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Abstract: Molecular networks represent the interactions and relations of genes/proteins, and also encode 
molecular mechanisms of biological processes, development and diseases. Among the molecular net-
works, protein-protein Interaction Networks (PINs) have become effective platforms for uncovering the 
molecular mechanisms of diseases and drug discovery. PINs have been constructed for various organisms 
and utilized to solve many biological problems. In human, most proteins present their complex functions 
by interactions with other proteins, and the sum of these interactions represents the human protein inter-
actome. Especially in the research on human disease and drugs, as an emerging tool, the PIN provides a 
platform to systematically explore the molecular complexities of specific diseases and the references for 
drug design. In this review, we summarized the commonly used approaches to aid disease research and 
drug discovery with PINs, including the network topological analysis, identification of novel pathways, 
drug targets and sub-network biomarkers for diseases. With the development of bioinformatic techniques 
and biological networks, PINs will play an increasingly important role in human disease research and 
drug discovery. 

Keywords: Protein-protein interaction network, Drug discovery, Network analysis, Sub-network biomarkers, Alzheimer’s dis-
ease, Multiple sclerosis. 

1. INTRODUCTION 

Proteins are the biological molecules that build the mi-
croscopic mechanisms of the biological systems. Tradition-
ally, biochemical methods, such as knock-out experiments, 
targeted mutations, or functional assays, have been widely 
applied to identify the functions of individual protein [1]. As 
a result, many basic biological problems are still unan-
swered. For example, proteins undertake their functions in 
biological systems by teaming up into macromolecular com-
plexes or transferring signals by interacting with other pro-
teins rather than from single molecule, but traditional meth-
ods cannot capture most of these intracellular biochemical 
activities [2]. Therefore, studies on protein-protein interac-
tions have been proven to be more important in the studies of 
various mechanisms of cellular activities and diseases. Pro-
tein-protein Interaction Network (PIN) presents physical 
interactions between gene products (i.e., proteins) to accom-
plish particular cellular functions, such as metabolism, cell 
cycle regulation and signal transduction. PINs have been 
constructed for various organisms, including bacteriophages, 
bacteria, yeast, plants, animals and human [3]. Analysis of 
PINs has been recognized as an important way to identify the  
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potential genes related to complex diseases or potential drug 
targets [4]. It plays an important role in predicting the asso-
ciations between genotype and phenotype [5]. Focusing on 
human studies, In particular, the PIN and its applications are 
largely helpful to recent advances in biomedical research 
because it is an effective index to evaluate their centrality 
and provide a reference value for protein as a drug target [6]. 
Therefore, reconstruction and analysis of PINs have become 
efficacious methods for surveying complex diseases, such as 
multiple sclerosis [7], Alzheimer’s disease [8], cancer [9], 
cancer metastasis [10] and drug discovery [11]. Analysis 
based on the topological features and sub-network has been 
proved to be a frequently used approach to investigate poten-
tially important proteins in a PIN for diseases or drugs. 
Based on the topological features, the network topological 
analysis provides clues for the identification of disease-
related genes. Based on the systematic features of sub-
networks, PINs can be used for the identification of novel 
molecular pathways, drug targets and sub-network biomark-
ers (Fig. 1). 

2. IDENTIFICATION OF NOVEL MOLECULAR 
PATHWAYS THROUGH SUB-NETWORK FROM PIN  

Sub-network is a part of a global PIN with specific bio-
logical functions, which has similar characteristic with a 
molecular pathway (e.g., signaling pathway). The function of 
a molecular pathway depends on its molecular components 
and their interactions. Therefore, a molecular pathway natu-
rally forms a network of related genes/proteins at the mo-
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lecular level, meaning that the pathway localizations and 
relationships can be quantified on the basis of PINs. There-
fore, sub-network analysis becomes a useful approach for 
identifying novel molecular pathways. In this process, the 
human PIN [12] provides a crucial source as a basic global 
network for the further bioinformatic analysis. For example, 
based on the molecular pathway distribution in the human 
PIN, Hu et al. [13] proposed a method that took each path-
way as a module and analyzed the relationship between path-
ways by calculating the distances between different pathway 
modules. They identified the pathways enriched with 
Parkinson’s Disease (PD) genes and analyzed the rela-
tionships among these pathways with this method. Based on 
the relationship analysis of the sub-network comprised of the 
enriched pathways, they discovered some potential pathway 
targets crucial for the pathology of PD, including apoptosis, 
focal adhesion pathways and several signaling pathways 
such as T cell receptor, HIF-1, MAPK and NF-kappa B sig-
naling pathways. In the study of another disease - multiple 
sclerosis (MS), Baranzini et al. proposed a PIN-based path-
way analysis (PINBPA) for two Genome-wide association 
studies including all the SNPs associated with MS and fil-
tered with Gene-wise P-values < 0.05. This method was ap-
plied on a human PIN and identified several MS associated 
sub-networks with genes from several immunological path-
ways. Most importantly, they reported for the first time that 
neural pathways might be involved in the susceptibility of 
MS [14]. The international multiple sclerosis consortium 
further used PINBPA combined with functional analysis to 
identify five highly confident candidate genes with MS sus-
ceptibility (BCL10, CD48, REL, TRAF3, and TEC). PIN-
BPA was thus demonstrated as a powerful method to inves-
tigate the novel pathways and candidate genes for subse-
quent genetic studies of complex disease traits [15].  

The typical experimental approach of inferring the com-
ponents constituting a pathway is perturbing the cells by 
molecular interventions [16]. Many wet experiments are 
needed to determine the molecular mechanisms and regula-
tory relationships among a set of proteins and metabolites, 
which is high-cost, time-consuming and error-prone. How-
ever, construction the valuable signaling pathways through 
PINs can not only be time-saving but also contribute to un-
derstand the molecular mechanisms of human diseases [5]. 

Therefore, an important investigation idea about sub-
network analysis in PINs is to discover the potential signal-
ing pathways for understanding their roles in signaling trans-
duction, gene expression regulation and diseases [17]. Kiel et 
al. [18] constructed a PIN to represent the signal transduc-
tion process in the visual G protein-coupled receptor (GPCR) 
rhodopsin and predicted the novel signaling routes 
(Rac1/RhoA–PDEδ−CRMP-2) functioning in the vesicular 
transport and cytoskeleton dynamics. Sun et al. [19] pro-
posed a node-weighted Steiner tree approach to detect the 
important components in a large-scale cancer-related PIN. 
With this method, 8 and 9 core interactions were identified 
from the network related to PI3K/Akt and MAPK signaling 
pathways, respectively. The important function of most of 
the core interactions were confirmed with literatures. Some 
new findings were also implied in the results, such as the 
relationship between protein p53 and NF- κB. In 2010, Ban-
dyopadhyay et al. [20] constructed a large-scale MAPK-
related PINs, based on the two-stage yeast two-hybrid (Y2H) 
method. The kinase sub-network of Filamin protein FLNA, 
Na-H exchanger NHE1, RAN binding protein RANBP9 and 
kinesin family member KIF26A were extracted from the 
global PIN to identify the MAPK scaffolds. In addition to 
the known function of these scaffolds proteins, NHE1 was 
found to be a novel plasma-membrane scaffold. Further-
more, some novel interactions with RANBP9 as the core 
protein were also identified, which indicated that RANBP9 
might be a scaffold of MAPK and function as an activator of 
some transcription factors. 

In recent years, the identification of novel pathways 
based on PINs had made a great process in cancer study. In 
order to better understand the molecular mechanisms of six 
neurodegenerative diseases (Parkinson’s disease, dentato-
rubropallidoluysian atrophy and prion disease, Alzheimer’s 
disease, Huntington’s disease, amyotrophic lateral sclerosis), 
Vachiranee et al. [21] constructed the PINs of these neu-
rodegenerative disorders by extracting protein-protein inter-
actions from 80 articles, and then expanding the networks by 
PubMed and HPRD. With the comparison of these networks, 
they found that there were 19 common proteins in these dis-
eases, mainly related to cell apoptosis process and mitogen-
activated-protein kinase signaling pathways. Stites et al. [22] 
established a differential equation model of the Ras signaling 

 

Fig. (1). PIN and its applications. 
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pathway in normal and cancer cells including heterotrimeric 
GTP binding protein and small GTPase signaling networks. 
This model presents that a drug is preferred to be combined 
with GDP-bound Ras over GTP-bound Ras, in order to affect 
Ras activity in cancer cells, rather than in normal cells. In the 
exploration of the value of PINs in the cancer research, the 
human signaling network may play an import role as that a 
large part of signaling network is composed of protein-
protein interactions and it has been successfully applied in 
the drug targets prediction of breast cancer [23].  

3. NETWORK TOPOLOGICAL ANALYSIS 

The topological properties of complex networks mainly 
include centrality, cluster coefficient and network modular-
ity. The most commonly used centrality feature in the appli-
cation of PINs is degree centrality. The degree centrality of a 
node is the number of nodes directly connected to the target 
node. Degree centrality can describe the interaction between 
macromolecules and other macromolecules, and reflect the 
functional diversity and biological importance of macro-
molecules. In biological networks, the greater the degree a 
node has, the more network functions or reactions the node 
is involved in, and thus, it will lead to more serious damage 
to the biological network if a high degree node (e.g., gene or 
protein) has been disrupted. Therefore, degree centrality is 
the most commonly used topological property in biological 
network analysis [2, 24]. In the PINs, the highest-degree 
nodes are often called “hubs”. Hubs can be divided into two 
types: “party” hubs and “date” hubs. “Party” hubs usually 
bound to the protein adjacent to it, whereas “date” hubs can 
interact with each other at different space and time [25]. 
Some studies have found that hub proteins are more essential 
for cell survival. For example, the differences among the 
degree of disease proteins, essential proteins and other pro-
teins in PINs are usually compared and analyzed to under-
stand the functional differences of different types of proteins. 
The proteins with larger degree are often considered to be 
more important in topological status [26]. Connectivity stud-
ies showed that PINs have a property of “small-world”, 
which means the average distance between proteins is low. 
In PINs, most proteins are not directly connected, but are 
linked by a small number of other proteins [6a]. Some dis-
ease related studies have shown that highly connected pro-
teins interacting with disease-related proteins are likely to be 
involved in the same disease based on the observation of 
strong correlation between protein connectivity and disease 
associations [27]. Cluster coefficient is used to find the cohe-
sion of proteins and identify the molecular complexes or 
related functional network modules. Network module refers 
to a network complex composed of many molecules in the 
network, which have stable structures and functions. The 
molecular function of the network module is closely con-
nected. The network module can be divided into functional 
modules, network topological modules and disease modules. 
A network topological module is usually a dense area in the 
network, where nodes have a higher degree of connectivity 
than the external nodes. A functional module is composed of 
adjacent nodes with similar biological functions. A disease 
module is defined as a set of biologically functional nodes, 
which will lead to diseases when the components in the 
module is perturbed [28]. In network biology, an important 

hypothesis points out that proteins involved in the same dis-
ease tend to interact each other and form disease modules 
[2]. Therefore, study of disease modules is helpful to under-
stand the pathogenesis of diseases, and explain the pene-
trance and expressivity [29]，which provides clues to the 
drug target of gene therapy [30] and identifies or prioritizes 
new disease and drug proteins [31]. Therefore，through 
analysis of the disease modules, when some disease proteins 
have been identified, other diseases associated with the pro-
tein will be easily found in the network nearby. 

The topological analysis of PINs has contributed some 
valuable discoveries for the diseases/drug related 
genes/proteins. For example, Taylor et al. [32] collected pro-
tein interactions from the literature and high-throughput se-
quencing to construct a PIN and identified the hub proteins 
in the network. The expression information in 79 human 
tissues was then used to measure the extent that a hub pro-
tein in the PIN co-expressed in the same tissue with its 
neighbors. The hubs with low correlation of co-expression 
protein pairs were identified as intermodular hubs, whereas 
those with high correlation of co-expression were identified 
as intramodular hubs. In the analysis of cancer proteins they 
found that intermodular hubs have greater influence to can-
cers than intramodular hubs, which indicates that the modu-
larity change of PIN may associates with cancer phenotype 
because intermodular hubs provide topological linkage to the 
intramodule hubs. In the further examination of this specula-
tion in the breast cancer patients, pearson correlation coeffi-
cient of expression between good outcome group (i.e., sur-
viving longer than 5 years) and poor outcome group (died 
due to the disease) was used to evaluate the change of the 
network modularity. They confirmed that the module struc-
ture of the network with good outcomes is significantly dif-
ferent from that with poor outcomes. In 2006, Pall et al. [33] 
found that the network topological characteristics of human 
proteins encoded by known cancer genes are different from 
the proteins that are not recorded as mutation proteins in 
cancer. Their studies have shown that cancer proteins are 
particularly prone to interacting with more proteins, and they 
also prefer to involve in the central network hub proteins 
rather than the network periphery proteins, which presents 
their higher centrality and participation in the networks as 
the skeleton of the PINs. However, Goh et al. [26b] pre-
sented different views in this issue. They pointed out that the 
reason for the high topological status of the pathogenic pro-
teins is that the pathogenic genes contain a small number of 
essential genes, and the topological status of essential pro-
teins is very important. Therefore, Pall et al. probably has 
overestimated the topological status of pathogenic protein. 
Furthermore, they studied the topological status of non-
essential pathogenic proteins by using the mouse lethal genes 
as the necessary genes, and showed that the topological 
status of non-essential pathogenic proteins was in the periph-
ery of the network. They also analyzed the co-expression of 
non-essential pathogenic genes vs other genes and the co-
expression of essential genes vs other genes. They found that 
there was almost no coordinated expression between non-
essential pathogenic genes and other genes, which indicated 
that the function of non-essential pathogenic genes can be 
considered to be in the periphery of the network. For these 
incredible new discoveries, they gave an explanation from 
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the evolutionary point of view. If the degree of the patho-
genic proteins is large, then when the disease-causing gene 
mutation is likely to have an impact on more neighbors, they 
will endanger cell survival. Thus, in the course of evolution, 
the population with the high-quality protein interaction net-
work structure of the pathogenic proteins with high topologi-
cal status was gradually eliminated. For the discovery and 
explanation of Goh et al. some people think that it is better 
to answer the question “whether the topological status of 
pathogenic proteins is higher”[2, 34]. 

In recent years, a lot of researches have also tried to clas-
sify genes, but the conclusion is different from Goh’s work. 
Barrenas et al. [35] divided the pathogenic genes into single-
gene-disease pathogenic genes and complex disease patho-
genic genes. Jin et al. [26c] considered the overlap of gene 
function and divided the pathogenic genes into the genes of 
both single-gene-diseases and complex diseases, genes of 
only single-gene-diseases, and genes of only complex dis-
eases. These studies have shown that the pathogenic protein 
topological status is higher than non-pathogenic proteins. 
Jingchun et al. [36] explored the topological characteristics 
of the global and local networks of cancer proteins translated 
from cancer genes in the human PIN. They further confirmed 
the results that the network topological properties of cancer 
proteins are not the same as non-cancer proteins. The topo-
logical properties of the proteins translated from the essential 
genes or control genes are different from that of the cancer 
proteins. Therefore, they concluded that the coefficient in 
cancer proteins tended to have higher degrees, higher be-
tweenness, shorter shortest-path distance, and weaker clus-
tering in the human PIN than non-cancer proteins. In 2012, 
Zhang et al. [37] built a combination classifier based on the 
topological differences between disease and non-disease 
proteins in the human PIN. They predicted the candidate 
genes of coronary artery diseases using this method and ob-
tained 276 candidate genes which showed similar functions 
to the known disease genes. 

Admittedly, the lack of data and data noise become one 
of the important reasons for the inconsistent conclusions 
mentioned above. However, there are many improvements in 
the analyzing strategies. Dickerson et al. [26d] pointed out 
the big loopholes in the work of Goh et al. At present, the 
knockout mice gene accounts for only 10% of the total 
genes, nearly 60% of the human pathogenic genes of the 
homologous mouse genes do not have corresponding knock-
out results. Therefore, there is a problem of large data com-
pleteness in the work of Goh et al. Moreover, the results of 
the empirical analysis of Dickerson’s suggest that the topo-
logical status of pathogenic proteins is very high. On the 
other hand, in addition to the degree centrality, it also needs 
to define the importance of the network topological defini-
tion from a multi-angle consideration, and conduct a more 
detailed discussion [38]. 

In the drug discovery, network topological analysis 
showed several important graph properties, including higher 
degrees and betweenness for the drug targets and drug-
regulated genes, though possibly due to network biases. For 
example, Kotlyar et al. [39] performed the first network 
topological analysis of proteins encoded by genes that are 
differentially regulated in response to drugs. Their study 

showed that these genes and known drug targets had higher 
centrality in PINs. Compared to these genes, the between-
ness and degree of unaffected genes were not that big. The 
topological structure of the network can also provide a cer-
tain reference value for predicting the toxicity of drugs. Tox-
icity is one of the main reasons for the failure of drug tests. 
Kotlyar et al. also proposed that topological features of drug-
affected genes (e.g., betweenness and centrality in PINs) 
may be used as an indicator for additional predictive vari-
ables. Drug toxicity is proportional to the centrality of pro-
teins translated from regulated genes. More importantly, the 
system-wide perspective of complex diseases has a great 
impact on drug discovery processes, because it is helpful to 
shift from focusing on a single target and single drug to more 
network-driven methods [27]. 

4. IDENTIFICATION OF DURG TARGETS USING 
DISEASE-RELATED PINS 

Protein-protein interactions are central to the biological 
system and have become more and more important to iden-
tify targets in drug design. In fact, some of the efficient 
drugs designed in targeted therapies are the proteins that 
mimic and replace the ligand-protein binding for specific 
drug-protein binding. Therefore, identification of key disease 
related PINs is important to support targeted therapies [6a]. 
The disease related PIN was usually constructed according to 
the disease related gene/proteins derived from databases or 
high throughput experiments, and takes the human interac-
tome as a background dataset. Therefore, Strictly speaking, 
disease related PIN is a sub-network of the global human 
PIN. The size of a disease related PIN of some certain dis-
ease might be quite small (containing several or tens of pro-
teins) [40], whereas the network for some general disease 
(such as cancer) or all the human diseases can be quite large. 
For example, De Las Rivas et al. [41] constructed a cancer 
related PIN which included 582 cancer proteins and 4968 
interactions. Carson et al. [42] constructed a PIN related to 
all the known human diseases which is composed of the 
products of 3104 genes, that is, 32% of HPRD proteins with 
a disease association. The inherent properties of a PIN have a 
profound influence on drug discovery, which should be dis-
covery of disease-causing networks rather than disease-
causing genes.  

With the development of disease network, a new disci-
pline called “Network Pharmacology” has emerged. Network 
analysis related to diseases provides new approaches for dis-
covering drugs, because each protein-target is not working 
alone but in a framework containing its connectivity with 
other proteins that may have important alternative targets for 
drug treatments. Analysis and prediction of biological net-
works suggest that removing of a single node will have little 
impact on the disease network. For perturbing a robust phe-
notype it may be required to modulate multiple interacted 
proteins in the network [43]. Therefore, network pharmacol-
ogy is a novel method that can not only improve clinical 
curative effect of the drugs but also contribute to understand 
toxicity and potential side effects of drugs, which are one of 
the most important causes for the failure of new target-
driven drug therapies [11a]. The drug target detection with 
network strategy usually supplies more information than 
conventional individual target development. Chung et al. 



Analyzing of Molecular Networks for Human Diseases and Drug Discovery Current Topics in Medicinal Chemistry, 2018, Vol. 18, No. 12    1011 

[44] calculated the enrichment of 60 published cancer sus-
ceptibility genes in the predictions from network-based strat-
egy and traditional expression-alone analysis, respectively. 
They found that network-based predictions were obviously 
enriched with cancer susceptibility genes compared to tradi-
tional analysis, with some targets (PIK3CA, TP53, ERBB2, 
HRAS and KRAS) can only be found by network. Some 
proteins without significantly differential expression in can-
cer metastasis actually play an important role in the network 
by interacting with some significantly differentially ex-
pressed proteins, and thus were detected as biomarkers, in-
cluding some well-prognostic biomarkers for breast cancer, 
such as ERBB2, Myc, and cyclin D1, which were not found 
in the traditional analysis based only on the differential ex-
pression. 

Disease related PINs can improve drugs design by de-
termining key protein nodes as potential drug targets. If the 
target protein is a hub, its inhibition can affect many of the 
activities which are important to the normal function of the 
cell, and therefore it is not suitable as a drug target. On the 
contrary, poorly connected proteins may be sensitive to dis-
ease-related networks, and they are more likely to be candi-
dates for disease targets [5]. Construction of signaling sub-
networks of the luminal and basal subtypes of the breast can-
cer revealed the subtype-specific drug targets, most (80%) of 
which have been experimentally validated using breast can-
cer cell lines [4]. Furthermore, analysis of sub-networks of 
the PI3K mutated luminal breast tumors showed that a posi-
tive regulatory network loop containing PDGF-
D/FLT1/SHC1 could be drug-targeted for improving patient 
survivals [45]. In the past, a couple of the studies have 
shown that network motifs/loops could be targeted to treat 
cancer [46].  

In principle, when a drug target is selected in a set of pro-
teins affecting the associated disease, the proteins with lower 
degrees in the network are more preferably to be selected as 
drug targets. In consequence, the ideal drug target is a pro-
tein whose effects on the interactions in the disease network 
is essential, but not essential in the network of normal cells 
[6a]. With this principle, Bergholdt et al. [40] constructed a 
biological network of type I diabetes by integrating type I 
diabetes data and protein interactions. In this study, 17 PINs 
were successfully identified, and these results illustrate the 
mechanism of type I diabetes pathogenesis and provide the 
basis for designing new treatment strategies. Some other 
studies showed that the neighbors of disease-related proteins 
are prone to interact with the proteins involving in the same 
disease [47]. This is very important because the investigation 
of disease related PINs can identify new proteins in the proc-
ess of disease. Because disease related PINs can change from 
health state to disease state, the identification of the associa-
tions between disease related PINs will help to discover 
novel drug targets.  

 In some cases, using of PINs to identify the pathological 
mechanisms of diseases may help for the development of the 
diagnosis and treatment strategies for the symptoms and 
pathogenesis of the diseases [27]. PINs have also become a 
necessary tool for associating proteins between different 
phenotypes and diseases, [26b, 48], as well as for studying 
the relationships between pathological drugs-targets [11b, 

49]. It can also help to diagnose and detect sensitive genes in 
certain patients [50]. 

Currently, many network-based computational methods 
were proposed to identify the drug-targets [51] and potential 
drug combinations [52]. Chen et al. [51] reviewed the main 
databases, web servers and computational methods for the 
identification of potential drug-targets. They pointed out that 
the full utilization of different data sources could contribute 
to the computational-model-based detection of novel drug–
target interactions. Based on this theory, they put forward a 
serial of novel computational methods working on different 
data sources for the prediction of drug combinations [52] and 
miRNA-disease interactions [53]. They further found that the 
RNA information (such as miRNA, LncRNAs) is also an 
important source for the identification of the drug targets 
[54]. It might be a supplement and future direction for the 
applications of PINs. 

5. IDENTIFICATION OF SUB-NETWORK BIO-
MARKERS 

In some diseases, it is necessary to recognize multiple 
network targets because the disease mechanism could affect 
multiple genes rather than single genes [55]. For example, 
cancer is not caused by an individual mutated gene. It could 
start there, but it enters an ongoing evolutionary battle to 
combat the biological host defense. In some human cancers, 
mutations in more than 100 genes have been described [56]. 
This finding suggests that a single drug target is not effective 
in treating most common cancers, and that the treatment of 
cancer needs the understanding of complex pathological 
mechanisms using drug cocktails [57]. Furthermore，some 
researchers have concluded that a complete suppression of a 
single target is less effective than a partial suppression of a 
small number of targets [43]. Biological network analysis is 
quite effective in this area, as it seeks to study the participa-
tion of multiple drug actions of distinct targets. In fact, the 
treatment of diseases by regulating more than one drug target 
is a clear goal of modern systems biology to support the new 
drug discovery in complex diseases [58] . 

The highly interconnected property of the human protein 
interactome suggests that it is hard to consider diseases as 
being independent of one another at the molecular level. 
Traditional methods for identifying biomarkers include ex-
pression-data-based and pathway-based approaches. In re-
cent years, sub-network biomarkers have been shown to be 
more reliable and achieved a high predicting accuracy in the 
classification of diseases than an individual biomarker se-
lected based on gene expression data models [59]. Currently, 
the identification of sub-network biomarkers from PINs has 
been made a great progress. For example, Chuang et al. [44] 
extracted sub-networks from the human PIN to identify sub-
network biomarkers instead of individual genes using a net-
work-based approach. They found that sub-network bio-
markers get much higher overlap between predictions and 
breast cancer cohorts than individual genes (12.7% vs. 
1.3%). Besides, the success on the identification of discrimi-
native sub-networks shows the module characteristics of the 
cancer metastasis mechanism. Compared to individual genes 
identified by non-network analysis, sub-networks were obvi-
ous enriched with cancer susceptibility genes. Furthermore, 
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in the classification test of metastasis and non-metastatic, 
sub-network biomarkers achieved 48.8% accuracy rate in a 
single dataset and 55.8% accuracy rate in the reciprocal test 
of two different datasets, comparatively, the single gene 
markers got 45.3% and 41.5% accuracy rates. Therefore, 
they concluded that the identification of sub-network bio-
markers using the network-based approach has more advan-
tages than previous methods. First, sub-network biomarkers 
are more reproducible and robust than individual genes. Sec-
ond, sub-networks provide more information for disease 
mechanisms. Third, the disease classification based on net-
work has achieved a high accuracy in prediction. Sub-
network biomarkers have been shown to be more predictive 
for tumor recurrence in prostate and breast cancers [60] . 

CONCLUSION 

PINs have been proven to be invaluable for the preven-
tion and diagnosis of human diseases and drug target discov-
ery [61], from novel pathways identification, network topo-
logical analysis, disease network analysis, to the selection of 
drug targets. Network based approaches have been widely 
applied in precision medicine [62]. The identification of spe-
cific signaling pathways from the sub-networks can help to 
understanding the molecular mechanisms of human diseases. 
Analysis on the property of the network topology contributes 
to understand the status of disease genes and proteins in the 
network, further, provides a reference for the designing of 
drugs. Disease related PINs are the platforms for the investi-
gation of drug targets for diseases. For the treatment of com-
plex diseases, single gene drug target may have side effects 
and toxicity, and sub-network biomarkers can largely over-
come this shortcoming, and become a powerful method for 
the treatment of human diseases. Although lots of defects 
still exist in the application of PINs, such as lack of kinetic 
parameters for calculation or interaction gaps in network 
itself, PINs provide a systematic platform and bioinformatic 
tools for the intensive research of human diseases and drug 
discovery. With the emergence of integrated network in re-
cent years, the integration of PIN with different types of 
networks, such as metabolic network, transcriptional regula-
tion network and signaling transduction network, will be 
trends for the functional supplementary of PINs. Besides, the 
detection of phosphorylation process and RNA targets, 
which is not included in most current PINs, will also provide 
more information for the network and improve the accuracy 
of the prediction on the regulation process. Most impor-
tantly, with the increasing understanding of gene/protein-
causing diseases, the disease related PIN will be much more 
perfect in the future for the better performance in the assis-
tant of drug design and disease treatment.  
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