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Abstract

Introduction: Proteins have been historically regarded as “nature’s robots”: Molecular machines 

that are essential to cellular/extracellular physical mechanical properties and catalyze key reactions 

for cell/system viability. However, these robots are kept in check by other protein-based machinery 

to preserve proteome integrity and stability. During aging, protein homeostasis is challenged by 

oxidation, decreased synthesis, and increasingly inefficient mechanisms responsible for repairing 

or degrading damaged proteins. In addition, disruptions to protein homeostasis are hallmarks of 

many neurodegenerative diseases and diseases disproportionately affecting the elderly.

Areas covered: Here we summarize age- and disease-related changes to the protein machinery 

responsible for preserving proteostasis and describe how both aging and disease can each 

exacerbate damage initiated by the other. We focus on alteration of proteostasis as an etiological or 

phenomenological factor in neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and 

Huntington’s, along with Down syndrome, ophthalmic pathologies, and cancer.

Expert commentary: Understanding the mechanisms of proteostasis and their dysregulation in 

health and disease will represent an essential breakthrough in the treatment of many (senescence-

associated) pathologies. Strides in this field are currently underway and largely attributable to the 

introduction of high-throughput omics technologies and their combination with novel approaches 

to explore structural and cross-link biochemistry.
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1. Introduction

Protein homeostasis networks are regulated by cell stress signaling pathways that respond to 

events such as unfolded/misfolded proteins in the endoplasmic reticulum or accumulation of 

toxic protein aggregates. Dysfunction of these quality control mechanisms and resultant 

intracellular accumulation of abnormal proteins in the forms of protein inclusions and 

aggregates occur in almost all tissues of an aged organism [1]. Age is indeed the strongest 

risk factor for many diseases including neurodegenerative disorders, coronary heart disease, 

and cancer [2–4]. Aging is a complex, multifactorial process characterized by a progressive 

decline in physiological functions at multiple levels [5]. Maintenance of the aging 

transcriptome, proteome, and metabolome is essential to preserve cell functionality and the 

ability to respond and adapt to tissue-specific chronic and acute stressors. In mammals, 

hallmarks of aging tissues include declining rates of self-renewal capability (e.g., protein 

homeostasis dysfunction [6, 7], stem cell exhaustion [8]), accumulation of damage to DNA 

(e.g., epigenetic alterations [9]) and proteins (e.g. carbonylation), genomic instability 

[10-12], impaired mitochondrial metabolism [13], and increased levels of reactive oxygen 

species and reactive nitrogen species (ROS and RNS, respectively) [12, 14], among other 

traits (reviewed in depth here [15]). Exploration of these attributes in mice has identified 

relationships among senescence, transcriptional regulation, increased mutational burden, and 

maintenance of proteome integrity – processes normally regulated by a dedicated set of 

molecular machinery that collectively maintain protein homeostasis, also termed 

proteostasis. Disrupted proteostasis also underlies many neurodegenerative diseases and 

cancers, illustrating the complex interplay between aging and pathology. In this review, we 

discuss the role of proteostasis in aging and age-associated disease states by examining 

protein synthesis and degradation, chaperone activity, aggregation, age-correlated 

modifications, and cellular metabolism (Figure 1). The biological mechanisms and function 

of each aspect of the proteostasis machinery are areas of high importance in cell and tissue 

physiology, and thus each is broadly studied and rapidly evolving. In light of space 

limitations, we focus here on introducing each area with details pertinent to understanding 

disruptions and imbalance in the context of disease, highlighting the most recent year’s 

results, and pointing the reader to recent reviews focused on each specific topic.

2. Cellular proteome imbalance results through numerous mechanisms in 

aging

2.1 Mitochondria and oxidative stress

Aging cells are widely known to possess less functional mitochondria and higher basal 

levels of ROS than their younger counterparts, two closely related attributes [16, 17]. 

Exposure to ROS and RNS results from exogenous sources such as radiation (e.g., gamma 

rays in therapy, sunlight), smoking, and other environmental sources, accumulating in cells 

over time. Importantly, there are numerous endogenous routes of ROS generation, including 

uncoupling of the electron transport chain (ETC) (i.e., reaction of leaked electrons with O2 

to produce superoxide) and by the activity of the NADPH oxidases [18]. Once formed, these 

species react very rapidly with each other and/or nearby biomolecules, often culminating in 

irreversible damage to DNA, proteins, and lipids [19]. Cells are armed with efficient small 
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molecule (e.g., glutathione, ascorbate) and enzymatic (e.g., peroxiredoxins, glutathione 

peroxidase, catalase, superoxide dismutase) tools to counteract ROS/RNS formation, but 

these systems can become overwhelmed and/or incapacitated with acute or chronic high 

levels of oxidants. Mitochondrial DNA and proteins are particularly sensitive to the effects 

of ROS, as two dominant sources of ROS are the ETC complexes I and III. Furthermore, 

mitochondrial DNA does not have the protection of histones and has less repair machinery 

than exists for nuclear DNA [20].In the context of aging, inefficiencies in the ETC combined 

with the accumulation of environmental ROS exposure lead to oxidative damage of 

mitochondrial DNA and proteins, ultimately manifesting in a decreased capacity for efficient 

and robust ATP production by oxidative phosphorylation (see [21] for a recent review on 

mitochondrial function in the context of aging). Mitochondria are equipped with quality 

control machinery for the recognition of dysfunction and subsequent degradation through 

mitophagy. These processes are mediated by several protein complexes, including NIX (also 

known as BNIP3L) and Parkin/PINK1, and share in common the recognition of depolarized 

or damaged mitochondria. NIX plays key roles in processes such as erythropoiesis, 

removing mitochondria as reticulocytes develop into mature red blood cells [22], and in 

attenuating ischemia-reperfusion injury in the brain [23]. BNIP3 expression is regulated by 

hypoxia-inducible factor-1(HIF-1), and thus BNIP3-mediated mitophagy plays a key role in 

cancer biology and numerous hypoxia-associated diseases ([24], reviewed in [25]). Parkin/

PINK1 is a better characterized pathway involved in both steady state mitophagy and disease 

states, with particular implications in Parkinson’s disease.

Mitophagy is a highly selective process, and in the Parkin/PINK1 pathway, PINK1 serves as 

a transmembrane protein anchored in the outer mitochondrial membrane. Under normal 

basal conditions, PINK1 is cleaved by mitochondrial proteases [26], and the nascent C-

terminal fragment localizes to the cytosol (with the help of chaperone Hsp90 [27]) where it 

is degraded by the ubiquitin-proteasome system. This process is inhibited by membrane 

depolarization, accumulating intact PINK1 [28], which phosphorylates Mfn2 and facilitates 

the binding of Parkin, an E3 ubiquitin ligase. Together, PINK1 and Parkin respectively 

phosphorylate and ubiquitinate numerous targets, ultimately leading to mitochondrial 

degradation [29]. One such ubiquitination target of Parkin is HIF-1, and Parkin expression 

was very recently shown to have an inverse correlation with both HIF-1 levels and 

metastasis in human breast cancer tissue [30]. As mentioned previously, with aging comes 

increased dysfunction in mitochondrial ETC proteins; imbalanced turnover has also been 

noted in proteins involved in the mitophagy process, for example in the mouse cerebellum 

[31] and aging skeletal muscle from several mammals [32].An area of continued focus 

regarding the Parkin/PINK1 pathway are its roles in regulating basal mitophagy/proteostasis 

as opposed to activation only in response to a stress signal. Until the last two years, it was 

widely agreed that this pathway was required for mitophagy in both healthy and pathological 

conditions, however new evidence has emerged with the help of sophisticated experimental 

techniques that eliminate the use of strategies that may have confounded mitochondrial 

physiology such as protein overexpression, mitochondrial uncoupling agents, and addition of 

ROS to cells. With newer approaches, basal mitophagy in Drosophila was not found to be 

significantly affected by the loss of either Parkin or PINK1, though cognitive and motor 

deficits were noted [33]. A study of PINK1 wild type (WT) and knockout mice using 
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fluorescence reporter mito-QC similarly concluded that basal mitophagy in highly 

metabolically active tissues such as brain, heart, liver, kidney, and retina are all unaffected 

by the lack of PINK1. PINK1 expression was confirmed in these tissues in the WT animals, 

and furthermore, microglial mitophagy was also unaltered in the mice lacking PINK1 [34]. 

The precise roles of Parkin/PINK1 are also a topic of much investigation in the 

cardiovascular system and will be discussed further in that section.

The Parkin/PINK1 pathway of mitophagy is susceptible to damage by ROS/RNS, for 

example, by S-nitrosation of PINK1 at Cys568. This modification, observed in a human 

neural cell line, was observed in response to treatment by S-nitrosocysteine (CysNO) and 

induction of neuronal nitric oxide synthase (nNOS), and though chemically reversible, 

impaired mitophagy through several routes including the inhibition of PINK1 kinase activity 

and decreased translocation of Parkin to the mitochondrial membrane [35]. Together, Parkin 

and PINK1 play crucial roles in both normal developmental processes, such as in cardiac 

tissue, and in diseases of proteostasis imbalance like Parkinson’s disease. The role of 

mitophagy mediated by Parkin and PINK1 are discussed in more detail in those contexts 

(Sections 4–5).

Another negative consequence of ROS accumulation is the activation of purine deaminases 

(e.g. AMP deaminase), which deplete the reservoir of high-energy phosphate purines, such 

as ATP. These actions also pave the way for the generation of pro-oxidants through purine 

catabolism, exemplified by the generation of hydrogen peroxide via xanthine oxidase [36]. 

ATP depletion is particularly deleterious in that it serves as the key energy source for 

maintaining proteostasis balance. A lack of adequate cellular ATP supply necessitates a shift 

toward the preservation of the most critical processes to maintain cellular homeostasis, 

thereby hindering ATP-dependent reactions in other non-essential roles such as the 

ubiquitin-proteasome protein degradation system [37]. Increased steady state levels of ROS 

coupled with diminished ATP levels exacerbate the aging quality control mechanisms that 

impact many aspects of proteostasis. While further work is required to understand its role in 

age-associated dysregulation of proteostasis, modification of ETC efficiency through the 

maintenance of mitochondrial supercomplexes may provide a mechanism to minimize the 

damaging effects associated with these processes [38–40].

2.2 Folding – chaperones and endoplasmic reticulum

Proteome integrity is maintained by a network of quality control machinery responsible for 

the accurate translation of mRNA, polypeptide processing and folding, intracellular 

trafficking, and recognition and catabolism of damaged protein molecules. Chaperone 

proteins are specifically involved in vital roles of protein folding and transport. Disease-

associated disruptions to the chaperone network have been identified, though a larger 

challenge lies in determining the specific mechanisms by which invading cells (e.g. cancer, 

viruses) hijack chaperone proteins or alter their expression. Earlier this year, expression 

profiles for chaperone genes were prepared for >10,000 patient samples including 22 solid 

cancers, allowing for stratification of cancer-related alterations and recognition of 

widespread patterns such as the decreased levels of small heat shock proteins across all 

cancers investigated [41].
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In mammals, the heat shock response (HSR), triggered by acute stresses such as heat, 

hypoxia, unfolded proteins, and the accumulation of protein aggregates (also referred to as 

aggresomes), utilizes the transcription factor HSF-1 to upregulate expression of heat shock 

proteins (Hsp) along with other proteins necessary for eliminating damaged biomolecules 

and restoring normal cellular function [42]. The Hsp family of proteins are found in every 

cell with the cytosol, mitochondria, and endoplasmic reticulum (ER) each having a 

dedicated Hsp system with basal housekeeping roles [43] in addition to stress-induction 

mediated by HSR. Cell types constitutively exposed to oxidative stress such as the iron-rich 

oxygen-carrying erythrocytes have a unique Hsp specialization, where the system mediates a 

“save or sacrifice” response [44]. Hsp proteins bind to unfolded or misfolded proteins, 

working in conjunction with co-chaperone proteins and foldase enzymes to refold proteins 

in a process that often requires ATP. Hsp90 chaperones bind HSF-1 in a negative feedback 

manner; recognition and binding to a damaged protein by Hsp90 releases HSF-1 for 

translocation to the nucleus and transcriptional activation of HSR genes [45].

The endoplasmic reticulum (ER), home to the synthesis of luminal, membrane, and 

secretory proteins, as well as the folding of nascent proteins translated in the ribosome, 

maintains its own response pathway for proteotoxic stress. The ER utilizes a more oxidizing 

environment than other cellular compartments that facilitates disulfide bond formation by 

protein disulfide isomerase (PDI) during folding. ER stress occurs in situations of unfolded 

protein accumulation, disruptions in cellular Ca2+ levels (as the ER maintains the largest 

cellular Ca2+ pool [46]), and unbalanced oxygen homeostasis that causes hypoxia or 

oxidative stress [47]. The ER is equipped to remedy these acute challenges using members 

of the Hsp family. In addition, damaged proteins may be retro-translocated out of the ER 

with the help of chaperones and into the cytosol for proteasomal degradation, a process 

termed ER-associated protein degradation (ERAD) [48]. However, stressors that are 

insurmountable or that cause global disruptions to folding activate the unfolded protein 

response (UPR) pathway. The UPR involves 3 transmembrane proteins that act as separate 

arms of the pathway and coordinate to increase the expression of ER homeostasis genes, 

decrease translation of other proteins to offset protein load, and expand ER size [49, 50]. 

Increased ER size does not require the activity of UPR chaperone proteins but is selectively 

induced by UPR signaling [51]. Cells whose UPR machinery cannot efficiently repair ER 

damage are directed to apoptosis (detailed here [52]).

Like other proteostasis mechanisms, the UPR is adversely affected during aging by a 

decrease in the abundance of ER chaperone proteins (along with increased oxidative 

damage), increased expression of pro-apoptotic proteins, and disrupted phosphorylation 

status of proteins involved in translation [53]. It was recently demonstrated in mouse liver 

that the 3 UPR proteins can be differentially modulated in aging in a manner that may be 

beneficially altered by lifelong exercise [54]. Studies of over-nutrition and obesity have 

frequently noted a chronically active but less effective UPR [55]. Interestingly, the 

mitochondria mounts its own UPR defense mechanism that is initiated by the activity of 

proteases on damaged mitochondrial proteins (reviewed in detail [56]).
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2.3 Protein degradation systems

In the event of irreparable protein damage, cells employ several tools to sequester and 

destroy the damaged molecule to protect healthy organelles and preserve lifespan. The two 

systems, the ubiquitin-proteasome system (UPS) and the lysosomal-autophagy pathway, 

each utilize highly coordinated networks of proteins dedicated to the recognition of damage, 

transport to – or synthesis of – the appropriate proteolytic organelle, and lysis of covalent 

protein bonds. The UPS aids in the homeostasis of short-lived cellular peptides and proteins 

by tagging damaged proteins with one or more ubiquitin molecules (76 amino acids) at 

lysine residues, then transporting labeled proteins to the 26S proteasome for degradation. 

Conjugation of ubiquitin moieties to protein lysines occurs in a step-wise ATP-dependent 

fashion facilitated by ubiquitin-activating enzymes (E1s), ubiquitin-conjugating enzymes 

(E2), and ubiquitin-ligating (E3) enzymes. There exist distinct proteasome forms that 

demonstrate preference for metabolizing mildly oxidized proteins or ubiquitinated proteins 

[57]. Critically, the ubiquitination process and proteasome function are both ATP-dependent. 

Moreover, oxidation can inhibit ubiquitin-activating enzymes (E1s) and ubiquitin-

conjugating enzymes (E2s) via modification (e.g., glutathionylation, nitrosation) of active 

site cysteine residues along with noted negative impacts on proteasome function [57]. The 

UPS is critical for homeostasis maintenance in a variety of cell types and helps to preserve 

cell vitality by degrading proteins of the apoptotic machinery when they are not needed [58]. 

UPS activity is increased in stem cells (reviewed in [59]), including human embryonic stem 

cells (hESCs) and induced pluripotent stem cells (iPSCs) as a strategy of preserving 

plasticity. Recently, several E3 ubiquitin ligases were identified as elevated in hESCs 

compared to differentiated cells as one of the possible mechanisms underlying enhanced 

UPS [60]. In the event of severe or prolonged cellular stress, the capacity of the UPS to clear 

ubiquitinated proteins can be exceeded. In such cases, these proteins are directed to 

autophagy.

The lysosomal-autophagy pathway targets misfolded proteins, ubiquitinated proteins, and 

larger molecular structures, such as aggresomes and even damaged organelles. There exist 

several types: chaperone-mediated authophagy (CMA), microautophagy, and 

macroautophagy. In CMA, protein chaperones assist in recognition of damaged cytosolic 

proteins bearing the KFERQ motif and translocation to the lysosome surface, where they 

bind to protein Lamp2a and transported into the lysosome for degradation. CMA requires 

the sophisticated coordination and crosstalk of many proteins; these essential molecular 

interactions have been recently reviewed in detail [61]. Microautophagy involves direct 

lysosomal absorption of smaller cellular debris, whereas macroautophagy, the dominant 

form referred to as simply “autophagy”, requires the synthesis of a double membrane around 

the damaged molecules to form an autophagosome that is later engulfed by the lysosome. 

The lysosome contains at least 60 unique hydrolase enzymes [62] and maintains an acidic 

pH of 4.5–5 for proteolysis through the proton pump activity of vacuolar-type H+-ATPases 

(V-ATPases). As such, chemical integrity of the lysosome is reliant on an adequate ATP 

supply.

Autophagy occurs at low basal levels in cells to maintain homeostasis, and is activated in 

response to stresses like starvation, infection, and hypoxia. The autophagy process is 
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indispensable for stem cell metabolism and preservation of their stemness and self-renewal 

properties (reviewed extensively in [63]). Expeditious activation of autophagy occurs as a 

result of protein post-translational modifications, of which many are known; sustained 

activation occurs instead through transcriptional regulation [64]. The small molecule end-

products of autophagy, including amino acids, sugars, and other metabolites, are released 

into the cytosol to serve as substrates in energy metabolism and other anabolic processes in 

an effort to maintain cellular function despite environmental or microenvironmental stressors 

(see [65] and [66] for detailed reviews linking metabolism and autophagy). Autophagy 

activity decreases with age and is hampered in age-related diseases such as cancer [67, 68]. 

As just one of the many examples, mutation or damage to tumor suppressor protein p53 

facilitates its accumulation in the cytosol, preventing its ability to activate the transcription 

of autophagy genes [64, 68].Chaperones and proteolysis systems are profoundly affected 

during aging. HSR repression begins at the onset of reproductive maturity in Caenorhabditis 
elegans (C. elegans) via epigenetic modification of histone H3 [69]. Both the UPS and the 

lysosomal system have diminished proteolysis capacities in aging organisms and their 

protein machineries are each susceptible to aging-related damage through oxidation, 

conjugation to lipid peroxidation products [70], and/or protein cross-linking [71-73]. 

Though spatially distinct, the lysosome and proteasome are interrelated and have been 

shown to compensate, at least partially, when one is compromised [74, 75]. One example of 

this interplay was revealed in a study earlier this year of N-terminal arginylation, in which 

arginine is added to specific residues of protein N-termini exposed by endopeptidase 

activity. Though a comprehensive picture of the cellular consequences of arginylation is not 

yet established, experiments in this study found that proteins containing this modification 

are detected by N-recognins that direct the protein to the UPS or, when the UPS is inhibited 

or compromised, by p62 with resulting autophagy [76]. Such observations illustrate 

compensatory mechanisms within proteostasis and how damaged or dysfunctional proteins 

may be processed differentially in context-dependent manners. Further illustrating the 

interconnections between these two proteolytic hubs, the transcription factor homeodomain-

interacting protein kinase 1 (HPK-1) was recently identified as preserving proteostasis in C. 
elegans by both suppressing an inhibitory post-translational modification to HSF-1 and, 

separately, by regulating the expression of genes involved in the autophagy pathway, 

particularly autophagosome formation [77].

3. The interplay between cellular bioenergetics and protein quality control

Since the energy derived from metabolic pathways must be partitioned into cellular activities 

that maintain homeostasis, synthesize new biomolecules, and repair damages ones, the links 

between metabolism and proteostasis are becoming intuitively clear. For instance, the role 

autophagy plays in maintaining a functional proteome is influenced by many signaling 

pathways that can be routed through the activities of mammalian target of rapamycin 

(mTOR) and adenosine monophosphate-activated protein kinase (AMPK) (extensively 

reviewed in [78]). Functioning as a nutrient sensor, mTOR is a serine/threonine kinase with 

a variety of downstream targets, including the autophagy-regulating protein Ulk1 [79]. 

Through phosphorylation of Ser757, mTOR inhibits Ulk1 activity thereby decreasing 

cellular autophagy. Conversely, AMPK functions as a cellular energy sensor activated in 
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response to increased AMP:ATP ratios [80] as well as through adenosine signaling pathways 

[81]. It too acts upon Ulk1, though phosphorylation of Ser317 and Ser777 activates 

autophagosome formation thereby promoting autophagy. As such, the functional interplay 

between mTOR and AMPK has become an attractive therapeutic target for anti-aging 

strategies [82, 83]. In addition to direct modulation of these protein activities with the use of 

compounds such as rapamycin and metformin (among others), recent studies have 

highlighted a strategy of immunomodulation with the implementation of cytokine-based 

therapies, such as the anti-inflammatory cytokine IL-37 [84]. While considerable work 

remains to provide more direct links among immunomodulation, energy homeostasis, and 

aging, these studies illustrate a potential area of therapeutic intervention for diseases 

dependent on age-associated dysregulation of proteostasis.

In addition to mTOR and AMPK, autophagy can also be modulated by polyamines. These 

small polybasic molecules are produced as an off-shoot of the urea cycle and exert multiple 

effects on DNA and RNA, as well as ROS scavenging and pH balance [85]. In addition to 

these roles, their ability to alter properties of autophagy have also been demonstrated [86]. 

Because the levels of these molecules decline with age [87], a process also associated with 

the onset of neurodegenerative disease [88], alterations to polyamine levels by way of 

pharmacological [89] or dietary [90] intervention deems a promising avenue to address 

complications of aging and associated disease.

Another family of proteins important in the connection between nutrient metabolism and 

aging are the sirtuins. Consisting of seven members, these proteins function as NAD+-

dependent histone deacetylases that have been shown to modulate proteostasis by way of 

autophagy regulation [91]. The discovery that NAD+ levels decrease with age in the tissues 

of both model organisms and humans [92] suggests that sirtuin function may also become 

impaired with aging. Indeed, restoring NAD+ to more youthful levels has been shown to 

provide beneficial effects in the context of age-dependent diseases [93]. As NAD+ levels 

depend heavily on the ability of cells to convert tryptophan into nicotinamide, it is 

interesting that tryptophan metabolism is also altered with age [94] and the ratio of the 

alternative tryptophan catabolite kynurenine to its precursor is associated with species 

longevity [95]. In addition, metagenomic profiling of gut microbiota in elderly and 

centenarians revealed preferential consumption of tryptophan, thus diminishing its 

bioavailability for important biological processes such as nicotinamide production [96].

The metabolic impairments that contribute to age-associated pathologies similarly affect 

inflammatory processes. An increasingly appreciated factor in age-associated dysregulation 

of proteostasis is chronic, low-grade inflammation, the collective effects of which are 

referred to as inflammaging. First termed in 2000 [97], inflammaging is believed to involve, 

in large part, the systemic accumulation of cell debris arising from damaged/dead cells and 

organelles (extensively reviewed in [98]). As processes such as autophagy [67, 99] and the 

ubiquitin-proteasome system [100] decline with age, an imbalance arises between the 

synthesis and removal of cellular molecules that results in accumulation of misfolded/

damaged proteins. Classified as damage associated molecular patterns (DAMPs), these 

molecules are recognized by a variety of immune receptors, including pattern recognition 

receptors (PRRs), dendritic cell receptors, and scavenger receptors that initiate an immune 
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response to clear the damaged components in avoidance of excessive inflammation. 

However, as proteostasis becomes impaired and this balance tips, a type of autoimmune 

response is initiated that propagates additional tissue damage. Consequently, inflammaging 

has been associated with many age-related diseases, including Alzheimer’s disease [101], 

Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis, atherosclerosis, heart 

disease, age-related macular degeneration [102], type II diabetes [103], osteoporosis and 

insulin resistance [104], and cancer [105, 106]. Future studies will be able to expand upon 

the connections between metabolism and dysregulated proteostasis in these diseases. While 

many of these processes are heterogeneous, high-throughput methodologies [107] will 

enable the processing of larger, and thus more highly-powered sample sets that will allow for 

improved detection of biological phenomena associated with aging.

The slow but certain decline of robustness in proteostasis mechanisms that occurs during 

aging renders cells less able to combat challenges, which, therefore makes the organism 

more susceptible to disease progression. We will next highlight the role of proteostasis in 

diseases with a defined genetic component along with several metabolic diseases. These 

diseases are grouped by those that are directly associated with aging (i.e., having age as a 

primary risk factor) and those that are exacerbated by aging, but with onsets earlier in life 

(Figure 2). Independent of etiology, disrupted and/or dysfunctional proteostasis plays a role 

in nearly all pathologies and aging serves as a notorious priming event that weakens cellular 

defenses and, in particular, feeds the proteostasis imbalance.

4. Disrupted proteostasis in neurodegenerative diseases

Altered cellular proteostasis underlies the pathophysiology of many neurodegenerative 

diseases (NDDs) such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s 

disease, which disproportionately affect elderly populations. The physiological signature of 

Down syndrome is also marked by imbalanced proteostasis and accelerated aging processes. 

These diseases have in common a sustained stimulation of microglia (reviewed in [108]), the 

innate immune system in the brain, along with increased levels of inflammatory cytokines 

such as tumor necrosis factor (TNF), interleukin 1 (IL-1), and interleukin 6 (IL-6). 

Additionally, NDDs are marked by propensities for protein covalent cross-links mediated by 

transglutaminase [109] and large intracellular concentrations of proteins with unfolded 

regions; in some cases these outcomes are a result of familial or sporadic genetic mutations. 

Disordered, unfolded protein regions are typically handled by cellular chaperones, but have a 

tendency in these disease states to overwhelm the capacity of the chaperone system, leading 

to a ‘gain of function’ where nascent exposed regions bind indiscriminately to proteins, 

organelles, and biomolecules with similar polarities, ultimately leading to the formation of 

aggregates or amyloids. Protein aggregates, sometimes termed aggresomes, obstruct the 

normal function of the organelle in which they reside and routinely lead to cell death. The 

formation of amyloids and aggresomes in neurons disrupt synaptic transmission and cell 

metabolism; subsequent neuronal death underlies brain degeneration and dementia.
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4.1 Alzheimer’s disease

Alzheimer’s disease (AD) and frontal lobe dementia are diseases characterized by the 

accumulation of misfolded aggregates of amyloid β (A) and hyperphosphorylated tau in the 

brain, which form plaques and tangles, respectively [110, 111]. A peptides are produced by 

processing of the amyloid precursor protein (APP) by and secretase, which occurs for 10% 

of translated APP [112]. In contrast, APP processing by secretase generates soluble APP. In 

the context of AD, APP has received much less attention than A but is noted to confer 

protection from chronic and acute hypoxia and traumatic brain injury, improving neuronal 

survival by a multitude of pathways that include preservation of calcium homeostasis 

[113-115]. To further illustrate the beneficial role of APP, mutants of this protein in the 

mouse hippocampus impaired mitophagy via reduced levels of PINK1 and Mfn2 [116]. 

Unlike its protein of origin, APP, A has a strong propensity to aggregate; in AD brains, A 

accumulates both intra- and extracellularly leading to aggregate structures and amyloid 

plaques. Extracellular A may be imported into the cell, and is known as a late indicator of 

AD. Intracellular A is observed earlier in AD onset and has garnered attention only more 

recently [117]. A aggregates accumulate in lysosomes, mitochondria, and other organelles 

[118, 119], bind metals and generate ROS [120], and cause metabolic dysfunction [121], 

triggering apoptosis and resulting in tissue degeneration. Even soluble A peptides can induce 

organelle damage and alter proteostasis, as demonstrated for the ER [122]. Accumulated 

intracellular amyloid can also induce other proteins to form amyloid, a process termed cross-

interaction, which serves as a chain reaction further disrupting cellular function [123]. In 

addition, the increased levels of insoluble aggregated proteins experienced during aging are 

sufficient to induce A aggregation [124]. APP expression is increased in stress situations and 

throughout aging to confer neuroprotection but conversely can also lead to accumulation of 

A peptides by and/or secretase activity [112].

In an effort to combat the etiology of AD, there have been numerous investigations to 

elucidate the precise molecular factors responsible for A aggregation and amyloid formation 

along with the lack of effective proteolysis mechanisms to eliminate or suppress these 

structures. In terms of aggregate structure, features such as overall size, peptide 

conformation, and quaternary structure are challenging to assess but critical for 

understanding the factors driving their formation and accumulation. The lysosomal-

autophagy system is hampered in AD as indicated by both the presence of mutations in 

autophagy-related genes [125] and the observation of many autophagosomes in AD neurons 

[126]. These autophagosomes were rich in A, suggesting robustness in sequestering A but 

ineffective lysosome-mediated proteolysis. A subsequent study revealed increased lysosome 

pH in both fibroblasts of AD patients and neurons of an AD mouse model as an underlying 

cause of diminished proteolysis [127]. In a separate study using a C. elegans model of AD, 

induced expression of A led to a disrupted status of the UPR, though neurotoxicity was 

delayed perhaps by blocking ER synthesis of toxic proteins [128]. ER stress increased 

secretase activity and therefore A levels, illustrating another feed-forward mechanism of 

neuronal destruction by proteostasis imbalance [129] (see [130] for a detailed new review on 

ER stress and the UPR in AD). Expression of mitophagy-related genes is decreased in AD, 

and mitochondria in affected patients suffer from slower turnover and protein dynamics 

[131]. Interestingly, the effects of A spread beyond proteostasis disruption, interfering with 
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cellular metabolism as well. For instance, accumulation of A in red blood cells occurs in an 

age-dependent manner [132], adversely impacting the activities of glycolytic enzymes 

responsible for the production of important hemoglobin allosteric modulators such as ATP 

and 2,3-diphosphoglycerate [133-135], and leading to impaired oxygen delivery and 

resultant tissue hypoxia [136].

Individuals with Down syndrome (DS) are uniquely predisposed to the development of AD 

as the gene encoding APP resides on chromosome 21, the trisomy of which is found in DS. 

The additional copy of chromosome 21 results in an overexpression of APP in brains of 

individuals with DS as well as higher steady state neuronal levels of A in comparison to 

disomy 21 individuals [137]. The concentration of toxic A increases with age, and though 

APP expression does not appear to change in an age-dependent fashion in DS, secretase 

activity decreases with age thus shifting APP toward toxic A formation [138, 139]. Sadly, 

even very young children with DS experience high intracellular A, and most DS patients are 

diagnosed with AD by age 40, an onset at least 10 years earlier than the general population 

[140]. Shortened telomeres have also been implicated in the early onset of AD associated 

with DS [141]. Head et al. recently reviewed the biochemistry and pathology induced by A 

in the context of DS [140]. Proteostasis imbalance has been documented in lymphoblastoid 

cell lines from DS patients and mouse models of DS [142] along with chronic oxidative 

stress [143] and protein oxidation in the brain [137, 144].

Interestingly, AD pathology in neural tissue also progresses in a predictable manner as a 

result of mutations in one or more genes (APP and/or others) ultimately leading to toxic 

levels of A [112]. A recent study of healthy post-mortem brains investigated the role of 

proteostasis factors in disease progression and found that regions of the brain with protein 

expression profiles that suggested a likelihood for aggregate formation, as well as those 

involved in proteostasis, were particularly susceptible to neurodegeneration in AD [145]. 

Efforts to combat or prevent AD onset have focused on acetylcholinesterase inhibitors [146] 

and targets of the cholinergic system [147], N-methyl-D-aspartate (NMDA) receptor 

antagonism to reduces neural A levels [148], exercise to prevent hippocampal mitochondria 

dysfunction [149], and erythrocyte membrane-encapsulated celecoxib to promote 

neurogenesis via prostaglandins [150]. In contrast, attempts to inhibit secretase have not 

proven clinically effective [151].

4.2 Parkinson’s disease

Parkinson’s disease (PD) is a rarer but well-known NDD associated with involuntary 

shaking, cognitive decline, depression, impaired sense of smell, and disturbances in normal 

sleep patterns. The prevalence of PD dramatically increases with age [152] and is marked by 

mutations in the proteins synuclein and/or leucine-rich repeat kinase 2 (LRRK2) that are 

inherited or the result of genome damage by traumatic brain injury, exposure to pesticides, 

previous diagnosis of melanoma and other causes [153]. Though LRRK2 mutations are 

more common [154], the precise molecular mechanisms that subsequently result in PD are 

not fully clear, though damage in NF-B signaling has been implicated [155]. Regardless of 

protein mutational status, the common hallmark of PD is neuronal synuclein accumulation 

and the formation of insoluble fibrils termed Lewy bodies. Such aggregates indicate 
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disrupted proteostasis and in turn further hamper numerous proteostasis mechanisms 

culminating in the death of dopaminergic neurons and degeneration in the substantia nigra. 

Mutations in other proteins have also been noted, for example in the mitophagy enzymes 

Parkin and PINK1 and the antioxidant protein DJ-1, leading to forms of early onset PD [156, 

157]. Oxidative and nitrosative stresses play key roles in the pathogenesis of PD. As one 

example, cysteine thiol oxidation disrupts transferrin binding of iron, releasing Fe2+, a 

source for further ROS formation [158]. Residues of Parkin and PINK1 have also been 

demonstrated as targets for oxidation by NO (derived from CysNO or nNOS [35]) or 

superoxide [159], affecting both their localizations and enzymatic activities [160, 161] in 

manners that impair mitophagy. In the context of NDDs, uneffective mitophagy function 

allows damaged and dysfunctional neurons to accumulate, further obstructing turnover and 

cell survival processes.

Accumulation and aggregation of synuclein affects the cellular proteostasis network at 

multiple levels in PD-affected neurons. The lysosome-autophagy pathway is thought to be 

the dominant clearing mechanism for synuclein (rather than the UPS) [162], however, 

animal models and studies of PD patients have indicated decreased levels of autophagy 

enzymes and accumulation of autophagosomes in the substantia nigra of PD-afflicted brains 

[163]. Mutations have also been noted in the GBA gene, which encodes glucocerebrosidase 

(GCase), a lysosomal enzyme [164]. Increased levels of mutant synuclein occur in the 

extracellular space and in the ER, causing chronic ER stress and sustained UPR activation 

[165-167]. Mitochondrial metabolism is adversely affected as evidenced by decreased 

activity of ETC complex I in PD [168, 169], mutations in mitochondrial DNA and proteins, 

alterations in size and shape, and other attributes (reviewed in [169]). Furthermore, a C. 
elegans model of PD revealed chronic activation of the mitochondrial UPR leading to the 

loss of dopaminergic neurons in a non-apoptotic manner [170].

Therapies for PD involve the management of symptoms as there is not currently a means of 

halting disease progression. Treatment with dopamine precursor L-DOPA has been 

successful at partially alleviating symptoms and is now formulated with inhibitors of 

dopamine-metabolizing enzymes to extend its half-life [171]. An alternative strategy to 

increase DJ-1 expression using phenylbutyrate has shown to be neuroprotective in both cell 

culture and animal models [172]. Very recently, type II diabetes drug exenatide has shown 

promise in a clinical trial for the treatment of PD though further investigations are needed to 

examine its role in mechanistically altering disease status versus amelioration of symptoms 

[173]. Another recent success involved treatment with nitrite, which lead to the reversible 

and protective S-nitrosation of complex I and activation of transcription factor Nrf2 [174]. 

Expression of Nrf2 in PD neurons leads to more IBs to sequester mutant LRRK2 and 

enhanced degradation of synuclein [175]. Lastly, treatment with chaperones has been shown 

to decrease ER stress and slow the progression of motor dysfunction in vitro. Potential 

targets of proteostasis modulation in the context of PD are the subjects of recent reviews 

[171, 176].
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4.3 Huntington’s disease

Huntington’s disease (HD) is an autosomal dominant inherited neurological disorder 

involving an expansion of CAG repeats in the huntingtin (HTT) gene, resulting in a polyQ 

region near the amino terminus of the HTT protein. The polyQ region confers proteotoxicity 

with 36 or more glutamine repeats as the propensities for misfolding and non-selective 

binding to other biomolecules are increased. Clinical symptoms include chorea, cognitive 

decline, and behavioral changes; alterations in glucose metabolism (reviewed in [177]) and 

in the retina [178] have also been noted. Disease onset and severity are directly correlated to 

the number of Q residues present, where onset is earlier, and severity is greater with 

increasing length of the polyQ region. Similar to AD, HD pathology and neurodegeneration 

proceed in a predictable manner of affected brain regions [179]. Mutant HTT (mHTT), with 

toxic polyQ levels, exists in 3 distinct states in the brain: soluble monomers, soluble 

oligomers, and insoluble aggregates which form inclusion bodies (IBs) in neurons. The 

factors governing the distribution of mHTT into these cellular fractions are not fully clear 

but likely involve mHTT concentrations, the extent of polyQ sequence, post-translational 

modifications of HTT and other proteins, and the activity of proteostasis machinery.

The formation of mHTT aggregates is believed to be an initial neuronal survival pathway 

intended to sequester and destroy misfolded protein by the UPS and autophagy. In fact, 

oligomeric mHTT has been noted as more cytotoxic than IBs which is also supported by 

observations that IB formation is not necessary for proteotoxicity in HD [180]. Soluble 

mHTT induces ER stress, upregulating all branches of the UPR [181]. Efforts to understand 

the modulation of mHTT solubility have identified ubiquitin-conjugating enzyme (E2 

family) Ube2W as at least one of the key players. Ube2W targets the amino terminus of 

protein substrates, where the polyQ expansion occurs. Ube2W−/− neurons with mHTT 

exposure experienced an increased death rate but had fewer IBs and more soluble HTT 

[182]. Hsp70 was decreased under these conditions but other Hsps (40, 60, and 90) and 

autophagy protein p62 were unchanged. It is important to note that Ube2W contains an 

active site Cys required for ubiquitin conjugation; increased levels of oxidants experienced 

during aging could impair this enzyme and exacerbate neurodegeneration associated with 

polyQ expansion.

Studies of IB components have identified mHTT, oftentimes ubiquitinated, along with 

ubiquitin and members of the proteasomal and autophagic systems as localizing in these 

structures [183, 184]. Once formed, IBs are detrimental to the proteostasis system; not only 

are proteins sequestered from their functional location, but IBs disrupt the chaperone system, 

bind and repress transcription factors, impair the UPS, and stunt proteolysis, leading to cell 

death [185]. Mouse models of HD have revealed diminished proteasome activity in several 

brain regions along with a dampened HSR [186, 187]. Additionally, studies in HD patients 

and mouse models demonstrate decreased neuronal proteasome activity in comparison to 

tissues not expressing mHTT (reviewed in [188]). Unfortunately, treatment options for HD 

are mainly limited to symptom management, such as alleviating chorea and improving 

mood. Tissue transglutaminase inhibition has been shown to decrease polyQ aggregation 

[189]; these, along with immune-based strategies [190] are being pursued as potential 

treatments for HD patients.
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5. Proteostasis disruptions in other age-related diseases

5.1 Cardiovascular diseases

Cardiovascular disease is among the leading causes of mortality worldwide. Alterations of 

the mechanisms of proteostasis in cardiovascular diseases have been extensively and 

recently reviewed [191]. Common phenotypes observed in cardiovascular disease involve 

loss of protein patency in the heart resulting from genetic dysregulation and/or 

environmental factors triggering cardiac aging. Disease progression also involves 

impairment of chaperones, the UPS, autophagy, mitophagy, and loss of sarcomeric and 

cytoskeletal proteins, all leading to cardiomyocyte senescence [191].

Mitophagy in the heart is an essential process of both normal development and a gatekeeper 

against cardiovascular disease. Maturity of cardiac cells and tissue from the neonate to 

adulthood is marked by a shift from glycolysis to mitochondrial oxidative metabolism [192] 

facilitated by robust mitophagy and not metabolic reprogramming [193]. The high energy 

demands of the adult heart manifest in an increased mitochondrial capacity and thus an 

increased reliance for highly functional quality control systems [194]. The Parkin/PINK1 

pathway has been implicated as essential for cardiac function. As just one example, PINK1 

−/− mice experienced ventricular dysfunction and cardiac hypertrophy by 2 months of age.

Characteristics of heart tissue in these mice also included increased fibrosis and oxidative 

stress, impaired mitochondrial function, and enhanced levels of apoptosis in the 

cardiomyocytes [195]. However, more recent studies have questioned such observations, 

revealing that in basal mitophagy processes, the Parkin/PINK1 pathway is dispensable [196], 

but is crucial in stress responses in the heart. For example, increased expression of Parkin 

leads to enhanced mitophagy, presumably for cardioprotection, in mouse cardiomyocytes 

exposed to stress via myocardial infarction [194]. Additionally, decreased levels of PINK1 

have been noted in the left ventricle of end-stage heart failure patients [195]. A more 

expansive look at the role of mitophagy in cardiovascular disease is found in a recent review 

[197]. Additional work to come in this area will further elucidate the roles of Parkin/PINK1 

and mitophagy as a whole in the heart, along with identifying the particular details of how 

this pathway is induced in response to age and cardiac-specific stressors.

Protein aggregation is a key feature of some cardiac diseases, such as heart failure, in a 

matter similar to NDDs where protein misfolding or lack of folding facilitates the binding 

and aggregation of hydrophobic regions, impairing normal clearance mechanisms and 

interfering with proper organ function. In the context of heart failure, these aggregates form 

structures called cardiac preamyloid oligomers (PAOs). A very recent study identified 

phosphorylation of the protein desmin at Ser31 as a molecular seed for the formation of PAO 

structures observed in heart failure in both canines and humans when desmin’s primary 

chaperone is absent or non-functional [198]. Monophosphorylation prevents 

phosphorylation at two other desmin residues by kinase GSK3 to provide the soluble, 

physiological proteoform, thus singly phosphorylated desmin is more susceptible to 

aggregation [199]. Additionally, positron emission tomography was established for the first 

time as a suitable imaging technique for the visualization of PAOs in mice [198].
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Similarly, impairment of proteostasis has been associated with multiple (age-related) 

respiratory pathologies, including pulmonary hypertension, chronic obstructive pulmonary 

disease, cystic fibrosis and pulmonary fibrosis, as extensively reviewed [200-203]. Of note, 

individuals with DS are more susceptible to develop comorbidities associated with cognitive 

impairment and altered proteostasis, such as Alzheimer’s disease, but also respiratory 

complications and pulmonary hypertension [204].

5.2 Ocular pathologies linked to aging and imbalanced proteostasis

Age-related diseases with clear associations to the proteostasis network also affect the eye. 

The formation of cataracts, or opaque lenses, leads to impaired vision affecting, 

disproportionately, the aging population and requires surgical replacement. The lens is 

comprised predominantly of crystallin, an 80 kDa protein that packs into complexes of 

approximately 800 kDa which assemble in an ordered manner to form the lens. The 

concentration of crystallin in the lens is on the order of 400 mg/mL, the highest protein 

concentration of any tissue [205]. A stringent molecular order is required to ensure lens 

transparency and the passage of light through the lens and cornea to reach photoreceptors in 

the retina. Lens proteostasis is therefore paramount to function but as post-mitotic cells must 

maintain transparency, much of the proteostasis machinery and cellular organelles are absent 

(reviewed in [206]). In addition to its structural role in the lens, crystallin is a chaperone 

member of the small Hsp family and its holdase activity helps to maintain the integrity of the 

lens over years of light exposure and normal aging, however, this protein is not immune to 

the accumulation of PTMs over time [205]. Such PTMs include oxidative damage, 

glycation, deamidation, phosphorylation, and others, ultimately decreasing crystallin 

solubility and leading to its aggregation [207-209]. Crystallin aggregation scatters light and 

causes sustained ER UPR activation, and leading to apoptosis and visual impairment [210]. 

Proteostasis is a crucial factor in other eye pathologies as well. Mutations in photoreceptor 

protein rhodopsin cause the misfolding and aggregation that underlie retinitis pigmentosa; 

well over 100 mutations are known. Additionally, A accumulation plays key roles in the 

pathologies of glaucoma and age-related macular degeneration. Eye diseases mediated by 

disrupted proteostasis have been recently reviewed in detail [208].

5.3 Proteostasis in cancer

Our final area of focus will examine the role of proteostasis in cancer development and 

progression. Carcinogenesis occurs following mutations in tumor suppressor genes and/or 

activation of oncogenes that are propagated and expanded as the affected cells experience a 

rewiring of gene expression, metabolism, and cell growth. In contrast to aging, where 

proteostasis mechanisms are downregulated and lose efficiency, cancer cells and tumors 

demonstrate markedly increased and more capable proteostasis networks utilized to support 

rapid growth and evade normal aging and cell death mechanisms. Enhanced proteostasis in 

cancer is a culmination of adaptations throughout the protein machinery (which have been 

recently reviewed in detail); cancerous tumors have increased chaperone activity [211], 

increased levels of telomerase to delay chromosome aging [212], upregulated UPR (ER) 

[213], overexpression of folding protein PDI [214], and a strong reliance on the lysosome-

autophagy system [215]. Proteolysis is also manipulated to allow for continual cell division 

and evasion of checkpoint mechanisms.

Reisz et al. Page 15

Expert Rev Proteomics. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A critical interaction of proteostasis and cancer progression lies in the homeostasis of 

transcription factors that respond to stresses, alter metabolism, and affect cell lifespan. 

Modulation of transcription factors such as tumor suppressor p53, HSF-1, forkhead box 

(Fox) proteins, and Nrf2 through altered expression or mutations can disrupt normal 

proteostasis and facilitate carcinogenesis [216, 217]. For example, levels of Nrf2, which 

induces the expression of chaperones, proteasome components, and antioxidant enzymes, 

are increased in many cancers [217, 218]. Decreased p53 levels allow for the propagation of 

malignant cells, and inactivation of p53 by a corrupted chaperone system has been shown to 

facilitate angiogenesis via vascular endothelial growth factor (VEGF) and nitric oxide 

synthase (NOS) [211] (see [219] for a recent review of the interplay between proteostasis 

and angiogenic factors). Mutations in p53 are many and are well-documented to underlie 

numerous cancers. In a similar manner as for many NDDs, mutations in this protein can lead 

to aggregation and the formation of nuclear IBs, as has been shown for at least 6 cancer 

types [220]. Nuclear IBs can activate HSF-1 and also decrease function of the proteasome 

[220]. Proteasome dynamics is crucial for regulating cellular concentrations of transcription 

factors, as these proteins are short lived and degraded by the UPS following activation of 

DNA promoter regions [221]. Cells have the capacity to turn off or decrease proteolysis 

under stress conditions to extend the life of transcription factors involved in stress responses; 

this is manipulated in cancer cells and underlies many of their well-known growth 

characteristics.

By affecting the interplay between redox poise and anabolic reactions, activation of the 

pentose phosphate pathway by p53 family members (e.g., p63 [222]) and upstream kinases 

such as ATM [223] influences the cellular antioxidant potential and impacts ATP generation 

and drug resistance capacity in acute myeloid leukemia [224], a disease of older people 

uncommon before age 45 (average patient age is 67) according to the American Cancer 

Society. Mutations to ATM, such as in ataxia telangiectasia result in premature aging 

syndrome [225] and altered proteostasis [226].

Proteasome inhibition, once a limited strategy for cancer treatment due to cross-reactivity 

with healthy cells, is again gaining attention. Bortezomib, the first FDA-approved anti-

cancer therapy targeting proteostasis, is used to treat multiple myeloma and mantle cell 

lymphoma by inhibiting the 26S proteasome [227, 228]. Unfortunately, bortezomib alone is 

not effective against solid tumors and even hematological cancers can develop resistance. 

Bortezomib when used in conjunction with nutlin-3 is efficacious against cell lines of solid 

tumors by disrupting proteostasis in the ER and mitochondria [228]. Inhibition of E3 

ubiquitin ligases is also utilized for the treatment of hematological cancers [221]. Recently, 

Hsp70 inhibitors showed success in treating cancer by impairing mitochondrial proteostasis, 

exploiting the increased expression of stress-induced Hsp70 in cancer cells compared to 

normal cells [229]. Lastly, quinolone-8-thiol (8TQ) and capzimin have been described as 

disrupting ubiquitination leading to cell death in several cancer cell lines [230].
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6. Omics techniques for assessing proteostasis during aging and in 

disease

Preservation or enhancement of proteostasis maintenance mechanisms throughout life 

improves resistance to stress and is sufficient to slow down aging [231]. Recent research, 

however, has only begun to elucidate the age-dependent changes that modulate lifespan, 

susceptibility to disease, and response to treatment. These studies are challenging due to 

heterogeneous aging processes, difficulties associated with implementing longitudinal 

studies that can compensate for biological variability (i.e., sampling from the same organism 

over time versus concurrent sampling from young and old populations), and the lack of 

methods sensitive enough to quantify subtle proteomic changes. Integrated omics 

approaches that combine data from genomics, transcriptomics, proteomics, and 

metabolomics studies to understand proteostasis in aging and age-associated disease hold 

enormous promise, but remain technically challenging and require large, focused teams of 

diversely skilled researchers.To date, few proteomics studies have broadly profiled aging in 

mammalian tissues. Previous transcriptomic and proteomic studies have revealed that aging 

in rats differentially affects tissues and organs [232]. Perhaps the most in-depth proteomic 

profile of systemic aging was derived from work that utilized stable isotope labeled amino 

acids in cell culture (SILAC) quantitation and high resolution mass spectrometry (MS) to 

compare global proteomes of mice aged 5 or 26 months [233]. More than 4000 proteins 

were quantified, representing the majority of tissue protein mass, though the expression 

levels many proteins were unchanged. Other studies focused on tissue-specific aging have 

used alternative proteomic approaches such as two dimensional gel electrophoresis or 

iTRAQ labeling and matrix-assisted laser desorption/ionization (MALDI)-based quantitative 

MS to study the effects of senescence on the left rat heart ventricle, finding differential 

expression of metabolic enzymes, structural and antioxidant proteins [234]. Additionally, a 

single proteomic time-course study of the aging mouse brain found that aging is indeed 

associated with a reduction in the abundance of proteasomal subunits and an accumulation 

of non-functional proteins and fragments [235]. While the findings of these studies have 

been informative, they have been somewhat limited by data-dependent LC-MS/MS 

approaches which are biased toward the detection of the most abundant biomolecules in a 

complex mixture.

A recent surge of advances in quantitative proteomics has resulted in both greatly improved 

experimental capabilities and, more importantly, the appreciation of this scientific approach 

to provide fundamentally new knowledge. Thus, while relative quantitation approaches are 

appropriate for discovery studies aimed at identifying markers of the aging proteome, 

absolute quantification of proteomic changes using isotope-labeled internal standard 

peptides (e.g., AQUA or quantitative concatamer - QconCAT) have begun to show early 

success. For example, we have utilized the QconCAT approach to characterize extracellular 

matrix (ECM) proteins that have been implicated in diseases that disproportionately affect 

aging populations, such as cancer, idiopathic pulmonary fibrosis (IPF), and cardiac disease 

[200-202]. Additional studies that have applied compartment-resolved ECM proteomics to 

identify novel modulators of pulmonary fibrosis in the aging murine lung have revealed that 

compartment-specific ECM proteins are dynamically regulated upon lung injury and repair 
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[236, 237]. In another area of specialized proteomics, Perluigi et al. utilized redox 

proteomics in the analysis of human brains to reveal a disturbance in both proteostasis and 

autophagy mechanisms in DS. Indeed, others have shown that oxidative stress occurs early 

in life and can even be detected in the amniotic fluid of a DS pregnancy [238].

Covalent cross-linking of proteins provides the structural meshwork needed to support 

resident cells and tissues and is altered with age and disease. Cross-links are formed 

enzymatically [239] or via chemical reactions driven by advanced glycation end products 

(AGEs), and may contribute to tissue aging [240-242]. While proteomic approaches aimed 

at characterizing ECM composition have shown success in identifying new proteomic 

signatures [243-246], methods to characterize protein-protein cross-links in the ECM have 

yet to be widely adopted for analyzing tissue samples. Identification of these interactions is 

important given the role that fibrillar collagen, the most abundant component of the ECM 

and a common target for cross-linking, plays in providing the structural support for tissues. 

Importantly, past analyses of AGEs and collagen cross-links in human bone and articular 

cartilage have identified age-related changes in the content of these important biomolecules, 

implying a possible mechanism by which age serves as a risk factor for osteoarthritis [247, 

248]. For instance, in both bone and cartilage, mature crosslinks such as lysyl pyridinoline 

reach a maximum by 10–15 years of age [249]. In contrast, immature cross-links in bone 

collagen decrease sharply in abundance between birth and 25 years, but still persist through 

adult life. While mature crosslinks increase, total crosslinks (i.e., immature and mature) 

decrease overall with age [249]. This effect may help to explain, in part, why the bones in 

older individuals are stiffer but actually more brittle, and thus more likely to fracture under 

stress. In order to apply crosslinking analysis to softer, less collagenous tissues (i.e., breast, 

brain and solid tumors) the development of more sensitive MS-based approaches will likely 

be necessary. Despite documented ECM composition changes occurring during the 

development and progression of NDDs [250, 251] (i.e., Alzheimer’s, Parkinson’s, 

Huntington’s, Down syndrome), the role of crosslinking during disease progression is 

currently unknown and thus, development of a sensitive MS-based approach would 

dramatically expand upon knowledge in this area.

7. Expert commentary

In the book Nature’s Robots: A History of Proteins, Tanford and Reynolds outline a 

fascinating parallel between proteins and automatons that perform programmed functions 

[252]. Indeed, protein “robots” are key structural and functional components involved in all 

biological activities from signal transmission to immune function, from vision to mobility. 

As such, it is fascinating to note how Asimov’s famous “Three Laws of Robotics” [253] may 

be applied to proteins, whereas a close check of protein half-life and homeostasis is relevant 

to the health of the whole individual. This is even more relevant when considering the 

emerging correlation between human aging and dysregulated protein homeostasis in 

erythrocytes, the most abundant host cell in the human body that is devoid of nuclei and 

organelles (i.e., lacking de novo protein synthesis capacity) and thus relying on calcium-

dependent or ubiquitin-proteasome-dependent proteolytic activity to regulate its lifespan and 

function [254]. Of all cell types, erythrocytes are most exposed to chronic oxidative stress 

due to their oxygen carrier function and abundance of iron loaded-hemoglobin, which 
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catalyzes Fenton and Haber-Weiss reactions during aging. Increased red blood cell clearance 

[255] and impaired hematopoiesis towards the myeloid lineage [256] contribute to anemia, 

which serves as a hallmark of aging and inflammation. Of note, red blood cell lifespan 

decreases with age, and many age-associated diseases are characterized by a reduced 

lifespan of erythrocytes (e.g., Down syndrome [254]) and increased oxidative stress (e.g., 

senile dementia [257]). In addition, alterations of iron homeostasis and onset of iron-

dependent mechanisms of non-apoptotic cell death (i.e., ferroptosis) have been increasingly 

appreciated in aging/altered proteostasis-associated diseases such as Alzheimer’s disease 

[258]. As red blood cells play a key function in oxygen transport and delivery, it is 

fascinating to hypothesize an etiological contribution of pathological proteostasis (in red 

blood cell biology) and increased ferroptosis as a hallmark of respiratory complications, 

which are common comorbidities in the elderly population. Indeed, a role has been recently 

highlighted for inflammatory complications and altered proteostasis in many lung diseases, 

such as cystic fibrosis, idiopathic pulmonary fibrosis and chronic obstructive pulmonary 

disease (as extensively reviewed [203]).

8. Five-year view

The introduction of (high-throughput) quantitative omics approaches has provided new 

toolsets to investigate protein homeostasis and dysfunction in health and disease. 

Advancements in proteomics protocols targeting the insoluble proteome fraction have 

expanded our capacity to explore protein and peptide cross links with unprecedented 

specificity and sensitivity [243]. As novel bioinformatics tools are continuously being 

developed to identify protein native or chemically-induced cross-links to probe protein 

structures [259], advances in our understanding of aging and proteostasis-related diseases 

are expected in the near future. Such tools have already been implemented with success to 

investigate, for example, dysregulated extracellular matrix deposition and crosslinking which 

underlies tissue fibrosis at different stages of pancreatic cancer [246]. It is thus easy to 

anticipate that similar applications will be crucial in the next five years of studying tissue 

fibrosis in cancer, pulmonology, (skin and organ) aging, inflammaging and red blood cell 

senescence (especially in patients with neurocognitive impairment).
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Key issues

• Despite knowledge that the biological process of aging is believed to be the 

result of an accumulation of cellular damage to biomolecules, quantitative 

information from high-throughput proteomics on physiological concentrations 

and ratios of polypeptides in various compartments of the human cell during 

the aging remains understudied.

• While impaired proteostasis has been clearly associated with numerous age-

related diseases, it is unclear whether and to what extent molecular salvage 

mechanisms may ensue to prevent the onset of such comorbidities. For 

example, while accumulation of amyloid protein aggregates has been 

identified as an etiological factor of Alzheimer’s disease, impaired protein 

homeostasis (i.e., extra copies) of amyloid precursor protein (coded by a gene 

on chromosome 21) do not necessarily result in Alzheimer’s disease in the 

Trisomy 21 (Down syndrome) population.

• Mechanisms of ferroptosis and their potential mechanistic involvement in 

dysregulated protein homeostasis have not been yet extensively investigated.

• Omics technologies and bioinformatics tools to enrich (e.g., high-pH 

reversed-phase fractionation [260]) and characterize protein/peptide/amino 

acid cross-links have been introduced only in recent years. Though promising, 

the application of these tools to the study of altered proteostasis in aging and 

disease is only in its infancy.

Reisz et al. Page 32

Expert Rev Proteomics. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overview of protein quality control machinery. To preserve proteome integrity, cells contain 

a diverse set of proteins that work together to ensure proper structure and localization of 

nascent and existing proteins. Figure adapted from Henning and Brundel [157].
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Figure 2. 
Aging and age-related diseases adversely impact proteostasis mechanisms in a multitude of 

tissues throughout the human body; only several are shown here. (Ab = amyloid beta, AD = 

Alzheimer’s disease, ER = endoplasmic reticulum, PDI = protein disulfide isomerase, PTM 

= post-translational modification, ROS = reactive oxygen species, UPR = unfolded protein 

response, UPS = ubiquitin-proteosome system)
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