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)e thyroid is one of the largest endocrine glands in the human body, which is involved in several body mechanisms like
controlling protein synthesis and the body’s sensitivity to other hormones and use of energy sources. Hence, it is of prime
importance to track the shape and size of thyroid over time in order to evaluate its state. )yroid segmentation and volume
computation are important tools that can be used for thyroid state tracking assessment. Most of the proposed approaches are not
automatic and require long time to correctly segment the thyroid. In this work, we compare three different nonautomatic
segmentation algorithms (i.e., active contours without edges, graph cut, and pixel-based classifier) in freehand three-dimensional
ultrasound imaging in terms of accuracy, robustness, ease of use, level of human interaction required, and computation time. We
figured out that these methods lack automation andmachine intelligence and are not highly accurate. Hence, we implemented two
machine learning approaches (i.e., random forest and convolutional neural network) to improve the accuracy of segmentation as
well as provide automation. )is comparative study intends to discuss and analyse the advantages and disadvantages of different
algorithms. In the last step, the volume of the thyroid is computed using the segmentation results, and the performance analysis of
all the algorithms is carried out by comparing the segmentation results with the ground truth.

1. Introduction

)e segmentation and volume computation of thyroid are of
prime importancewhen it comes to the diagnosis and treatment
of thyroid diseases. )yroid is a butterfly-shaped gland located
below the Adam’s apple on the front of the neck. Most of the
thyroid diseases like Graves’ (excessive production of thyroid
hormones), subacute thyroiditis (inflammation of thyroid),
thyroid cancer, goitre (thyroid swelling), and thyroid nodule
(small abnormal lump growths in thyroid) involve changes in
the shape and size of thyroid [1]. Hence, it is essential to
compute the volume of thyroid over time to identify whether
the thyroid is healthy or not. We use ultrasound (US) imaging
for data acquisition instead of other imaging modalities as it is
much safer and painless when used on the patients.

Several research works have been proposed on how to
segment the thyroid in individual 2D US images. Zhao et al.

[2] proposed several approaches (edge detection, method of
threshold value, region splitting and merging, watershed
segmentation, active contour, graph theory, US image
segmentation based on Ncut, and segmentation based on
improved normalized cut) based on 2D segmentation of
thyroid in US images. Kaur and Jindal [3] segmented thyroid
from 2D US and scintigraphy images using active contour
without edges, localized region-based active contour, and
distance regularized level set. Augustin et al. [4] tested and
segmented thyroid US images using fuzzy c-means algo-
rithm, histogram clustering, QUAD tree, region growing,
and random walk [5]. A polynomial Support Vector Ma-
chine (SVM) was used [6] to segment the thyroid gland in
US images. A local region-based active contour was pro-
posed [7] to segment and compute the area of segmented
thyroid in a 2D US image. Another region-based active-
contour implementation to segment medical images was
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carried out by Mylona et al. [8, 9] where they encoded the
local geometry information (i.e., orientation coherence in the
edges of the regions to be segmented) to control the evolution
of the contour. Similarly, thyroid segmentation in US images
using a novel boundary detection method and local binary
patterns for texture analysis was proposed by Keramidas et al.
[10]. Level-set active-contours models for thyroid segmen-
tation in US images were used in [11, 12].)esemethods were
mainly based on variable background active contour and joint
echogenicity texture. Garg and Jindal later worked on feed-
forward neural network [13] to segment thyroid gland from
US images. Recently, Narayan et al. [14] made use of the
speckle-related pixels and imaging artefacts as source of in-
formation to perform multi-organ (thyroid, carotid artery,
muscles, and trachea) segmentation in thyroid US images.

Similarly, several research works have been carried out to
segment a full 3D thyroid image. Kollorz et al. [15] proposed
a semi-automated approach to classify thyroid gland for
volumetric quantification using geodesic active contour.
Chang et al. [16] proposed radial basis function (RBF) neural
network to segment the blocks of thyroid gland. 3D mass
spring models for thyroid cartilage segmentation by creating
a 3D deformable shape models were proposed by Dornheim
et al. [17] but on computed tomography (CT) images. A
complete segmentation and analysis of 3D thyroid images
was carried out by Osman [18] by thresholding the voxel
intensities and then connecting similar voxels to predict the
segmenting regions.

)e aforementioned approaches have limitations in the
sense that they work either on a single 2D image or on a whole
3D image and they do not make use of the spatial relationship
between the neighbouring US slices. Hence, we propose three
widely used segmentation algorithms which usually work on
a 2D image but can be extended to segment a sequence of
freehand US images by making use of the spatial relationships
between the corresponding image frames. )ese three ap-
proaches are based on active contours without edges
(ACWE), graph cut (GC), and pixel-based classifier (PBC). In
case of ACWE, the centroid of the segmented image is used as
the priori information to find the location of contour ini-
tialization in the corresponding slices. GC allows the user to
select the foreground and background areas in one image, and
these information are transferred to the corresponding slices
for further initialization. In PBC, the user clicks inside and
outside of the thyroid region to extract the features for thyroid
segmentation which are used to train the decision trees and
later to classify thyroid and nonthyroid regions in the cor-
responding images. Our approach of segmenting individual
slices and then reconstructing them to a volume possess
greater advantages than segmenting directly on the volume
itself as segmenting on the 3D image is very complex and is
difficult to control. Also, segmentation in 2D allows to analyse
the shape of the thyroid in detail as compared to segmenting
directly on the thyroid volume.

)e main purpose of this work is to compare three
nonautomatic segmentation techniques, which are based on
ACWE [19], GC [20], and PBC [16] to perform the seg-
mentation in the thyroid images. )ey are compared based
on their accuracy, robustness, ease of use, and computation

time. We also compare the results of these approaches to some
of the existing methods [17] that use mass spring models. )ese
algorithms were chosen over others as they can be used not only
on one image but also on a sequence of US images in a dataset to
produce a 3D segmented thyroid as the information from
a segmented image could be transferred to the corresponding
image slices to segment them. Additionally, when the seg-
mentation is ongoing in different images in a dataset, the user
could directly interact with the segmentation results and correct
them if there are any under- or oversegmentation. After seg-
mentation, the segmented images are later used for 3D re-
construction and volume computation using ImFusion [21] and
MeVisLab [22]. We figured out that the nonautomatic methods
pose several disadvantages and thus implemented two automatic
machine learning based methods such as Random Forest
Classifier (RFC) andConvolutionalNeuralNetwork (CNN) and
compared their performance with the nonautomatic methods.
We came to the conclusion that the commonly used algorithms
could not segment a series of US images highly accurately as
compared with these supervised learning techniques.

2. Materials and Methods

In this section, we will explain the three nonautomatic as well
as the two automatic methods that are compared in this work
to segment the thyroid glands in US images. )e automatic
methods use 3D thyroid images while the nonautomatic
methods use 2D images. We will also present the 3D re-
construction (using segmented results from nonautomatic
methods) as well as volume computation technique.

2.1. Active Contour without Edges

2.1.1. Preprocessing. ACWE segmentation was followed by
a preprocessing step as the algorithm mainly worked on the
gradient information for contour evolution and the pre-
processing step improved the gradient visualization. US
images mainly contain speckle noise [23] and have low
contrast [16]. )e speckle noise is produced by the in-
terference of the returning ultrasound waves at the trans-
ducer aperture as the ultrasound images are produced when
the reflected sound waves from different surfaces inside the
body are picked up by the transducer. To enhance the
contrast and suppress the speckle noise, a preprocessing step
is carried out. Contrast enhancement [24] is used to improve
the visibility of the thyroid region. In this work, we make use
of Histogram equalization technique which is one of the
methods used in contrast enhancement. It helps in re-
covering the lost contrast in the image by remapping the
brightness values such that they are distributed over all the
pixels. After histogram equalization, median filter is applied
to suppress the speckle noise. It not only reduces speckles
but also preserves the gradient/edge information.

2.1.2. Segmentation. After preprocessing, the segmentation
process was carried out using the level-set approach developed
by Chan and Vese [19]. It is based on the minimization of the
Mumford-Shah functional and involves four main steps.
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In the first step, the user starts by initializing a rec-
tangle/square mask around the region to be segmented. )e
initialization of the mask (Figure 1) is a very important step
in this algorithm as a wrong initialization can lead to the
segmentation of unnecessary segments inside the image.)e
initial mask separates the image into two regions: fore-
ground (�1) which is inside of the mask and the background
(�0) which is outside of the mask.

In the second stage, a Signed Distance Function (SDF),∅,
is computed from the initial mask (C) by using the Euclidean
distance. SDF is one of the methods of representing the level
sets which are used to keep track of evolving curve over time.
Our goal is to evolve∅(x, y) when the evolving contour (C) is
the zero level set of ∅(x, y, t) at each time t.

)irdly, the forces that control the evolution of the initial
contour are computed. )ese forces are force from the image
and force from curvature. Hence, they are calculated as follows:

Fimage � 􏽚

inside C

I−µin( 􏼁
2

+ 􏽚

outside C

I−µout( 􏼁
2
, (1)

where I is the image, µin is the average inside the contour,
and µout is the average outside the contour.

Fcurvature �
∅2x∗∅yy +∅2y∗∅xx − 2∅x∅y∅xy

∅2x +∅2y􏼐 􏼑
3/2 . (2)

All the derivatives are computed using central differentiation
method. Using these two forces, the equation of the curve is
computed using the Taylor expansion given by the following
equation:

∅((x, y), t + Δt) � Δt∗∅t +∅((x, y), t), (3)

where

∅t � α∗Fcurvature +
Fimage

max Fimage

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, (4)

Δt �
1

max ∅t( 􏼁 + ε
, (5)

where α represents the smoothing term and ε represents the
coefficient to satisfy Courant, Friedrichs, and Lewy (CFL)
condition [25]. )e evolution of the contour stops after the
given number of iterations are complete, giving us the seg-
mented thyroid image.

In the last stage, the result of the segmentation on the first
image of the dataset is used to segment rest of the images in
the dataset. After the segmented thyroid is obtained, its centre
of mass is computed. )is centre of mass is used to find
probable centre of mass of the thyroid in next image slice.

It is computed by making use of the tracking matrices
obtained during the data acquisition phase. Each image in the
dataset has an associated tracking matrix which gives the
transformation from the origin of electromagnetic (EM) tracking
system to the centre of the image. Hence, the centre of each
image can be computed using the transformation matrix which
has the information about the centre of each image in the dataset.

Using this information, the Euclidean distance between
the image centres of the current and the next image is
computed and the angle between the centres is computed.
After computing the distance and angle between the two
image centres, a probable centre of mass of the thyroid in the
next image is computed by traversing the same distance and
angle from the centre of mass of the current segmented
thyroid [26]. Centre of mass computed this way will serve to
be the centre of rectangle in the next image frame around
which the new mask will be initialized automatically. )e
size of the rectangle will be the same as it was drawn by the
user in the first image. In this way, the automatic initiali-
zation of segmentation mask is done in the consecutive
image frames which will undergo the ACWE algorithm to
produce segmented thyroids. )e schematic description of
the approach is presented in Figure 2.

A fixed number of iterations is set by the user for the
contour evolution. By increasing the number of iterations,
the computation time will be higher. Hence, a trade-off
between the accuracy and computation time has to be
maintained while running this algorithm.

2.2. Graph Cut. )is approach makes use of the GrabCut
algorithm from Rother et al. [20]. It is also a semi-automatic
2D segmentation algorithm just like the ACWE as the user
needs to mark the regions as being thyroid and nonthyroid in
the initialization phase. It starts with the user creating an initial
trimap by marking the thyroid region to be segmented by
using yellow scribbles and the surrounding (i.e., nonthyroid)
regions by using violet scribbles as seen in Figure 3.)e pixels
outside of the violet scribble are marked as known back-
ground, pixels inside of the violet scribble are marked as
unknown, and the yellow scribble areas are marked as definite
foreground.)e schematic description of the approach can be
seen in Figure 4.

)en, an initial image segmentation is computed where
all the unknown pixels are placed in the foreground class and
all the known background pixels are placed in the back-
ground class. )ese initial foreground and background
classes are used to construct foreground and background
Gaussian Mixture Models (GMMs) using the Orchard-
Bouman clustering algorithm [27]. Each pixel in the fore-
ground class is assigned to the most likely Gaussian com-
ponent in the foreground GMM, and similarly, each pixel in

Figure 1: ACWE initialization of the mask by the user.
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the background class is assigned to the most likely back-
ground Gaussian component. With the new distribution of
the pixels, the initial GMMs are disregarded and new GMMs
are learned from the pixel distributions in each of the two
classes.

Finally, a graph is built which consists of each pixel as
node and two special nodes (i.e., foreground and back-
ground). All of these nodes are connected by two types of
edges (also called as links). )e first link (i.e., N-link)
connects a pixel to its 8-neighbourhood pixels. )ese links
describe the penalty for placing a segmentation boundary
between the neighbouring pixels. )e second link (i.e., T-
link) connects each pixel to the foreground and background
nodes. Each of these links has a weight which represents the
probability of a pixel belonging to either a foreground or
a background. )ese probabilities are computed in the
GMM models and updated in each iteration until a con-
vergence is reached to get a segmented thyroid. )e weight
of the N-links between pixel m and its 8-neighbourhood
pixels, n, is computed as

N(m, n) �
c

dist(m, n)
e
−β zm−zn

����
����
2

, (6)

where zm is the color of pixel m, c � 50 as suggested by Blake
et al. [28], and β is given as follows by Boykov and Jolly [29]:

β �
1

2􏼜 zm − zn

����
����
2
􏼝

.
(7)

)e initial user initializations are interpolated in the
corresponding slices to mark the thyroid and nonthyroid
regions (i.e., foreground and background) and create cor-
responding GMMs. )e aforementioned processes are then
repeated in each individual images to segment all the thyroid
in the dataset.)e advantage of this algorithm over ACWE is
that it is much faster than ACWE and the user can interact
with the result of the segmentation (i.e., postsegmentation)
and correct if any errors are present. )e results of the
segmentation from GC in all the 2D images are used to
reconstruct the 3D thyroid by using MeVisLab [22]. )e 3D
model is updated as soon as the user tries to improve the
segmentation results by further interaction in the segmented
images. )us, the accuracy of the algorithm is directly
proportional to the number of user interactions on the
segmented images.

)e increased number of user interactions adds to the
computation time of the algorithm. Hence, an optimum
number of user interaction should be chosen to obtain the
best segmentation results with minimum user interaction.
For this purpose, the user interaction in every 10 slices or
every 2mm was proposed.

2.3. Pixel-Based Classifier. )is approach is based on
training the decision trees by using different features
computed from the images. In this work, three image fea-
tures are computed. )e selection of the features is based on
the work of Chang et al. [16]. )e first feature that is
computed is the coefficient of variation Cv�(σ/µ), where σ
means the standard deviation and µ is the mean of the user
selected region during the initialization process. )is co-
efficient is computed in two different sized neighbourhoods
(i.e., 4-neighbours and 8-neighbours) of every pixel, thus
resulting in two features. )e third feature that is computed
is the mean of the smaller of the two neighbourhoods. So,
the first two features are the coefficient of variation at
two different sized neighbourhoods of every pixel, and the
third feature is the mean of the smaller of the two
neighbourhoods.

)e algorithm starts by the user clicking on the inside
and outside of the thyroid in several thyroid images from
where the features are computed which are then passed as
training input for the decision trees. )e trained trees later
classify the different regions in the image as thyroid or
nonthyroid. After segmentation, the user can click in more
regions to improve the segmentation results. However, se-
lection of wrong thyroid regions for training the decision
trees might result in oversegmentation. So, the user should
carefully select the thyroid regions. )e presented approach
is shown in the schematic diagram in Figure 5.

ACWE

Forces
computation

Contour
evolution

Segmented
image

SDFInitial mask MK

IK

M1

IKSCompute distance and
angle between centres of
current and next image

Compute
centre of mass

Estimate centre
of mass of next

image

Extension of ACWE to segment rest of the images in the dataset

I1 : initial image of the dataset
IKS : segmented image
IK : K

th image being processed

IN

IK

I1

M1 : Initial mask of the algorithm
(given by the operator in I1)

MK : Initial mask for the image Ik

Figure 2: Schematic description of ACWE segmentation method.

Figure 3: Graph cut initialization by the user.
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After segmentation and correction of the segmentation
errors, still some regions which are not part of thyroid might
exist. In order to eliminate these regions, morphological
operations were carried out to find the largest connected
component which is then considered to be the final seg-
mented thyroid.

We also tried to test this approach by using additional
features as presented in Chang et al., but we found out that
these features only slightly improved the segmentation ac-
curacy, while the computation time increased significantly.
Hence, we selected only the three aforementioned features
and trained our decision trees with them. Similarly, we chose
to work with decision trees instead of radial basis function
(RBF) neural network as used in Chang et al. because of its
faster computation time.

)is approach is the most intuitive one and requires the
least user interaction. However, the user can select more
than one thyroid region during the initialization phase, and
the features are computed accordingly. So, the user should
wisely select the regions that are only the part of thyroid.

2.4. Random Forest Classifier. )is approach is based on
training a random forest classifier for a binary classification
problem, which classifies each of the voxel in the thyroid US
images as thyroid or nonthyroid. RFC is basically a type of
ensemble learning method which constructs a final classifier
using a set of M individual weak classifiers. In our case, we
created 12 binary decision trees of depth 10.

We trained our RFC using a 10-fold cross validation
technique where 9 datasets were used for the training and 1
as validation data for testing the trained model. )is was
repeated until all the 10 datasets were used for testing at
different iterations. )e RFC approach uses some typical out
of the box image processing features including gradients,
Laplacian, Gaussian blur, and resampling at various

resolutions, making it a total of 30 different features for
training the decision trees. )ese features are computed in
each voxel with voxel size 15.

)e input from the training data for each of the trees,
x ∈ 1, . . . , M{ }, in the ensemble is created by using boot-
strapping of the samples (bagging) from the training dataset
and randomly sampling the subset of the features supplied to
each tree. Each tree is a collection of nodes N and features F,
which aid to final classification result. A decision tree is made
up of a single parent node Np,x, multiple splitting nodes
Ns,x,i,∀i ∈ 1, . . . k{ }, and leaf nodes Nl,x,j,∀j ∈ 1, . . . p􏼈 􏼉.
During splitting of the nodes, the best split is not chosen based
on all the features but a random subset of features from the
training dataset.

All the leaf nodes inside a decision tree will have a final
probabilistic model∅x,j ∈ [0, 1] associated with it. )e final
decision of a forest for each of the patches extracted from the
US images is made by averaging the individual decisions
(∅x,j(p)) from all the individual trees in the forest.

P
RF

(y(p) � 1) �
1

M
􏽘

M

x�1
∅x(p). (8)

We have used the most common and recognized method
to train the classifier [30, 31]. )e implementation of RFC is
carried out using ImFusion [21].

2.5. Convolutional Neural Network. )is approach is based
on training of the CNNusing the U-net architecture (Figure 6)
proposed by Ronneberger et al. [32] which consists of encoder
and decoder parts that analyse the whole image by contracting
in each successive layers and then expanding in order to
produce a full-resolution segmentation, respectively. Just
like RFC, the training and testing of CNN is performed using
a 10-fold cross validation technique. )e input for the CNN

Used to segment other
images in the dataset

Initial segmentation
into foreground and
background classes 

User creates
initial trimap

IKIK

I1

IN

Repeat until
convergence

Graph cut on the built graph
to find new foreground and

background pixels 

GMM created for
initial foreground and

background classes

Assignment of pixels
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background to most

likely GMM

Update GMM from
the pixel sets 

Figure 4: Schematic description of GC segmentation method.

Journal of Healthcare Engineering 5



consists of a 3D thyroid US images and its corresponding
ground truth. )e input can be represented as D � (In, Gn),

where In denotes one of the thyroid US image and Gn denotes
its ground truth obtained from medical experts.

)e network consists of two paths (i.e., downsampling
/encoder/left side and upsampling/decoder/right side). )e
downsampling path consists of two 3× 3× 3 convolutions
followed by a rectified linear unit (ReLu) in each layer and
then a 2× 2× 2 max pooling with stride of 2 in each di-
mension. )e number of feature channels is doubled in each
downsampling step. )e upsampling path remaps the lower
resolution feature maps to the higher resolution space of the
input images. It does this by upsampling the feature maps
followed by a 2× 2× 2 convolution (upconvolution) which
halves the number of feature channels in each upsampling
step, a concatenation with the corresponding feature map

from the downsampling path and two 3× 3× 3 convolutions,
each followed by a ReLu activation. )e final convolution
layer uses a 1× 1× 1 convolution with a voxel-wise softmax
activation function to compute a 3D probability map for
each of the target label (i.e., thyroid or nonthyroid) as the
output of our network.

Since the available datasets were only with 10 datasets
consisting of 1416 images, we had to make sure that the
network was not overfitting. We performed data augmen-
tation by rotating the images at random angles between −10°
and +10°, translating between −20 and +20 voxels in each
dimension, and scaling between −1.5 and 1.5 times from the
original size, and since the thyroid are in the left and right
sides in the human body, we also flipped the images. We
added a dropout of 25% after each pooling layer so that the
unnecessary neurons are discarded. Finally, we used Adam

Input: 3D thyroid US image

�yroid
US image

3 32 32

64 64

128 128 256 128

256

128 64

64 32 32 2

Output: 3D probability maps for
each class (i.e., thyroid/nonthyroid)

Conv 3×3×3+ReLu
Max pool 2×2×2
UP-conv 2×2×2

Concat

Conv 1×1×1

Figure 6: Architecture of our 3D U-net CNN. Each green box represents the feature maps.
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IK

I1

User clicks inside
and outside of
thyroid regions

Features extraction

Training decision trees

Segmentation of
thyroid region by

trained decision trees

Morphological
operations to get largest

semented region

Figure 5: Schematic description of PBC segmentation method.
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optimizer with relatively low learning rate to make sure that
the network was not overfitting. During the training, we
observed that the validation accuracy was very close to that
of the training accuracy which proves that our network was
not overfitting.

2.5.1. 3D Reconstruction and Volume Computation. )is
step involves 3D reconstruction and volume computation of
the segmented thyroid from ACWE and PBC using
ImFusion [21] and GC using MeVisLab imaging tools. )e
segmented 2D images are stored as binary images which are
processed to make a video.)e video file is passed along with
the tracking data to ImFusion and MeVisLab for 3D re-
construction of the thyroid as well as volume computation.
)e reconstruction is done by the interpolation between the
corresponding image frames of the ultrasound sweep to fill
the empty spaces between the image slices.

Volume computation of thyroid is particularly impor-
tant for the medical doctors as this allows them to keep track
of the size of the thyroid over time and diagnose whether the
patients have any thyroid disorders or not.

3. Experimental Results

3.1. Data Collection. We acquired the thyroid datasets from
different clinical university hospital-based sources. A total of
6 healthy human datasets were acquired using the General
Electric (GE) Logiq E9 US system which was equipped with
the Ascension driveBay EM tracking system. )ese
dataset along with the ground truth are available at Open-
CAS [33]. A ML6-15 linear probe was used to acquire the
data. All the images were acquired along with a tracking
matrix that gave the transformation from the origin of the
EM tracking system to the centre of the image. )ese ma-
trices are used for the 3D reconstruction of the segmented
thyroid. )e images for the evaluation of nonautomatic
methods had a size of 760× 500 pixels.

A total of 1416 2D images corresponding to 10 datasets
were acquired and used for the evaluation of both the au-
tomatic and nonautomatic methods. )e 3D models of all
the 10 datasets were used for evaluating the automatic
methods. All these datasets are stored in the DICOM format.
To evaluate the accuracy of our segmentation approaches, we
acquired the ground truth by manually tracing the thyroid
contour with the help of two medical experts from Mag-
deburg university clinic using MeVisLab. )e datasets are
presented in Table 1. )e results and discussion may be
presented separately, or in one combined section, and may
optionally be divided into headed subsections.

3.2. Evaluation Procedure. For evaluation of the segmented
images, we compare all the segmentation algorithms using
two performance measures. We compute Dice’s coefficient
(DC) to compare the segmentation accuracy between active
contours, graph cut, and pixel-based classifier. Similarly, we
compute Hausdorff distance (HD) to compare the accuracy
of all the algorithms with the works of Dornheim et al. [17].

)ese measures are computed by comparing the segmen-
tation results with the ground truth images.

Dice’s coefficient is a numerical estimate used for com-
paring the similarity of two samples. In our case, it is
a measure to see how accurate our segmented results were by
comparing the segmentation results with the ground truth
obtained by manual segmentation of the thyroid by trained
medical staff. It ranges from 0 to 1, 0 meaning the two
datasets are completely different from each other and 1
meaning the datasets completely overlap with each other. It
is computed by using the following formula:

Dice’s coefficient �
2|X∩Y|

|X| +|Y|
, (9)

where X is the segmented image and Y is the ground truth.
Similarly, Hausdorff distance measures how far the two

subsets of a metric space are from each other. In other words, it
is the greatest of all the distances from a point in one set to the
closest point in the other set; so the less the distance is, the closer
the sets are. It is computed by using the following formula:

Hausdorff distance � max
x∈X

min
y∈Y

d(X, Y){ }􏼨 􏼩, (10)

where x are the pixels in the segmented image X and y are
the pixels in the ground truth image Y.

)e results of segmentation are later used for 3D re-
construction and volume computation. We compare the
volumes of the segmented thyroid obtained from all the five
algorithms. )e accuracy of volume computation is com-
puted by comparing the volume of the 3D reconstructed
segmented thyroid to that of the ground truth.

3.3. Analysis of Segmentation and 3D Reconstruction. )is
section is further divided into two subsections where the first
subsection will present the visual analysis of the segmented
images and the second subsection will present the quantitative
comparison of accuracy, robustness, ease of use, and com-
putation time of all the segmentation algorithms that we have
discussed.

3.3.1. Visual Analysis. As mentioned earlier, a total of 1416
images in the ten datasets were taken for the evaluation

Table 1: Acquired datasets for the evaluation of nonautomatic and
automatic methods.

Dataset Number of images
D1 96
D2 50
D3 94
D4 55
D5 135
D6 167
D7 216
D8 211
D9 201
D10 191
Total 1416

Journal of Healthcare Engineering 7



procedure. An example of segmented thyroid US image
from each of the proposed algorithms will be presented in
this section.

)e result of segmentation in four thyroid images using
ACWE along with the user-initialized mask is shown in
Figure 7, GC is shown in Figure 8, PBC is shown in Figure 9,
RFC is shown in Figure 10, and CNN is shown in Figure 11.
)ese segmentation results show that the automatic methods
produce better segmented thyroid as compared to the non-
automatic methods. Within the nonautomatic methods,
ACWE and GC give a better approximation of the segmented
thyroid region compared to PBC as it has few oversegmented
areas. In case of ACWE, the number of iterations of contour
evolution is set by the user in order to optimize between the
accuracy and the computation time, and because of this, the
contour does not reach the narrow areas like the isthmus as
shown in Figure 4. We also allow the user to stop the seg-
mentation process where GC is more user-friendly as it allows
the user to disregard the oversegmented areas in the post-
segmentation stage. PBC works by computing the features
from the areas the user select during the initialization process,
and because of this, only those areas that have very similar
features to that of initialized areas are segmented as thyroid
region. )is results in undersegmentation as well as over-
segmentation most of the times.

Similarly, for the visualization, we performed the 3D
reconstruction of the segmented thyroid using the whole set
of 2D segmented images. )e 3D reconstructed thyroid
using ImFusion is shown in Figure 12 and MeVisLab is
shown in Figure 13. With MeVisLab, we could even segment
the neighbouring artery (i.e., arteria carotis) using a Hessian-
based vesselness filter [34].

3.3.2. Quantitative Analysis. In this section, the comparison
of the accuracy of segmentation in the all the five algorithms
(i.e., ACWE, GC, PBC, RFC, and CNN) in terms of DC is
presented in Table 2. Also, the comparison of segmentation
accuracy of all the five algorithms with two of the standard
algorithms [17] in terms of HD is presented in Table 3.

)e volume of the segmented thyroids from ACWE, GC,
and PBC was computed after the 3D reconstruction using
ImFusion and MeVisLab and is presented in Table 4. )e
results of the volume computation from segmentation re-
sults show a close correlation with the segmentation results
as well as ground truth in terms of accuracy.

We compared the three nonautomatic algorithms not
only based on their accuracy of segmentation but also on
other factors like the computation time, robustness of the
algorithm, number of user interactions required, etc. All the
algorithms performed differently on average where ACWE
performed the best with an average DC of 0.800, PBC
performed the worst with an average DC of 0.670, and GC
performed relatively well with an average DC of 0.765. Even
though ACWE was found to be the best performer, it is not
accurate enough to use for clinical practices as they require
relatively higher accuracy.

ACWE produced undersegmented and oversegmented
results in some cases as the contour evolution (set by the

user) does not reach all the regions of thyroid (e.g., isthmus
of thyroid) as well as due to the wrong initialization of the
contour (this happens when the segmentation results from
one image frame are used to segment the corresponding
image frames). In order to address these problems, the user
could stop the ongoing segmentation at any image frame and
change the number of iterations as well as re-initialize the
initial mask. 7.7 re-initializations were required on average
per dataset. Similarly, the average computation time for
ACWE was around 369 seconds in average making it the
slowest of all the algorithms, and the initialization de-
termined the rest of the segmentation process. Hence, it is
not very robust as compared to the other algorithms. All the
methods were implemented in MATLAB in a Lenovo T430
)inkPad notebook with Intel Core i5-3320M CPU,
2.60GHz processor, and 8.00GB RAM.

GC required the most number of user interactions
(i.e., 36 scribbles on average) as the user could visualize the
segmentation results instantly and improve it with more
interactions. Hence, the quality of the results is directly
proportional to the number of user interactions using this
algorithm. )e computation time was around 98 seconds on
average per dataset. Graph cut is robust compared to the
other two approaches as the user can control the results of
the segmentation (i.e., during postsegmentation).

PBC required very few user interactions as the user had
to click twice, one inside and one outside of the thyroid.
However, the user could take more samples by additional
clicks to improve the segmentation results. On average, 4.8
clicks were made while segmenting the images. In the same
time, if wrong samples were taken, the user had to start the
process from the beginning. )is makes the algorithm less
robust as compared to GC and ACWE. )e computation
time was around 10 seconds making it the fastest of all the
algorithms. )e comparison of the computation time and
the number of user interactions required in all the three
algorithms are shown in Table 5.

)e RFC and CNN yielded an average DC of 0.862 and
0.876, respectively, in ten datasets when tested using a 9-fold
cross validation. )e computation time for the predication
of one volume was on average 15.62 seconds for the RFC and
34.45 seconds for the CNN. )ese approaches had higher
accuracies of segmentation as compared with ACWE, GC,
and PBC. Also, these methods are highly robust as the al-
gorithm does not depend on user interaction. Both of these
approaches were also implemented in the same workstation
as mentioned before.

4. Discussions and Conclusions

As mentioned earlier, it is essential to keep track of thyroid
shape and size over time as it helps to diagnose whether the
thyroid is healthy or pathological. In this paper, we have
worked on three thyroid segmentation techniques which
attempted to extend the 2D segmentation algorithm to
generate a 3D segmented thyroid. We have evaluated these
algorithms on the basis of accuracy of segmentation, com-
putation time, number of user interactions required, and the
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(a) (b)

(c) (d)

Figure 8: Segmentation of 4 different thyroid images using GC.

Input image:img041.png Contour initialization Contour initializationInput image:img049.png

250 iterations Segmented thyroid Segmented thyroid250 iterations

Input image:img054.png Contour initialization Contour initializationInput image:img071.png

250 iterations Segmented thyroid
Segmented thyroid250 iterations

(a) (b)

(c) (d)

Figure 7: Segmentation of 4 different thyroid images using ACWE.
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robustness. At the same time, a comparison analysis was
carried out with the works of Dornheim et al. [17].

We found that all three nonautomatic algorithms per-
formed to different levels. However, a specific approach can
be chosen if faster results are required or the least human
interaction is desired. )e result of volume computation
corresponds to the segmentation as well as to the ground
truth results which shows that the volume-rendering process

was correct. )e accuracy of the discussed algorithms could
be further improved.

)e computation time of ACWE could be accelerated by
reducing the image resolution and using different initiali-
zation shapes (e.g., ellipse as thyroid is elliptical in shape).
Similarly, the highly echogenic areas near the thyroid could
be detected by preprocessing and later the evolution of the
contour could be restricted to these areas which would

Figure 10: Segmentation of thyroid using RFC. Left: segmented thyroid images as binary images with three different viewing angles (top-
left, top-right, and bottom-left, and 3D thyroid in bottom-right). Right: original thyroid images with three different viewing angles (top-left,
top-right, and bottom-left, and segmented 3D thyroid in bottom right).

(a) (b)

(c) (d)

Figure 9: Segmentation of 4 different thyroid images using PBC.
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reduce the oversegmentation. )e preprocessing step can be
further worked on with new contrast enhancement and
filtering algorithms so that we generate a good quality ul-
trasound images before segmentation. In case of graph cut,

a postprocessing step could be added which could take the
shape prior information of the thyroid and remove the
oversegmented areas automatically. Segmentation by pixel-
based classifier could be improved with more image features.
It can be made fully automatic using machine learning
approaches and a postprocessing step to remove the over-
segmented areas just like in graph cut. Also, advanced
thresholding and connected component analysis could be

Figure 11: Comparison of the segmented thyroid (red) with the ground truth (white) using CNN. Top-left, top-right, and bottom-left: three
different viewing angles of segmented thyroid and ground truth. Bottom-right: segmented thyroid in 3D.

Figure 12: 3D reconstructed thyroid using ImFusion.

Figure 13: 3D reconstructed thyroid (white) along with the
neighbouring artery (red) using MeVisLab.

Table 2: Comparison of DC in five segmentation algorithms.

Dataset ACWE GC PBC RFC CNN
D1 0.841 0.729 0.749 0.859 0.863
D2 0.819 0.636 0.666 0.864 0.876
D3 0.804 0.706 0.610 0.853 0.872
D4 0.816 0.841 0.680 0.872 0.869
D5 0.771 0.706 0.673 0.831 0.879
D6 0.781 0.853 0.623 0.853 0.874
D7 0.788 0.848 0.659 0.895 0.861
D8 0.746 0.746 0.547 0.877 0.888
D9 0.785 0.676 0.732 0.841 0.901
D10 0.852 0.912 0.761 0.875 0.877
Average 0.800 0.765 0.670 0.862 0.876

Table 3: Comparison of our approaches with other segmentation
algorithms.

Dataset Hausdorff distance (mm)
ACWE 8.1
GC 8.3
PBC 9.5
RFC 7.5
CNN 7.0
Volumetric mass spring model 11.1
Surface mass spring model 9.8
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performed to get the largest connected component and
subsequently remove any elements outside that component
to get a better segmented thyroid. Furthermore, all the
acquired datasets were from healthy patients, so pathological
datasets have to be acquired and tested on the discussed
algorithms to evaluate their practical usefulness.

We figured out that the first three methods lacked au-
tomation and machine intelligence, were not highly accu-
rate, and required long computation time. Hence, we
implemented an RFC and a CNN that predict for each voxel
the probability of belonging to the thyroid. Both approaches
were trained for each voxel the probability of belonging to
the thyroid in the available ten datasets, and they show better
results as compared to the nonautomatic approaches.

As next steps, we will investigate several other thyroid
segmentation approaches based on machine learning that
operate directly on the volumetric three-dimensional ul-
trasound data instead of the 2D frames volumetrically
compounded with isotropic spacing to form a 3D volume
[35]. Similarly, future steps towards these automatic ap-
proaches must include more training data especially those
with thyroid diseases as we have carried out our tests on
healthy thyroid images only.
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