
https://doi.org/10.1177/1176935118802796

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial  
4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without 

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Cancer Informatics
Volume 17: 1–7
© The Author(s) 2018
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/1176935118802796

Introduction
Medical diagnosis using radiology images has become increas-
ingly common in the past century. Recent advances in image 
processing and computer vision have allowed the extraction of 
diverse high-dimensional measurements from images in the 
form of imaging features, leading to increased interest in the 
fields of Radiomics and Radiogenomics. In Radiomics, imag-
ing features are extracted from medical images and used to pre-
dict outcomes such as tumor grade and overall survival.1–3 
Radiogenomics, also called “imaging-genomics,” aims to study 
relationships between extracted imaging features and genomic 
alterations.4,5

In a conventional clinical scenario, a doctor must biopsy the 
patient’s tumor to assess characteristics such as malignancy, 
grade, and underlying genetic mutations to make treatment 
decisions. This process has 3 primary limitations:

1. Invasiveness: An invasive procedure is expensive and is 
confounded by the availability of viable tissue surrounding 

the biopsy location,6 in addition to presenting certain 
associated comorbidities.

2. Temporal variability: Rarely are multiple biopsy sam-
ples obtained longitudinally over time, thus direct 
observation of tumor growth trajectory is often 
infeasible.

3. Incomplete consideration of intratumor heterogene-
ity: A biopsy is obtained from only one part of the 
tumor and therefore cannot account for intratumor 
heterogeneity. Recent studies have shown that biop-
sies taken at different locations in a tumor result in 
different gene expression profiles.7 This highlights the 
importance of biopsy locations and the potentially 
faulty diagnoses that result from improper and inade-
quate sampling.

However, medical imaging is a noninvasive diagnostic 
modality that can be performed repeatedly over time with the 
potential to capture intratumor heterogeneity, circumventing 
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the above issues. Radiomic and Radiogenomic techniques 
capable of predicting tumor characteristics usually assessed via 
biopsy have the potential to replace the biopsy routine entirely 
or at least serve as viable surrogates where such directed sam-
pling is infeasible or contraindicated.

Present approaches in Radiomics and Radiogenomics are 
based primarily on morphologic (shape, volume, size) and tex-
tural analysis.1,4,8,9 Typically, a large number of texture features 
are extracted, and various feature selection methods are 
employed to reduce their dimensionality. Various classification 
models such as support vector machine (SVMs), neural net-
works, and random forests are then trained on these features. 
This approach has produced powerful predictive models but 
suffers from notable disadvantages:

1. Texture features are calculated over the entire tumor 
region and therefore fail to preserve voxel-level intensity 
variations. These descriptors typically provide a single 
summary value that does not adequately capture the 
spatial gray-level heterogeneity within the entire tumor. 
In a multicompartmental tumor setting that includes 
distinct subregions such as edema, necrosis, enhancing, 
and nonenhancing regions; such a characterization 
neglects the variation between these biologically distinct 
regions.

2. Although these models may demonstrate excellent pre-
dictive accuracy, they employ learning algorithms that 
output predictions with confidence intervals (CIs), but 
no interpretable information (eg, no insight into which 
visual features are specifically being used to arrive at a 
decision). This lack of interpretability is a major obstacle 
in the automation of tumor diagnosis. If a clinician’s 
biopsy and a model’s prediction disagree, then despite the 
model’s proven predictive accuracy, it will be infeasible 
for health care professionals to trust the model and arrive 
at an appropriate diagnosis.

To provide insight into the visual features influencing out-
come prediction, our proposed approach analyzes voxel subre-
gions (“patches”) across the tumor region of a magnetic 
resonance imaging (MRI) image and extracts feature descrip-
tors only from those patches. Such an approach captures tumor 
spatial heterogeneity by analyzing multiple such subregions 
across the tumor area. A dictionary-based method to identify 
data-driven representations of these sampled patches is then 
used to build a predictive model for relevant outcomes (genomic 
characteristics, survival, etc). Such dictionary elements are 
much more interpretable in the context of a predictive model 
because they are directly visualizable, thus providing insight 
into specific characteristics of tumor subregions related to clin-
ical outcome. Furthermore, such information could direct neu-
rosurgeons and neuroradiologists to specific regions of the 
tumor that are most informative for biopsy and subsequent 
molecular characterization and outcome modeling.

Materials and Methods
Data set

This study was conducted using a set of 108 low-grade glioma 
(LGG) patient cases from The Cancer Genome Atlas imaging 
data collection with linked preoperative MRI imaging, clinical, 
and genomic data. The MRI images from 4 distinct sequences 
are available: fluid-attenuated inversion recovery (FLAIR), 
T1-weighted (T1w) precontrast, T2-weighted (T2w), and 
T1-weighted postcontrast (T1c). T1-weighted postcontrast 
images were excluded from analysis because LGGs do not dis-
play any significant enhancement characteristics in 
T1-postcontrast imaging. Few patients had only a subset of 
these MRI sequences. This resulted in a data set with 86 
FLAIR images, 102 T1w precontrast images, and 105 
T2-weighted images. The neoplasm histologic grade of patients 
is either grade 2 or grade 3. Of the 108 unique patients in the 
study, 52 have grade 2 tumors and 56 have grade 3 tumors. The 
tumor histology is astrocytoma, oligodendroglioma, or oligoas-
trocytoma. Of the 108 unique patients in the study, 31 have 
astrocytoma, 29 have oligodendroglioma, and 48 have oligoas-
trocytoma. This histologic data can be found in the clinical 
data files of patients. The acquisition protocols are also varied 
which makes the data highly heterogeneous.

The outcomes of interest to our study were 2 molecular bio-
markers with prognostic value10 for individual patient outcome: 
(1) the mutation status of IDH1 gene and (2) the presence of 
codeletion of chromosome arms 1p and 19q. The IDH1 bio-
marker is determined by whether the gene is mutated or wild 
type, and this biomarker is of particular interest because it has 
been shown that patients with mutated IDH1 tend to have 
longer survival than patients with wild-type IDH1.11 Similarly, 
patients with chromosomal 1p/19q codeletion have been 
shown to generally have better prognoses than patients lacking 
the codeletion; in particular, patients with the codeletion 
respond better to radiochemotherapy.11 As both of these cate-
gorical variables are binary, the corresponding classification 
tasks are both two-class. Furthermore, of the 108 patients in 
the data set, 85 had IDH1 mutation, and 26 had 1p/19q code-
letion; thus, both classification tasks were notably unbalanced.

Preprocessing

Three-dimensional (3D) tumor volumes were segmented 
within each MRI scan by experienced radiologists (H.B., C.S.). 
Because imaging was performed at multiple institutions, the 
natural variation in imaging acquisition protocols, equipment, 
etc, requires that the imaging data be intensity-standardized 
prior to analysis—this permits comparison of imaging intensi-
ties across multiple MRI scans across all patients in the data 
set. To this end, we employed white stripe normalization—a 
white matter intensity–based normalization technique imple-
mented in the R computing language. The white stripe nor-
malization algorithm is designed for neuroimaging data and 
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has been shown to outperform histogram-based methods for 
voxel intensity normalization on brain MRI images.12

Imaging features

Each tumor volume from an MRI scan is a 3D array of voxel 
intensities, which was transformed for input into a classifier 
(after feature extraction). Our analysis compared predictive 
performance of 3 common approaches for generating feature 
variables from the (intensity normalized) tumor volume. Each 
approach relies on sampling of square “patches” of voxels from 
consecutive 2-dimensional horizontal slices comprising the 
given 3D tumor volume. On the basis of literature review and 
empirical experimentation, we decided to sample 140 patches, 
each 16 × 16 voxels, per patient.13 The first of the 3 imaging 
descriptor approaches simply uses voxel intensities from the 
patch as input to the classifier in the form of a 256-dimen-
sional column vector. The second approach uses the histogram 
of oriented gradients (HOG) descriptor. Here, a feature vector 
is extracted by decomposing the patch into a grid of smaller 
squares, each of size 4 × 4; calculating a HOG in each square; 
and concatenating those histograms.14 The third approach uses 
the scale-invariant feature transform (SIFT) descriptor. Here, 
feature vectors are generated by detecting local extrema in the 
voxel intensities and calculating oriented histograms only at 
these extrema.14 Both HOG and SIFT features have been used 
commonly in image classification tasks.15,16

Classif ication of genetic alteration status

This study compared 2 machine learning models (Bag of 
Words [BoW] and dictionary learning approach with struc-
tured incoherence [DLSI], more details below) that can pro-
vide spatial interpretability for the MRI images. Identifying 
regions within the tumor volume that influence predictive per-
formance can assist clinicians obtain insight into the physio-
logic basis of patient’s diagnosis. A more detailed discussion of 
interpretability is provided in the “Results” section.

Bag of Words. The baseline predictive model, the BoW-based 
learning algorithm, is routinely employed in computer vision 
tasks where visual interpretability is essential. It combines the 
BoW approach17,18 with k-means centroid clustering and an 
SVM. As noted in section “Imaging features,” this approach 
relies on the sampling of voxel patches. Feature extraction, the 
process of transforming the patches into numerical representa-
tions accessible to a learning model, is done by either vectoriz-
ing the patch voxel intensities or computing the HOG/SIFT 
descriptors. This approach then performs k-means clustering 
over the set of these computed descriptor vectors. The cluster 
centroids constitute the “words” in the codebook. For each 
patient in the training set, a histogram of “word counts” is com-
puted across the sampled patches by assigning each patch to 

the centroid that approximates it most closely. These histo-
grams can then be used as feature vectors for training machine 
learning models such as SVM and neural networks to predict 
genetic alteration status.

Compared with k-means clustering, k-median clustering 
uses 1-norm distance to update the centroids rather than 
2-norm. This property makes k-median more reliable and suit-
able for discrete or binary data sets. However, as the update rule 
is based on a 1-norm minimization problem, k-median is rela-
tively slow. In our problem, in particular, and computer vision 
applications, in general, descriptors are usually continuous, and 
then k-means is more suitable. In fact, most of well-known 
BoW-related feature extractors in the literature use k-means 
clustering.17,19

Dictionary learning (with DLSI). The proposed dictionary-
based model employs the DLSI, an algorithm introduced by 
Ramirez et al.20 The algorithm is motivated by sparse coding,21,22 
in which a given signal is approximated as a sparse linear com-
bination of a few basis elements. These basis elements are indi-
vidually referred to as “atoms” and collectively referred to as a 
“dictionary.” Just as the BoW model learns a codebook of “vis-
ual words” from the data through clustering, the dictionary-
based model learns a data-driven dictionary through sparse 
regression. The primary difference between the BoW and dic-
tionary learning models is that while the BoW model clusters 
an input to the single nearest word in the codebook, the dic-
tionary learning model uses a combination of multiple atoms in 
approximating the input signal to better discriminate between 
voxel patches. In addition, the DLSI model learns a discrimi-
native dictionary, one for each outcome class—rather than 
learning a single codebook as in the BoW.

Experimental procedures

We evaluated BoW/DLSI approaches for various feature 
descriptors (HOG, raw voxel intensities, and SIFT descrip-
tors) across various MRI sequences. The best-performing 
DLSI model in terms of area under the receiver operating 
characteristic curve (AUC)23 employs the hyperparameters 
η = 1 and λ = 0.1.24 Stratified 10-fold crossvalidation 
repeated 5 times over the data set was used for iterative 
model training and validation, resulting in 50 AUC esti-
mates for each model. Stratified k-fold crossvalidation 
methods prevent overfitting on unbalanced data sets. The 
final AUC estimate presented for a given model is the mean 
of these 50 AUCs, whereas the corresponding 95% CI was 
obtained through 2000 bootstrap iterations over these 50 
AUCs. P values comparing the AUC values between 2 mod-
els were calculated through a Mann-Whitney test. “All 
experiments are performed in MATLAB and the relevant 
programs are provided on GitHub [github.com/wdeaderick 
/Radiomics_DictLearn].”
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Results
Classif ication

For prediction of IDH1 mutation, the strongest-performing 
model was the DLSI model trained on raw voxel intensity 
descriptors extracted from T2-weighted images. This approach 
obtained a mean AUC of 0.8224 (CI: 0.7856-0.8575). For 
1p/19q codeletion prediction task, the strongest performing 
model was again the DLSI model trained on raw voxel inten-
sity descriptors from T1w precontrast images. This model 
obtained a mean AUC of 0.6854 (CI: 0.6291-0.7379).

Figure 1 compares IDH1 mutation prediction results 
between the dictionary-based (DLSI) models against BoW 
models trained with each of the 3 descriptors. This figure con-
siders only models trained on the T2-weighted images, as 
these imaging sequences proved to be the most predictive of 
IDH1 mutation. Similarly, Figure 2 compares 1p/19q codele-
tion prediction results between the dictionary-based models 
and BoW models trained on each of the 3 descriptors. This 
figure considers only the models trained on T1w precontrast 
images, as this imaging sequence was found to be the most 
predictive of 1p/19q codeletion.

As is clear from Figures 1 and 2, across learning algorithms 
and classification tasks, using vectorized voxel intensities as the 
descriptor outperformed the usage of either the HOG descrip-
tor or the SIFT descriptor. Although HOG and SIFT descrip-
tors have been applied with great success in a variety of image 
classification scenarios, the abstraction offered by these descrip-
tors failed to provide any additional discriminative information 
in the context of patch-based IDH1 and 1p/19q prediction.

The dictionary-based model also consistently outperformed 
the BoW model. Table 1 presents the mean AUCs (and corre-
sponding CIs) for both the dictionary-based model and the 
BoW model (trained on vectorized voxel intensities from the 
T1w precontrast images, for both classification tasks). Tables 2 
and 3 present corresponding results from the T2-weighted and 
FLAIR sequence, respectively. At a significance level of α = .05, 
the dictionary-based model had a significantly higher mean 
AUC than the corresponding BoW model for every imaging 
sequence when predicting IDH1 mutation. The dictionary-

Figure 1. Prediction of IDH1 mutation based on T2-weighted MRI 

sequence. IDH1 mutation prediction results of dictionary-based (DLSI) 

models and BoW models trained with each of the 3 descriptors. In this 

figure, only results from T2-weighted images are presented as this imaging 

sequence is most predictive of IDH1 mutation. AUC indicates area under 

the receiver operating characteristic curve; BoW, Bag of Words; DLSI, 

dictionary learning approach with structured incoherence; HOG, histogram 

of oriented gradients; SIFT, scale-invariant feature transform.

Figure 2. T1-sequence–based prediction of 1p/19q codeletion status. 

1p/19q codeletion prediction results of dictionary-based models and BoW 

models trained on each of the 3 descriptors. In this figure, only results 

from T1w precontrast images are presented as this imaging sequence is 

most predictive of 1p/19q codeletion. AUC indicates area under the 

receiver operating characteristic curve; BoW, Bag of Words; HOG, 

histogram of oriented gradients; SIFT, scale-invariant feature transform; 

T1w, TI weighted.

Table 1. Comparison of models trained on voxel intensities from T1-weighted precontrast magnetic resonance imaging data.

CLASSIFICATION DICTIONARy MODEL BOW MODEL P VALUE

IDH1 mutation, AUC (95% CI) 0.73 (0.68-0.77) 0.44 (0.37-0.49) 2.6 × 10−10

1p/19q codeletion, AUC (95% CI) 0.69 (0.63-0.74) 0.67 (0.61-0.72) .73

Abbreviations: AUC, area under the receiver operating characteristic curve; BoW, Bag of Words; CI, confidence interval.

Table 2. Comparison of models trained on voxel intensities from T2-weighted magnetic resonance imaging data.

CLASSIFICATION DICTIONARy MODEL BOW MODEL P VALUE

IDH1 mutation, AUC (95% CI) 0.82 (0.79-0.86) 0.60 (0.53-0.67) 4.7 × 10-7

1p/19q codeletion, AUC (95% CI) 0.63 (0.57-0.69) 0.59 (0.53-0.65) .36

Abbreviations: AUC, area under the receiver operating characteristic curve; BoW, Bag of Words; CI, confidence interval.
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based model again outperformed the BoW model when pre-
dicting 1p/19q codeletion on 2 of the 3 imaging sequences.

Interpretability

In addition to predicting the genomic status of IDH1 or 1p/19q, 
the dictionary-based model could also identify the tumor subre-
gions that most influenced predictive performance. This informa-
tion is displayed in the form of a heatmap, overlaid on the tumor 
region of interest and referred to as a “Patch Importance” (PI) plot. 
Areas of the PI plot with higher intensity values indicate regions 
of the tumor that strongly influence the algorithm’s prediction. It 
is reasonable to assume that these regions are more likely to be 
biologically relevant to the genomic trait of interest. To mitigate 
the noise associated with scores across the spatial extent of the 
tumor, we employed Gaussian smoothing. A PI plot generation 
procedure is shown in Figure 3. The PI plots containing predomi-
nantly low values would be seen only in extreme cases where the 
randomly sampled patches on which the model based its overall 
prediction were notably unrepresentative of the tumor as a whole.

The PI plot corresponding to a patient with IDH1 mutation 
is shown in Figure 4. As this PI plot is very largely high scoring, 
we can infer that the model was quite confident in its predic-
tion for this case, across the entire tumor region of interest.

Correlation with molecular pathways

In addition to the PI plots, we observed that the molecular 
pathways of the patients were associated with the DLSI-
derived dictionary atoms. Figure 5 shows the Pearson correla-
tion between molecular pathways and dictionary representation 
in the context of IDH1 prediction. Benjamini-Hochberg pro-
cedure was used to correct for multiple hypothesis testing, and 
pathways most significantly correlated with the dictionary 
atoms were selected. A false discovery rate or q value cutoff 
of .25 was used to assess significance. This analysis resulted in 
57 molecular pathways that were strongly associated with at 
least 1 dictionary atom. The clustergram of this correlation 
matrix is shown in Figure 5. Dictionary atoms are found to be 
associated with multiple molecular pathways associated with 

Table 3. Comparison of models trained on voxel intensities from fluid-attenuated inversion recovery sequence data.

DICTIONARy MODEL BOW MODEL P VALUE

IDH1 mutation, AUC (95% CI) 0.63 (0.58-0.69) 0.46 (0.39-0.54) 6.3 × 10−4

1p/19q codeletion, AUC (95% CI) 0.55 (0.47-0.62) 0.56 (0.48-0.64) .82

Abbreviations: AUC, area under the receiver operating characteristic curve; BoW, Bag of Words; CI, confidence interval.

Figure 3. Patch Importance (PI) plot generation procedure. (A) fluid-attenuated inversion recovery magnetic resonance image of tumor region. (B) 

Patchwise prediction (the orange triangles in this image are the patchwise prediction locations that correspond to the boxes in first figure). (C) Smoothed 

PI plot using Gaussian smoothing. Dark orange regions are more important than blue regions in making predictions.
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gliomagenesis such as PTK2, AKT1, and FOXO,25,26 lending 
biological relevance to the derived dictionary atoms.

Discussion
For both classification tasks, the DLSI dictionary-based model 
consistently outperformed the BoW model, and vectorized 
voxel intensity descriptors yielded better performance than 
HOG and SIFT descriptors. Therefore, dictionary learning 
models give promising prediction accuracies as well as provide 
visual interpretability through PI plots.

Dictionary learning with structured incoherence algorithm 
employed in our model is a simple approach to dictionary 

learning. In recent years, approaches using a shared-class dic-
tionary to account for traits common to multiple classes, as well 
as approaches imposing constraints that promote discrimina-
tive information in the sparse coding coefficients themselves, 
have been introduced.27,28 As dictionary learning algorithms 
continue to improve and become increasingly capable of iden-
tifying the subtle yet discriminative differences between signals 
of opposing classes, we can expect both the classification effi-
cacy and the biological interpretability of our learning frame-
work to improve in the long term.

In addition, although there exist many imaging descriptors 
beyond HOG and SIFT, it is surprising that the strongest per-
forming descriptors are voxel intensities of the normalized 
MRI images. The PI plots generated by the dictionary-based 
model can be used in radiologic, neuropathologic, and neuro-
surgical settings to aid health care professionals choose more 
informative locations for biopsy. Typically, a pathologist will 
choose a location for biopsy based on distance from the skull, 
as regions closer to the skull are presumed to be safer for such 
invasive procedures. Such a sampling method is not particu-
larly well informed and may result in inaccurate or incomplete 
diagnosis owing to incorrect sampling and ignoring intratumor 
heterogeneity. Therefore, PI plots could provide additional 
insight in choosing a biopsy location. The PI plots also provide 
information regarding a tumor’s heterogeneity; as the variation 
in tumor histologic characteristics and concomitant heteroge-
neity becomes better appreciated clinically, the utility of such 
PI plots would potentially increase as well.

Both dictionary learning and BoW algorithms could predict 
IDH1 mutation status better than the remaining genomic 
information. This is probably because IDH1 mutation is shown 
to have oncogenic effects that can be identifiable from MRI 

Figure 4. Patch Importance (PI) plot for correctly predicted IDH1 

mutation. This PI plot corresponds to a patient with IDH1 mutation. As 

this PI plot is largely high scoring, we can infer that the model was quite 

confident in its prediction, across the entire tumor region of interest.

Figure 5. Clustergram of correlation matrix. A total of 57 molecular pathways (vertical axis) are correlated with 218 dictionary atoms. This clustergram 

shows the set of pathways that play a role in IDH1 gene mutation. Dictionary atoms contain pathway information and are therefore useful to make 

accurate gene mutation predictions.
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scans.29,30 The authors in Molenaar et al29 argue that prolonged 
survival of IDH1-mutated patients is possibly from slower 
tumor growth due to distributed cellular metabolism. This 
causes changes in histologic and radiologic features such as 
lower edema, necrosis, and larger nonenhancing tumor regions, 
all of which can potentially be detected using Radiomics.

A discussion of a potential limitation of the PI plot is also in 
order. The final algorithm does not have 100% accuracy, so the 
overall prediction made on a patient’s clinical outcome may be 
incorrect sometimes. The PI plot uses this prediction to assign 
positive or negative color to the patches. The PI plot will be 
inverted if the overall prediction is incorrect. Also, MRI data 
from only 108 patients are used to build the machine learning 
algorithms. Obtaining more training data and capturing the 
full spectrum of patient-associated heterogeneity will result in 
improved accuracies, less data bias, and possibly better resolu-
tion in the PI plots.

Conclusions and Future Work
We have shown that dictionary learning–based approaches pro-
vide visually interpretable feature information accompanying 
these predictive models. They could potentially aid radiologists 
to select relevant biopsy locations informed through PI plots. 
Therefore, this methodology has the potential to aid a collabora-
tive relationship between the radiologist and a computer-based 
decision support system interrogating tumor heterogeneity.

Exploration of other advanced dictionary learning algo-
rithms would further validate the performance and feasibility 
of this approach. Also, the predictive results reported here are 
based on each single MRI sequence type used individually. 
With proper image registration methods, one can combine 
information from different sequences and build a model that 
uses the multiparametric information synergistically. We antic-
ipate that fusing multiple MRI sequences might further 
improve predictive performance.
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