also to other parts, such as the prefrontal cortex (PFC)
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and amygdala. Consumption of addictive drugs or perfor-
mance of addictive behaviors stimulates reward pathway
and ultimately increases the concentration of dopamine in
the nucleus accumbens (Cooper, Robison, & Mazei-
Robison, 2017). In addition to dopaminergic neurons,
nucleus accumbens also receives glutamatergic information
from regions, such as the thalamus, hippocampus, amygdala,
and frontal cortex, which makes glutamate to interact with
dopamine in the modulation of reward and reinforcement
and development of addictive behaviors (Kalivas, 2009;
Tzschentke & Schmidt, 2003).

Glutamate exerts its effects by two types of receptors,
namely ionotropic and metabotropic. N-methyl-D-aspartate
(NMDA) receptor as a member of ionotropic glutamate
receptors is a tetramer made up of three different subunit
classes: GluN1, GluN2 (GluN2A-D), and GluN3 (GluN3A
and B), which may be composed as GluN1/GluN2 or
GluN1/GluN2/GluN3. The main characteristic of NMDA
receptors is its high permeability to calcium, which could
lead to excitatory postsynaptic currents (Glasgow, Siegler
Retchless, & Johnson, 2015). However, incorporation of
GluN3 subunits in the structure of NMDA receptor reduces
calcium current through the receptor channel and suppresses
the excitatory effect of NMDA receptor (Cavara &
Hollmann, 2008; Pérez-Otaño, Larsen, & Wesseling, 2016).

It has been reported that the expression of NMDA
receptors is not limited to the neural cells; other cell types,
such as lymphocytes, may also express NMDA receptors
(Boldyrev et al., 2004). Stimulation of NMDA receptors in
lymphocytes affects the performance of these cells since it
has been shown that the application of NMDA receptor
antagonists is able to inhibit T-cell proliferation by prevent-
ing their activation (Miglio, Varsaldi, & Lombardi, 2005).
Studies have revealed that different subunits of the NMDA
receptor, including GluN1, GluN2A, GluN2B, GluN2D,
GluN3A, and GluN3B, are expressed in human peripheral
blood lymphocytes (PBLs), while GluN2C expression in
these cells is uncertain (Biermann, Bonsch, Reulbach,
Kornhuber, & Bleich, 2007; Miglio et al., 2005; Roozafzoon
et al., 2010; Sedaghati et al., 2010).

The expression pattern of NMDA receptor subunits in
various regions of the brain is not a static phenomenon;
indeed, several disorders including addiction may alter the
expression levels of these subunits in the brain (Bajo,
Crawford, Roberto, Madamba, & Siggins, 2006). For
example, animal studies have shown that opioid addiction
may upregulate the mRNA expression level of GluN1
subunits in the rat nucleus raphe magnus, medial thalamus
(Zhu, Brodsky, Gorman, & Inturrisi, 2003), locus coeruleus,
hypothalamic paraventricular nucleus (Zhu et al., 1999), and
amygdala (Turchan, Maj, & Przewlocka, 2003). In addition,
in a postmortem study, it was found that GluN2B subunit is
upregulated in the hippocampus in both alcoholics and
cocaine addicts, whereas GluN2D was upregulated in alco-
holics and downregulated in cocaine addicts compared with
controls (Enoch et al., 2014). In animal studies, it has been
shown that the mRNA expression level of GluN1 subunit,
but not GluN2 or GluN3, is increased in basolateral amyg-
dala samples from chronic ethanol-exposed rats (Floyd,
Jung, & McCool, 2003). Furthermore, chronic nicotine
treatment in mice has revealed no effect on the expression

level of GluN1 and GluN2B subunits in the PFC and
midbrain. However, expression of GluN2A in PFC was
reduced by the same treatment (Pistillo et al., 2016). Despite
the mentioned studies, the human data regarding the
expression changes of NMDA receptor subunits in addictive
behaviors like playing online computer games are much
more limited. One main reason is the present impossibility
of doing direct experiments in the living brain of addicted
individuals. Thus, we may have to choose an alternative
way, such as using the concept of “peripheral marker
hypothesis.” According to the hypothesis, the expression
level of neurotransmitter receptors in the brain is correlated
with the expression changes of these receptors in PBLs. For
example, it has been shown that the augmented activation of
central dopaminergic neurotransmission in schizophrenic
patients is reflected in their PBLs in the form of the
upregulation of the expression level of dopamine receptors
in these cells (Carlsson, Waters, & Carlsson, 1999; Ilani
et al., 2001; Zvara et al., 2005). In contrast, in Parkinson’s
disease, which is associated with decreased neurotransmis-
sion of dopamine in the striatum, the level of expression of
dopamine receptors is also reduced in PBLs, which is
correlated with clinical severity of the disease (Kwak, Koo,
Choi, & Sunwoo, 2001; Nagai et al., 1996). A similar
correlation has been observed in the amyotrophic lateral
sclerosis disorder in which impaired glutamatergic trans-
mission in the central nervous system is in line with the
reduced mRNA expression of the metabotropic glutamate
receptor 2 in PBLs (Poulopoulou et al., 2005). These and
several other studies (e.g., Amidfar et al., 2017; Liu et al.,
2016; Zhang et al., 2017) have convinced the researchers
that PBLs may be an appropriate cellular tool to evaluate the
alterations of neurotransmitter receptors in neuropsychiatric
and neurological disorders and follow the results of thera-
peutic interventions. We have previously investigated the
changes that happen at the expression level of NMDA
receptor subunits in human PBLs in opioid addiction
(Roozafzoon et al., 2010; Sedaghati et al., 2010). The results
of the mentioned studies made us investigate whether
addictive behaviors, such as playing online computer
games, would also alter the expression level of NMDA
receptor subunits in PBLs. Therefore, we designed this
study to investigate the mRNA expression state of GluN2A,
GluN2D, GluN3A, and GluN3B subunits of the NMDA
receptor in PBLs of game addicts compared with control
group to evaluate the usefulness of these subunits as pe-
ripheral markers in studies of addictive behaviors, including
online computer game addiction.

MATERIALS AND METHODS

Subjects

Two groups of male volunteers were evaluated in the study.
One group was composed of 25 computer game addicts
(age: 24.3± 4.4 years old), who were selected from places
or shops where people go to and play computer games. The
type of online computer games was not recorded. Addiction
to playing online computer games was evaluated using a
modified version of Young’s Internet Addiction Scale
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(YIAS). It is composed of 20 questions with 5-point Likert
scale (Young, 1998). The score of a person resulted from
YIAS may fall into three categories of lower than 50,
50–70, and >80. These scores are taken as non-addiction,
mild grades of addiction, and severe degrees of addiction,
respectively. The individuals whose scores were more than
80 were invited to participate in the study. The duration of
compulsive game playing in this group was 6.9 ± 3.1 years.
Control subjects were 26 age-matched students and staff of
Tehran University with YIAS scores <50 (age: 25.6 ± 3.1
years old). There were some exclusion criteria for the
study: (a) dependence to any drug of abuse (assessed by
both self-declaration and urine test), such as alcohol, cocaine,
amphetamine, opioids, benzodiazepines, marijuana, or
barbiturates (four cases in the game-addicted group were
cigarette smokers but were not dependent on nicotine as
stated by the fifth edition of Diagnostic and Statistical
Manual of Mental Disorders criteria); (b) consumption of
any kind of medications with central nervous system effects;
(c) having current infectious or inflammatory diseases, such
as HCV, HBV, and HIV; (d) having current or a history of
major neurological, psychiatric, endocrine, or cardiovascular
disorders.

PBL preparation

An amount of 5-ml blood samples were drawn from
volunteers by antecubital venipuncture in ethylenediami-
netetracetic acid-containing tubes. To separate lympho-
cytes, total blood was placed on a cell separation medium
(Histoprep/BAG, Lich, Germany) and centrifuged in a
horizontal rotor with 1,200 × g for 35 min at room tem-
perature as mentioned in the manufacturer’s protocol. The
layer containing lymphocytes was then collected and
washed in cold phosphate-buffered saline (pH = 7.4) for
three times. The lymphocyte separation process was done
not later than 4 hr after blood sample collection to mini-
mize blood RNA degradation.

Total RNA extraction and reverse transcription

Total RNA was extracted from lymphocytes by RNeasy
Mini Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol. The quantity of extracted RNA
was measured by spectrophotometry and its purity was
checked by gel electrophoresis (1% agarose, Gibco/BRL,
Grand Island, NY, USA). First-strand cDNA was synthe-
sized using 1 μg RNA in a final volume of 20 μl with the
QuantiTect Reverse Transcription Kit (Qigen) as mentioned
in the manufacturer’s protocol.

Oligonucleotide primers used for real-time polymerase
chain reaction (PCR) amplification

Amplification of GluN2A, GluN2D, GluN3A, and GluN3B
subunits of the NMDA receptor in real-time polymerase
chain reaction (PCR) was performed with oligonucleotide
primers purchased from Qiagen company primer bank.
Normalization of target genes expression was achieved
using the beta-actin as the housekeeping gene where its
primers were also ordered from Qiagen company.

Real-time PCR

Real-time PCR reactions were performed using 2 μl of the
first-strand cDNA, specific primers, and Power SYBR® Green
PCR Master Mix (Life Technologies, Carlsbad, CA, USA) as
mentioned in the manufacturer’s protocol on a StepOnePlus™
Real-Time PCR System (Applied Biosystems, USA). For each
gene, the real-time PCR reaction was adjusted in such a way
that a single product was amplified for each primer pair. The
optimized annealing temperature of reactions was from 60 to
63 °C. Observing a single peak in melting curve analysis was
considered as the confirmation of the specificity of PCR
products. In addition, correct length of products was validated
by visualization on 2% agarose gel with ethidium bromide.

Data analysis

For all samples, a value was defined as the Ct of the sample,
which was the number of the cycle at which the sample
fluorescence reached a preset threshold. In each reaction
run, a standard curve was plotted using a serial dilution of a
known cDNA sample and then the Cts of the unknown
samples were referred to the curve. Samples were measured
in duplicate and the mean was used for further analysis. All
samples were normalized against beta-actin as the house-
keeping gene. The data of the study were analyzed by the
REST-XL version 2 software (Pfaffl, Horgan, & Dempfle,
2002). The software needs PCR efficiencies of the runs and
the mean crossing point (CP) deviations to define and
compare the relative gene expression levels and the signifi-
cant differences between two groups. Real-time PCR effi-
ciency (E) is calculated as: E= 10[−1/slope], which is applied
to a serial dilution of cDNA. The software calculates the
ratio of gene expression between control and sample groups
and the normalization of the target gene expression by mean
of the reference gene using the following equation:

Ratio= ðEtargetÞΔCPtarget ðMean control−Mean sampleÞ=

ðEreferenceÞΔCPreferenceðMean control−Mean sampleÞ:

The software uses the Pair-Wise Fixed Reallocation
Randomization Test to calculate the significance of the
results. Randomization tests are proper substitutions to
parametric tests and their special advantage is making no
distributional expectations about the data and being as
powerful as the more standardized tests. Thus, we calculated
one separate analysis (game addicted in comparison with the
control group) for each target gene (GluN2A, GluN2D,
GluN3A, and GluN3B subunits of the NMDA receptor) in
the study. P< .05 was considered statistically significant
and data are shown as fold differences of mean normalized
expression values ± standard error of the mean (SEM).

Ethics

The study procedures were carried out in accordance with
the Declaration of Helsinki and were approved by the
Institutional Ethics Committee. All subjects were informed
about the study and all provided informed consent.
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RESULTS

Figure 1A demonstrates the comparison of mRNA expres-
sion level of GluN2A subunit of NMDA receptor in PBLs
between online computer game addicts and control volun-
teers. The GluN2A subunit of NMDA receptor was down-
regulated in game-addicted subjects by the factor 0.84,
which was not statistically different from control group
(P> .05). The beta-actin expression did not differ between
the groups tested (data not shown).

As shown in Figure 1B, the expression level of the
GluN2D subunit of NMDA receptor increased in online
game-addicted subjects and reached 1.06 (P> .05), the
amount of the control group.

Figure 1C demonstrates the mRNA expression level of
the GluN3A subunit in PBLs of study groups. We
observed a significant reduction in the expression of
GluN3A subunit in the game-addicted group compared

with the control subjects (0.41, the amount of the control
group; P < .001).

As shown in Figure 1D, the expression level of the
GluN3B subunit of NMDA receptor was downregulated in
game-addicted subjects and reached 0.9 (P> .05), the
amount of the control group.

DISCUSSION

In recent years, preclinical and clinical studies have reported
that significant overlap may exist between the neural path-
ways that are involved in reward-related learning in drug
dependence and those that mediate non-drug behavioral
addictions, such as pathological gambling, kleptomania,
eating, shopping, sex, Internet, and exercise addiction (Lee
et al., 2012; Olive, Cleva, Kalivas, & Malcolm, 2012;
Palaus, Marron, Viejo-Sobera, & Redolar-Ripoll, 2017).

Figure 1. The mRNA expression of GluN2A (A), GluN2D (B), GluN3A (C), and GluN3B (D) subunits of NMDA receptor in PBLs of
the computer game-addicted and control subjects. Bars represent fold differences of mean normalized expression values± SEM (n= 25 in

game-addicted and 26 in control groups). ***P< .001 from the control group
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However, evidence confirming the above statement is lim-
ited. It is now believed that glutamatergic transmission has a
key role in the process of addiction development and it is
considered as a possible novel target for pharmacological
treatment of drug and behavioral addictions (Márquez et al.,
2017). The NMDA receptor as a tetramer-structured iono-
tropic glutamate receptor is significantly involved in many
neuronal and organizational brain functions, such as fast
excitatory transmission, synaptic plasticity, learning, and
memory (Glasgow et al., 2015). The receptor is composed
of GluN1 subunit together with subunits of GluN2 and
GluN3 families. Although the subunits have distinct patterns
of expression in the brain, they are highly concentrated in
cerebral cortex and hippocampus, which are responsible for
memory formation and higher levels of cognition (Law
et al., 2003).

NMDA receptors are critically involved in addiction
since blocking these receptors with NMDA antagonists
abolishes the rewarding or reinforcing characteristics of
drugs of abuse, such as cocaine and morphine (Ma, Cepeda,
& Cui, 2009), and inhibits addictive behaviors, such as
pathological gambling (Grant, Chamberlain, Odlaug,
Potenza, & Kim, 2010).

Preclinical studies have shown that the expression level
of NMDA receptor subunits alters in addiction (Jin et al.,
2014a; Nagy, 2008; Zhu et al., 1999). However, it is not
possible to investigate the expression changes of NMDA
receptor subunits directly in the living brain of drug- or
behavioral addicted people. Nonetheless, there is a hypoth-
esis called “peripheral marker hypothesis” or “mirror hy-
pothesis” stating that alterations in the levels of expression
of neurotransmitter receptors in the brain may be similar to
their changes in PBLs. The hypothesis has been widely
investigated about dopaminergic receptors. For example, it
has been shown that the expression level of D5 dopamine
receptor in PBLs is increased in patients suffering from
Tourette’s syndrome and this increase has a positive corre-
lation with the severity of compulsive symptoms of the
syndrome (Ferrari et al., 2008). Conversely, in Parkinson’s
disease, evaluation of the expression level of dopamine
receptors in PBLs has shown a dramatic decrease compared
with healthy subjects, which is linearly correlated with the
patients’ degree of disability (Nagai et al., 1996). In schizo-
phrenia, it has been reported that the upregulated state of
dopamine receptors in PBLs of patients (Bondy, Ackenheil,
Elbers, & Frohler, 1985; Ilani et al., 2001), which is a
reflection of the upregulated state of dopamine receptors in
the brain, is directly correlated with the severity of psychi-
atric symptoms and is relatively reduced by antipsychotic
medications (Kwak et al., 2001; Vogel et al., 2004). Thus, it
seems that PBLs may act as an available and easily achiev-
able tool to investigate mechanisms of neural diseases and
the way that drugs may be helpful in the treatment of them.
Furthermore, evaluation of the state of PBLs may help to
follow the effectiveness of medical and non-medical thera-
pies in brain disorders.

Although glutamate receptors and especially NMDA
receptors are widely involved in many brain diseases,
peripheral marker hypothesis has not been much studied
about these receptors. It has been shown previously
that glutamate receptors like many other neurotransmitter

receptors may be found on immune cells, such as lympho-
cytes and thymocytes (Boldyrev et al., 2004; Ganor, Besser,
Ben-Zakay, Unger, & Levite, 2003; Kvaratskhelia et al.,
2009; Storto et al., 2000), natural killer cells (Kuo et al.,
2001), and macrophages (Dickman, Youssef, Mathew, &
Said, 2004). Some kind of immune cell functions, such as
proliferation, growth, and death, seems to be mediated by
activation of glutamate receptors in immune cells
(Lombardi, Dianzani, Miglio, Canonico, & Fantozzi,
2001; Mashkina et al., 2007). The existence of GluN1 and
GluN2 subunits of the NMDA receptor in human PBLs has
been reported before (Bhandage et al., 2017; Miglio et al.,
2005). In addition, we have found in our previous studies
that GluN3A and GluN3B subunits of NMDA receptor are
also expressed in human PBLs (Roozafzoon et al., 2010;
Sedaghati et al., 2010). To our knowledge, this is the first
report concerning the mRNA expression of GluN2A,
GluN2D, and GluN3 subunits of the NMDA receptor in
PBLs of online computer game addicts.

GluN2A subunit of NMDA receptors is widely expressed
in different parts of the human brain (Kew & Kemp, 2005)
and its existence in the structure of NMDA receptor seems
to be necessary for drug addiction development. This can be
shown by lack of morphine-induced place preference in
GluN2A mutant mice (Miyamoto et al., 2004). GluN2D
is largely expressed in midbrain sites (Laurie, Bartke,
Schoepfer, Naujoks, & Seeburg, 1997). In addition, the
subunit may be found in murine hippocampus, thalamus,
and cortex (Dunah, Luo, Wang, Yasuda, & Wolfe, 1998). It
has been shown that incorporation of the GluN2D subunit in
NMDA receptor structure significantly increases the excit-
atory current of the ion channel (Thompson, Drewery,
Atkins, Stephenson, & Chazot, 2002). Our data showed
that the expression level of GluN2A and GluN2D subunits
of the NMDA receptor in PBLs of online computer game
addicts is not statistically different from the control group.
This is similar to our previous findings in opioid-addicted
subjects whose mRNA expression levels of these two
subunits in PBLs were the same as the non-addicted indi-
viduals (Roozafzoon et al., 2010; Sedaghati et al., 2010).
According to the peripheral marker hypothesis, it may be
assumed that the mRNA expression of GluN2A and
GluN2D subunits in the brain is not changed by addiction
to a behavior, such as computer game playing. In this regard,
previous animal studies have shown that the expression
level of GluN2 subunits of NMDA receptors is not altered in
many parts of the rat brain, such as the nucleus accumbens,
hippocampus, frontal cortex, locus coeruleus, and amyg-
dale, after chronic morphine administration (Hemby, 2004;
Zhu et al., 1999). However, postmortem studies have shown
that GluN2B subunit is increased in the hippocampus in
alcoholics and cocaine addicts, whereas GluN2D is in-
creased in alcoholics and decreased in cocaine addicts
(Enoch et al., 2014; Jin et al., 2014b). Although the periph-
eral marker hypothesis may suggest the existence of simi-
larity in the pattern of gene expression between lymphocytes
and the brain, however, it cannot be confirmed until the
transcriptional studies of behavioral addictions in the human
brain are completed in the future.

It has been proven in previous studies that incorporation
of GluN3 subunits of the NMDA receptor, including
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GluN3A and GluN3B in the structure of receptor tetramer,
reduces the NMDA receptor function and excitatory current
flow in cells by decreasing the permeability of the receptor
channel of calcium (McClymont, Harris, & Mellor, 2012).
GluN3A is extensively expressed in human brain areas
including the cerebral cortex and subcortical regions, such
as the mesolimbic system (Mueller & Meador-Woodruff,
2005; Nilsson et al., 2007). However, the expression pattern
of GluN3B is not as wide as GluN3A subunit. The former
subunit may be found in sites, such as the brainstem, motor
neurons in the spinal cord (Matsuda, Kamiya, Matsuda, &
Yuzaki, 2002; Nishi, Hinds, Lu, Kawata, & Hayashi, 2001),
hippocampus, and adjacent neocortex (Bendel, Meijer,
Hurd, & von Euler, 2005).

The present data show that the expression level of
GluN3A in PBLs of online computer game addicts is
significantly lower than the control group. In our previous
studies, we found a similar decrease in GluN3A mRNA
expression in PBLs of abstinent former opioid-addicted
subjects, which was returned to normal levels in current
opioid abusers (Roozafzoon et al., 2010). Thus, it seems that
there may be a basic deficiency in the expression of GluN3A
subunit in people who are vulnerable to addiction and this
deficiency is recovered with opioid abuse, but not with the
addictive performance of behaviors, such as computer game
playing. This may explain why many game addicts are also
dependent on drugs of abuse. According to the peripheral
marker hypothesis, if the expression of GluN3A subunit is
also reduced in these people’s brains, then it would predict
the increased activity of GluN3A-containing NMDA recep-
tors in this organ. Increased activity of NMDA receptor in
some areas of the brain reward pathway seems to be a
neuroadaptation that occurs after repeated performance of
behaviors that are closely followed by rewards (Pettorruso
et al., 2014). This may explain why treatment with mem-
antine, an NMDA receptor antagonist, is associated with
amelioration of symptoms and craving in behavioral addic-
tions, such as pathological gambling (Achab & Khazaal,
2011). It has been claimed that the effect of the drug is
mediated by antagonizing of NMDA receptors in the stria-
tum (Grant et al., 2010). In addition, some other antigluta-
matergic drugs, such as amantadine and topiramate, have
also been introduced as drugs that are effective in the
treatment of pathological gambling and other addictive
behaviors, such as eating disorders (Kalivas, 2009;
Pettorruso et al., 2012, 2014). Our data may propose the
downregulation of GluN3A subunit of NMDA receptor as a
possible mechanism for increased activity of NMDA recep-
tors in drug and behavioral addictions. Furthermore, pre-
clinical studies have shown that rodents will self-administer
many NMDA receptor antagonists directly into different
parts of the reward pathway, such as the nucleus accumbens,
PFC (Carlezon & Wise, 1996), and ventral tegmental area
(David, Durkin, & Cazala, 1998), to experience reward.
Thus, downregulation of the GluN3A subunit in online
computer game addicts by increasing the activity of NMDA
receptors may result in a reward deficiency state that makes
these people motivated for seeking game
playing-related pleasure and reward.

Our results also showed that the expression level of
GluN3B subunit as the other member of NMDA receptor

suppressant subunits is not statistically different between
game addicts and control subjects. This is not consistent
with our previous findings in opioid addiction since the
expression of the subunit was increased in opioid addicts
compared with normal subjects (Sedaghati et al., 2010).
This variation shows that despite common etiopathological
pathways between behavioral addictions and drug addic-
tion (Criscitelli & Avena, 2016), some neurobiological
mechanisms may differ in various types of addiction.
Further studies are needed to be performed in the future
to clarify these differences more precisely. For example,
evaluation of the state of GluN3B subunit expression
during addiction development of the brain may be very
helpful in this way. In addition, it would be informative to
evaluate the expression level of other subunits of the
NMDA receptor in drug and behavioral addictions, which
could help to further discover the mechanism and pathways
of addiction.

CONCLUSIONS

This study shows that online computer game addiction
similar to drug addiction may not change the transcrip-
tional level of GluN2A and GluN2D subunits of the
NMDA receptor. However, our data showed that some
mechanistic differences seem to exist between online
computer game addiction and drug abuse when evaluating
the GluN3 family of NMDA receptor subunits. Unlike
with our previous findings of drug dependence, present
data showed that the mRNA expression level of GluN3A
and GluN3B subunits in PBLs of online computer game
addicts is reduced and unchanged, respectively, in
comparison with control individuals. However, it is not
clear whether the reduced level of GluN3A in PBLs of
game addicts results from repeated and addictive perfor-
mance of this behavior or a preexisting deficiency in the
expression of this subunit in addiction-prone subjects.
Despite this uncertainty, at least it can be claimed that
the observed data of this study and similar studies on
behavioral addictions are free of the confounding supra-
physiological effects of drugs of abuse, which may be
confusing in drug addiction studies. Our results may also
support the idea that manipulation of the glutamatergic
system with special focus on GluN3A subunit of NMDA
receptors is an effective approach to the treatment of
behavioral addictions.
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