
Direct likelihood inference on the cause-specific cumulative 
incidence function: a flexible parametric regression modelling 
approach

Sarwar I Mozumder1, Mark J Rutherford1, and Paul C Lambert1,2

1Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, 
UK

2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

Abstract

In a competing risks analysis, interest lies in the cause-specific cumulative incidence function 

(CIF) which can be calculated by either (1) transforming on the cause-specific hazard (CSH) or (2) 

through its direct relationship with the subdistribution hazard (SDH). We expand on current 

competing risks methodology from within the flexible parametric survival modelling framework 

(FPM) and focus on approach (2). This models all cause-specific CIFs simultaneously and is more 

useful when we look to questions on prognosis. We also extend cure models using a similar 

approach described by Andersson et. al. for flexible parametric relative survival models. Using 

SEER public use colorectal data, we compare and contrast our approach with standard methods 

such as the Fine & Gray model, and show that many useful out-of-sample predictions can be made 

after modelling the cause-specific CIFs using a FPM approach. Alternative link functions may also 

be incorporated such as the logit link. Models can also be easily extended for time-dependent 

effects.

Introduction

To understand more about patient prognosis and disease impact, the probability of death due 

to a particular cause in the presence of other causes is needed and involves the consideration 

of competing causes of death. This probability is known as the cause-specific cumulative 

incidence function (CIF). From a statistical modelling perspective, this is usually obtained 

by either (1) estimating all the cause-specific hazard (CSH) functions, or (2) transforming 

using a direct relationship with the subdistribution hazard (SDH) function for the cause of 

interest. The choice of model on which to make our statistical inference depends on the 

research question to be answered. Wolbers et. al., 1 along with others, highlight that, if 

interest lies in prognosis, direct inference on the cause-specific CIF is most useful. On the 

other hand, for more aetiological-type research questions, regression models on the CSH are 

more important.2,3,4 In this paper we focus on developing methodology when interest is in 

prognosis where models have the advantage of maintaining the one-to-one correspondence 

between the covariates and the cause-specific CIF. On the other hand, models for the CSH 
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estimate covariate effects on mortality rates amongst those at risk. Hence, parameter effects 

on the two models are not the same and have different interpretations. Although most 

researchers tend to focus on reporting results on either the CSH or SDH, we support the 

view that results on both CSH and SDH models should be reported together for a complete 

understanding on the impact of covariate on risk.5,6 At present, the most commonly 

implemented method for modelling covariate effects on the cause-specific CIF is the Fine & 

Gray model for the SDH.7,8 However, this approach models a single event and we must fit 

separate models for all events of interest if we want to understand the overall impact of a 

covariate. Jeong and Fine9 investigated a direct parametric inference approach and define a 

likelihood which allows us to model all the cause-specific CIFs simultaneously. We extend 

this approach to flexible parametric models (FPM) which offer some advantages. For 

instance, by adopting the direct approach in modelling the cause-specific CIF under FPMs, it 

is less computationally intensive compared to the Fine & Gray approach since it does not 

require the calculation of time-dependent weights for the censoring distribution. This gain in 

computational efficiency is especially useful when analysing larger datasets. Also, under the 

approach proposed in this paper for directly modelling the cause-specific CIF, a more 

flexible shape for the underlying cause-specific CIF whilst simultaneously modelling for 

more complex time-dependent effects is possible in contrast to the Jeong & Fine model. 

Finally, in comparison to the approach described by Jeong and Fine9, FPMs have the ability 

to model more complex shaped subdistribution hazard functions. Other methods for directly 

modelling the cause-specific CIF also implement estimation under alternative link functions. 

For example, Gerds et. al. 10 proposes the proportional odds model for the cause-specific 

CIF and makes the argument that this has the attractive property of simpler parameters with 

a more useful odds-ratio interpretation in comparison to the SDH model. However, there still 

remain some interpretation issues (see Section 2.4.1). Incorporating such alternative link 

functions on the cause-specific CIF is easy to implement using the approach outlined in this 

paper. In addition to the above, other useful comparative predictions to aid interpretation in 

FPMs is trivial since the baseline CIF is predicted as part of the likelihood in the model and 

is easily extractable as part of the linear predictor for further calculations involving the 

cause-specific CIFs. Standard errors and confidence intervals are calculated using the delta 

method.

Over a reasonably long enough follow up time, the cause-specific CIF for most cancers 

reach a plateau, referred to as “statistical” cure. At this point, patients no longer die from the 

cancer of interest and instead die from the other competing events, in which case, modelling 

the cure proportion amongst cancer patients may be of interest.11 We further develop cure 

models previously designed for the cause-specific or relative survival framework and extend 

to the approach outlined in this paper.12,13 Fitting these models allow us to obtain a direct 

estimate of the cure proportion.

In this paper, we introduce a FPM approach for direct likelihood inference on the cause-

specific CIF. The model is then extended to estimate the cure proportion and estimate the 

probability of patients bound to die from cancer amongst those that are still alive.14 The 

remaining content of the paper is structured as follows. Section 2 reviews competing risks 

theory and introduces the SDH. The proportional flexible parametric log-cumulative SDH 

and proportional odds models are formulated followed by a demonstration of a simple 
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extension for inclusion of time-dependent effects to model non-proportionality. The model is 

further extended to estimate the cure proportion. In Section 3, advantages of the model are 

demonstrated through an illustrative example using SEER colorectal data. Finally, Section 4 

discusses the method, some limitations and potential areas of interest for future 

methodological development.

Methodology

Let T be the time to event any of K competing causes k = 1, ⋯ , K and D denote the type of 

event, where D = 1, ⋯ , K. Here, we consider the events to be death from different causes 

and so the cause-specific CIF, Fk(t), is the probability of dying from a particular cause, D = 

k, by time t whilst also being at risk of dying from other causes 15,

Fk t = P T ≤ t, D = k (1)

The all-cause CIF, F(t), which is the probability of dying from any of the K causes by time t, 
is the sum of all K cause-specific CIFs and can also be expressed as the complement of the 

overall survival function, S(t),

F t = P T ≤ t = ∑
j = 1

K
F j t = 1 − S t (2)

Cause-specific and subdistribution hazard functions

The cause-specific CIF, Fk(t), can be expressed as a function of the SDH for cause k or 

expressed as a function of the CSH functions for all k causes. The CSH function, hk
cs t  gives 

the instantaneous mortality rate from a particular cause k given that the patient is still alive at 

time t in the presence of all the other causes of death.

hk
cs t = lim

Δ t 0
P t < T ≤ t + Δ t, D = k T > t

Δ t (3)

The cause-specific CIF can be written as a function of the CSHs for all K causes such that,

Fk t = ∫
0

t
exp −∫

0

t
∑
j = 1

K
h j

cs u du hk
cs u du (4)

Note here that the leading term within the integral gives the overall survival function, S(t).

Gray16 introduces the SDH for cause k, hk
sd t , which gives a direct relationship with the 

cause-specific CIF. This has the following mathematical formulation,
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hk
sd t = lim

Δ t 0
P t < T ≤ t + Δ t, D = k T > t ∪ T ≤ t ∩ D ≠ k

Δ t =
d
dt Fk t
1 − Fk t =

−
d ln 1 − Fk t

dt

(5)

and is interpreted as the instantaneous rate of failure at time t from cause k amongst those 

who are still alive, or have died from any of the other K – 1 competing causes excluding 

cause k.17 Consequently, the cause-specific CIF can be formulated directly in terms of the 

SDH function for cause k using standard survival relationships along with the cumulative 

SDH for cause k, Hk
sd t ,

Fk t = 1 − exp −Hk
sd u and Hk

sd t = ∫
0

t
hk

sd u du (6)

An important distinction between the CSH and SDH for cause k is found within the risk-set. 

The risk-set in the CSHs is described in the conventional epidemiological sense, i.e. those 

who have died from any of the k causes of death, are no longer considered to be at risk. In 

contrast, the risk-set for the SDH for cause k considers patients who have died from any of 

the K – 1 competing causes, excluding cause k, to still be at risk from dying of the cause of 

interest, k. A more detailed description and comparison of the risk-sets for the CSH and 

SDH for cause k can be found in Lau et. al. 18 Evidently, the risk-set associated with the 

SDH is unrealistic since of course those who have died from other causes excluding the 

cause of interest, i.e. cancer, cannot still be at risk. This has led to some discussion on the 

usefulness of the SDH function.19,6,20 However, a benefit of this construct is that it 

maintains a direct link to the cause-specific CIF and has been used in regression models so 

that we can identify a relationship between covariates and risk for cause k.

A useful relationship between the SDH and CSH was highlighted by Beyersmann and 

Schumacher21 in a letter regarding an article by Latouche et. al. 22,

hk
cs t = hk

sd t 1 +
∑ j = 1

K F j z − Fk t

1 − ∑ j = 1
K F j t

(7)

Thus using the SDH functions for all K causes, we can also obtain the CSH functions for all 

K causes.

Regression modelling

A common approach for modelling the CSH function is by assuming proportional hazards 

(PH) using the Cox model. So with covariates, x, we have that,
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hk
cs t x = h0, k

cs t exp xβk
cs (8)

where βk
cs t  are log cause-specific hazard ratios (HR), and h0, k

cs  is the baseline CSH 

function. To re-iterate, in order to estimate one cause-specific CIF, it is necessary to estimate 

the CSHs for all k causes (see Equation 4).

Alternatively, the most common model for the SDH for cause k is the Fine & Gray model.7 

This is derived in a similar way to the cause-specific Cox PH model in that it assumes 

proportionality of covariate effects on the SDH scale,

hk
sd t x = h0, k

sd t exp xβk
sd (9)

where βk
sd are log-SDH ratios (SHR) for cause k.

A key difference between the two regression models in Equation 8 and Equation 9 is in the 

interpretation of the parameters exp βk
cs  (HRs) and exp βk

sd  (SHRs). The HRs give us 

the association on the effect of a covariate on the cause-specific mortality rate and SHRs 

give the association on the effect of a covariate on risk (refer to Wolbers et. al. 1 for further 

details on interpretation). In this paper, we focus on implementing and extending the SDH 

regression model in Equation 9 from within the FPM approach.

Likelihood estimation

We first describe parametric inference on K competing causes of death under the CSH 

approach, which models using the standard survival likelihood function with an observable 

failure or censoring time, ti, with independent and non-informative right censoring, for each 

individual i = 1, ⋯ , N,

L = ∏
i = 1

N
∏
j = 1

K
S ti xi h j

cs ti xi

δi j S ti xi
1 − ∑ j = 1

K δi j (10)

where the censoring indicator, δik, tell us whether an individual died from any cause k (δik = 

1), or not (δik = 0) and S(ti|xk) is the overall survival function.

Alternatively, Jeong and Fine9 showed that we can simultaneously fit parametric models 

directly on the cause-specific CIF for all k causes, Fk(ti|xk) (k = 1, ⋯ , K), without the 

requirement of indirect specification through the CSHs. Hence, the likelihood for direct 

inference on the cause-specific CIF is expressed as,

Mozumder et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



L = ∏
i = 1

N
∏
j = 1

K
h j

sd ti xi 1 − F j ti xi

δi j 1 − ∑
j = 1

K
F j ti xi

1 − ∑ j = 1
K δi j

(11)

Note here, however, that, the cause-specific CIF, Fk (t), in Equation 11 is not a proper 

cumulative distribution function and is instead referred to as a subdistribution function since 

limt→∞ Fk (t) < 1.19

Flexible parametric regression model for the cause-specific CIF

Like the Cox model, the Fine & Gray model estimates covariate effects but does not 

specifically model the underlying baseline rates. We propose a parametric survival model 

which directly estimates both the covariate effects on the cause-specific CIF and the 

underlying baseline using the likelihood in Equation 11 simultaneously for all K causes. 

Standard parametric models such as the exponential, Weibull or Gompertz distributions, are 

often unable to capture more complex underlying baseline hazard functions containing one 

or more turning points.23 To better capture and represent the behaviour of real world data, a 

range of flexible parametric models on a variety of scales were introduced by Royston and 

Parmar.24 Building on the ideas of Royston and Parmar24, we use restricted cubic 

splines25, sk(ln(t); γk, mk), with M – 1 degrees of freedom where sk represents the spline 

function for cause k and ln(t) is to indicate operation on a log-time scale and consists of a 

vector of M knots, m, a vector of M – 1 parameters, γ. At time t = 0, as expected, we must 

have that the cumulative SDH, Hk
sd t , is equal to 0. Therefore, by operating on the log-time 

scale, as t → 0 we also have that Hk
sd t 0. Furthermore, log-time has a natural 

relationship with the Weibull cumulative SDH function when written in logarithmic form. 

Thus, we end up with the following log-cumulative SDH model which can be specified 

through a general link function, g(·), for the cause-specific CIF with covariates xk,

ln Hk
sd t = g Fk t xik = sk ln t ; γk , mk + xk βk = γ0k + γ1kz1k + ⋯

+ γ
M − 1 kz M − 1 k

+ xk βk

(12)

Where z1k, ⋯ , z(M–1)k are the basis functions of the RCS and are defined as follows:

z1k = ln t (13)

z jk = ln t − m jk +
3 − ϕ jk ln t − m1k +

3 − 1 − ϕ jk ln t − nMk +
3 , j = 2, ⋯, M − 1

where,
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ϕ jk =
nMk − n jk
nMk − n1k

(14)

and

u + = u, if u < 0
0, otherwise (15)

Usually, M knots are placed at equally spaced centiles of the distribution of the uncensored 

log-survival times including two boundary knots at the 0th and 100th centiles. The choice of 

the position and number of knots is subjective, which is used as an argument for a drawback 

of the flexible parametric modelling framework. However, others have explored this through 

a variety of sensitivity analyses of the knots and it has been shown to have very little 

influence on obtained predictions (please refer to Hinchliffe and Lambert26 and Rutherford 

et. al. 23 for more details).

Link functions—We showed in Equation 12 that we can derive a log-cumulative SDH 

model with covariates and through the general link function, g(·), for the cause-specific CIF, 

Fk(t), are able to apply similar transformations described in Royston and Parmar24 for the 

survival function. Lambert et. al. (submitted) offers more details on the various link 

functions available for the cause-specific CIF, but here we only introduce specification under 

a complementary log-log and logit link function.

The majority of regression models are specified through the complementary log-log link 

function which we will mainly focus on in this paper,

g Fk t xik = ln −ln 1 − Fk t xk (16)

and we can calculate the SDH function for each cause k and the cause-specific CIF, which 

are defined as follows,

hk
sd t xk =

d sk ln t ; γk , mk
dt exp sk ln t ; γk , mk + xk βk (17)

Fk t xk = 1 − exp −exp sk ln t ; γk , mk + xk βk (18)

where the βk’s are log-SHRs.
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Alternatively, Gerds et. al. 10 argues that specifying regression models on the cause-specific 

CIF through a logit link function, logit u = ln u
1 − u , is advantageous due to simpler 

interpretation of the parameters as odds ratios. Thus, the general link function becomes,

g Fk t xk = logit Fk t xk (19)

and the cause-specific CIF is,

Fk t xk =
exp sk ln t ; γk , mk + xk βk

1 + exp sk ln t ; γk , mk + xkβk
(20)

The logit link model described above, describes the probability of dying from the competing 

cause k in relation to the probability of not experiencing the competing event k which 

includes those that are still alive and those that have already died from one of the other 

competing events. Gerds et. al.10 argues that, because of this, the logit link models suffers 

from similar interpretation issues found in the SDH model.

Time-dependent effects to model non-proportionality

In Section, using the link function in Equation 16, we defined a proportional log-cumulative 

SDH FPM with RCS for the underlying baseline log-cumulative baseline SDH 

simultaneously for all K causes. A natural advantage of these models is that we can easily 

extend to incorporate time-dependent effects to model non-proportionality. This is achieved 

by fitting interactions between the associated covariates and the spline functions. Using this 

interaction, we can introduce a new set of knots, mek, which represent the eth time-

dependent effect for cause k with associated parameters αek. If there are e = 1, ⋯ , E time-

dependent effects, we can extend the cause-specific log-cumulative SDH in Equation 25 to,

ln Hk
sd t = ηk t = sk ln t ; γk , m0k + xk βk + ∑

l = 1

E
sk ln t ; αlk , mlk xlk (21)

In this approach, the spline function for different time-dependent effects can be different and 

requires fewer knots to the baseline spline function.27 This is an extension on the original 

approach proposed by Royston and Parmar.24 Furthermore, as mentioned previously, the 

choice of the number and position of these knots has shown to have little influence and is 

explored more extensively by Bower et. al. 27 As all K causes are modelled, it is also 

possible to specify different time-dependent effects for the each of the k cause-specific FPM 

regression model.

Estimating the cure proportion

Andersson et. al. 13 proposed a method that allows estimation of the cure proportion in a 

FPM framework. In the competing risks scenario, this would occur in a situation where the 
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cause-specific CIF is constant after a certain point in time t. The plateau in the cause-specific 

CIF can be due to several reasons. The scenario in which is more interesting, is when the 

CSH becomes 0, which means that, by the relationship in equation 7, the SDH is also 0 for 

that cause. On the other hand, this plateau can also be observed due to other reasons, for 

example, when everyone has died from other causes, and there are no patients left who are at 

risk for the cause of interest. In this case, we want to avoid estimating cure when everyone 

has died from something else and should only be estimated if we know there are patients 

who are still at risk at any given time. By adapting the approach described by Andersson et. 
al. 13, we can estimate the cure proportion from within the flexible parametric log-

cumulative SDH model specified in Section by forcing the log cumulative SDH to plateau 

after the last knot. This involves an adjustment to the way the spline variables are calculated. 

The first spline is a linear function of log-time and by calculating the splines backwards, the 

function is forced to be linear after the last knot (see Andersson et. al. 13 for more details). 

Since the SDH function for cause k on which we model the plateau needs to be evaluated 

whilst simultaneously modelling all other causes, the final knot must be specified after the 

final observed time of death. Finally, when we estimate the plateau in a cause-specific CIF, 

the level of this will depend on the CIF for all other competing events.14 Applying the 

methods in Andersson et. al. 13 and the above adjustment to a specific cause k = c on which 

cure is observed, we can fit a flexible parametric cure model with a complementary log-log 

link for a cause-specific CIF such that,

Fc t xc = 1 − 1 − πc

exp γ2cz2c + ⋯ + γ
M − 1 cz M − 1 c

+ ∑i = 1
E sc ln t ; αic , mic xic

(22)

where,

1 − πc = 1 − exp −exp γ0c + xc βc (23)

Therefore, the constant parameters, γ0c and xc are used to model the cure proportion for 

cause k = c. Here, we also implement a constraint on the linear spline, γ1c, such that it is 

equal 0.

A useful prediction from these models is the estimate of the proportion of patients that will 

eventually die, or are bound-to-die, from cancer, or other causes, of those that are still alive. 

It should be noted, however, that this is a measure at the population level and individual 

patients are not specified to a particular group. Where a plateau is observed for a particular 

cause, e.g. cancer, the cancer-specific CIF will no longer increase beyond a given point in 

time and allows estimation of the proportion of patients bound-to-die of cancer amongst 

those that are still alive.14 Using these quantities, patients can be partitioned into two 

separate groups which are separated by the summation of those that are bound-to-die from 

cancer and the cause-specific CIF for death from competing causes over follow-up time. The 

two groups, i.e. patients who will ultimately die from their cancer where k = 1, Palive,can(t), 
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and those who will die from competing causes where k = 2, ⋯ , K, Palive,oth(t), can be 

calculated as follows.

Palive, can t = πc − F1 t (24)

Palive, oth t = 1 − F2 t − ⋯ − FK t − πc (25)

where πc is the proportion of those bound-to-die from cancer on which cure is assumed. 

These are a useful summary measure of patient prognosis and further complements the 

direct FPMs on the cause-specific CIFs when interest primarily lies in answering more 

prognostic-related research questions.

Simulation

Modelling the SDH for a particular cause is usually performed using the Fine & Gray 

approach and is widely considered as the standard for modelling covariate effects directly on 

the cause-specific CIF. To contrast this approach against the log-cumulative subdistribution 

hazards (-CSDH) FPM, we carried out a simple simulation to demonstrate that, like the Fine 

& Gray model, unbiased estimates are also obtained with good coverage. Furthermore, we 

will present relative gain in precision (RPG) of modelling under the log-CSDH FPM over 

the Fine & Gray approach. We also aim to explore a common area of concern around the use 

of log-CSDH FPM which is in the choice of the number of knots, or degrees of freedom, for 

the restricted cubic splines. In our simulation results, we hope to echo what has already been 

shown in previous simulation studies regarding the use of restricted cubic splines in flexible 

parametric survival models.23

Design

A simulation study was designed with one scenario where true SDH functions were 

generated for two causes which approached an asymptote of 0. These SDH functions were 

chosen to demonstrate that restricted cubic splines were robust enough to handle a scenario 

when there is potential for the optimiser to search in the incorrect direction leading to 

negative SDHs. The complexity in the shape of SDH functions for both causes were 

formulated under the mixture Weibull distribution with the assumption of proportionality.

The design of the simulation study is outlined below,

1. Survival times were generated from CSH functions for both causes which were 

transformed from SDH functions generated from mixture Weibull distributions 

using the relationship in equation 7.28 The shape, γ, scale, λ and mixture, p, 

parameters were chosen such that the SDH functions for both causes tended to an 

asymptote of 0 (see Figure 1). SDH functions were generated under the 

assumption of proportionality between the covariate groups for each cause using 

simulated competing risks data based on CSH functions as derived by 
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Beyersmann et. al. 29 Note that we do not make any proportionality assumptions 

between the different causes. A censoring distribution was also simulated from 

an exponential distribution with mean equal to 0.1. Survival and censoring times 

were combined and an indicator variable for status was generated, choosing the 

minimum time to death, or censoring time. Administrative censoring was also 

imposed to restrict follow up time to 5 years.

2. A binary covariate was simulated from X ~ Uniform(0, 1) where X = 1 if 

Uniform(0, 1) < 0.5 and X = 0 if Uniform(0, 1) ⩾ 0.5

3. The binary covariate was assumed to have a proportional effect with a log-SHR 

of -0.5 for cause 1 and 0.2 for cause 2.

4. The Fine & Gray model and log-CSDH FPMs with 3, 4, 5, 6 and 9 degrees of 

freedom were fitted to each of the 1000 simulated datasets containing 200, 500 

and 5000 observations.

5. From each model, log-SHRs and the cause-specific CIF for cause 1 were 

obtained to determine bias, along with their respective standard errors to 

calculate root-mean-square-error (rMSE) and 95% CIs for inspecting coverage.

Results

Table 1 summarises the obtained log-SHRs for cause 1 and standard errors from 1000 

replicated datasets with 200, 500 and 5000 observations. The simulation under the above 

parameters generated a mean of 22% right-censored individuals for 200 and 5000 

observations and 23% for 500 observations and a mean of 28% failures from cause 1 for 

200, 500 and 5000 observations. The bias, i.e. difference between the model log-SHR and 

true log-SHR of -0.5, coverage and rMSE is given. Overall, for the models that converge, it 

is clear that under both the Fine & Gray and FPM approach, we get negligible bias, 

indicating that all models, irrespective of the number of degrees of freedom used for the 

baseline RCS, are unbiased. We also demonstrate good coverage in all of the models. 

Finally, a marginally lower rMSE is observed in all of the log-CSDH FPMs in comparison to 

the Fine & Gray approach. This demonstrates that, overall, estimates are obtained with a 

lower bias and more precision under the FPM approach over the standard method.

Similarly, also in Table 1, we have the bias, coverage and rMSE for the cause-specific CIFs 

at 1, 3 and 5 years since diagnosis. Again, we show that there is negligible bias in the 

estimates from all the models, good coverage is consistently shown over time and we also 

have similar rMSE across all the models. Overall, the simulation shows that, regardless of 

the number of degrees of freedom used for the baseline RCS, the parameters are stable 

across all the models and any differences between them are negligible.

However, convergence issues arise in the smaller simulated datasets for 200 and 500 

observations. Non-convergence especially arise when more complicated models are fitted 

i.e. more degrees of freedoms are used. This suggests potential over-fitting of the models to 

the data since, for example, using 3 to 4 degrees of freedom in the simulation with 500 

observations leads to no problems in model convergence.
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Illustrative Example

In this Section, we provide an example to illustrate the different predictions available after 

fitting a FPM to directly model all cause-specific CIFs. We further demonstrate that we can 

more accurately capture the shape of the data when fitting FPMs with time-dependent effects 

to relax the assumption of proportionality. The prediction of other useful predictions to aid 

interpretation in these more complex models are also demonstrated.

Description of data

We demonstrate the methodology outlined in this paper through the use of SEER public use 

colorectal data.30 The dataset contains survival information on 35,508 male patients aged 

between 55 and 84 years old diagnosed with colorectal cancer from 1998 to 2013. The data 

contain information on whether the patients were at localised or regional stage colorectal 

cancer at diagnosis. We excluded patients with distant stage cancer due to very high 

mortality leaving a few patients at risk towards the end of follow up time. Most of these 

deaths are due to the cancer which means the effect of competing causes of death is small 

and thus less interesting practically. It is also problematic including such patients for cure 

models as it can lead to unstable estimates in the tails which can cause some model 

convergence problems. Furthermore, as discussed in Section, estimating cure is of less 

interest for distant stage cancer patients since, towards the end of follow up time, nearly 

everyone dies from their cancer. Analyses included time to death from a total of 3 causes; 

death from colorectal cancer, other causes and heart disease. Follow up time is restricted to 

15 years from diagnosis.

Proportional subdistribution hazards models

Separate Fine & Gray models were fitted for each of the 3 causes with stage at diagnosis as 

the only covariate. To illustrate the estimation process, we initially restricted analysis to 

patients aged above 75 years old where competing risks are more likely to make an impact. 

Parameter estimates are compared against those predicted under the FPM approach which 

were fitted for the log-cumulative baseline SDH for all 3 causes simultaneously using 5 df 

for the baseline RCS. Table 2 shows the fitted estimates from a Fine & Gray model and a 

log-CSDH FPM. The apparent disagreement between the estimated subdistribution hazard 

ratios (SHRs) and their 95% CIs can be partially explained by the unreasonable assumption 

of proportionality of the effect of stage at diagnosis for all 3 causes being made on the 

competing causes in the FPM approach. More complex models were fitted in order to 

demonstrate this issue by fitting 3 separate log-CSDH FPMs by including time-dependent 

effects for the other competing events. For this data, because there is non-proportionality, it 

is accounted for by including time-dependent effects for all causes when modelling using the 

FPM approach, which is more sensible (see Section). These “adjusted” estimates are also 

compared in Table 2 which is labelled Log-CSDH FPM2 and good agreement between all 

SHRs and their 95% CI is now observed. The estimated cause-specific CIFs from both 

models are illustrated in Figure 2. Here, it is clear that the Fine & Gray Model and Log-

CSDH FPM2 yield similar estimates and we observe very good agreement between the two 

curves.
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Non-proportional subdistribution hazards models

Generally, the effect of stage on mortality is stronger shortly after diagnosis compared to 

later on in time, indicating that proportional SDH may not be a reasonable assumption. To 

relax this assumption, time-dependent effects are included to allow the effect of stage at 

diagnosis to vary over time for all K causes of death using RCS with 3 df. To assess the 

accuracy in estimation, predictions from the model are compared to empirical estimates of 

the SDH for cause k using the Aalen-Johansen estimator for the cause-specific CIF31. 

Figure 3 shows that this improves the fit of the estimated cause-specific CIFs from the log-

CSDH FPM compared to when we assume proportional SDH and now achieve an almost 

perfect agreement with the non-parametric estimates.

Transforming to the cause-specific hazards

From these log-CSDH regression models, we are also able to estimate the CSH functions 

since we model the SDH functions for all K causes using Equation 7. We return to analysing 

the full dataset and in Figure 4, the CSHs derived from a standard flexible parametric CSH 

regression model, as described by Hinchliffe and Lambert26, are compared to the CSHs 

calculated from a log-CSDH FPM using Equation 7. Both models use 5 df for the baseline 

effect and stage and continuous age at diagnosis are also included as covariates allowing for 

non-linear effects using RCS with 3 df. Time-dependent effects are also included to model 

non-proportionality for both stage and age with 3 df. The plots in Figure 4 show good 

agreement between the CSHs estimated from both models. For patients aged 80 years old, 

there is a small difference at the tails due to an inflated multiplier effect in the 

transformation as a result of increasingly high mortality and low overall survival. However, 

because there are very few events, this has a small impact on the estimated cause-specific 

CIFs. In fact, there is such a good agreement on the cumulative incidence scale that it makes 

it difficult to distinguish between the two curves.

Other useful predictions

The advantage of fitting FPMs and modelling all K causes simultaneously is that it is easy to 

obtain other predictions which aids interpretation. For example, as shown in Figure 5, we 

can present absolute differences in the cause-specific CIF for 65 year olds between covariate 

groups. 95% CIs can be calculated for these measures using the delta method26. The 

estimated absolute differences show us that, those with a more severe stage cancer at 

diagnosis, are more likely to die from cancer and less likely to die from other causes and 

heart disease.

Cure models

In order to fit cure models, it must be reasonable to assume cure on the observed dataset. To 

assess the appropriateness of the cure assumption for cancer, the Aalen-Johansen empirical 

estimates were compared against the cancer-specific CIFs estimated from a log-CSDH cure 

model. Analysis was restricted to patients with regional stage cancer at diagnosis and the 

youngest age group, i.e. 55 to 64 year olds, where cure is found to be a reasonable 

assumption. Cure was modelled for patients who died from colorectal cancer and 5 df were 

used for the baseline RCS in the log-CSDH FPM. From Figure 6, it can be seen that, after 
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approximately 13 years, the empirical curve plateaus at just above 30% and in comparison, 

the cancer-specific CIF predicted from the model slightly underestimates the cure 

proportion. Over follow-up time a good agreement is observed between the Aalen-Johansen 

and model estimates and overall, cure appears to be reasonable. Useful predictions are also 

estimable from the cure model such as the proportion of patients who are bound to die from 

cancer, or other causes, of those that are alive. The plot to the right in Figure 6 represents the 

stacked probabilities for each cause-specific CIF. The cancer-specific CIF plateaus at about 

12 years after diagnosis and the cure proportion is estimated at 30%. The dashed-line 

partitions those who are still alive into two groups. For example, at 3 years after diagnosis, 

20% have died and 15% are alive and bound to die from cancer and 65% are alive and not 

bound to die from cancer. However, at approximately 12 years since diagnosis, as the point 

of cure is approached, it is expected that, about 40% of patients have died and the remaining 

60% are almost all bound to die from causes other than colorectal cancer.

Discussion

In this paper, extending on the ideas of Jeong and Fine32, we demonstrate a direct likelihood 

inference approach on the cause-specific CIF under a flexible parametric modelling 

framework. The direct FPM approach models all cause-specific CIFs simultaneously and 

offers an alternative to the more widely adopted Fine & Gray model for modelling the SDH 

function for an individual cause. FPMs extend on standard parametric models by using RCS 

to better capture real world data which may contain one or more turning points in the 

baseline SDH function. We also show that, through the use of constraints, a point of cure can 

be estimated for one (or more) of the cause-specific CIFs.

In general, modelling covariate effects on the cause-specific CIF in large population based 

studies requires relaxing the proportionality assumption. Including time-dependent effects in 

the FPM approach to relax the proportionality assumption is much quicker and less 

computationally intensive as there is no need to incorporate time-dependent weights on an 

expanded dataset or fit separate models for each of the cause-specific CIFs33,7.

In contrast to the Fine & Gray model, researchers are able to model all cause-specific CIFs 

simultaneously, which is better for a deeper understanding of the effects of covariates on all 

cause-specific CIFs and allows us to answer more complicated research questions on patient 

prognosis. Although these models may be more complex, there are a number of useful 

estimable measures including absolute differences in the cause-specific CIFs and relative 

contributions to the total mortality. Accompanied with these predictions, using the delta 

method, we can also obtain 95% CIs. Although it is also theoretically possible to obtain CIs 

for predictions from the Fine & Gray model, in practise, this is computationally intensive 

and is usually done using bootstrapping methods which is not optimal for large datasets. 

Hence, modelling using the approach in this paper is more accessible and easier to 

implement for researchers, especially when analysing larger datasets in the hundreds of 

thousands. Even though our approach estimates parameter effects on the cumulative 

incidence, because all cause-specific CIFs are modelled together, we show that the CSH 

functions can be estimated. However, since the multiplier in this equation is time-dependent, 
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although the assumption of proportionality may be reasonable on the SDH scale, this may 

not also be true on the CSHs and vice versa21.

Another useful property of simultaneously modelling all cause-specific CIFs in a direct 

likelihood FPM approach, is that the methods can be easily extended to model the cure 

proportion. The method for estimating cure described by Andersson et. al. 13 for flexible 

parametric relative survival models was adapted to our approach when cure for a cause-

specific CIF is observed to be reasonable in the data. This allows further estimation of some 

useful predictions such as the estimate of the proportion of patients that will eventually die, 

or are bound-to-die, from cancer, or other causes, of those that are still alive, as described by 

Eloranta et. al. 14.

Limitations

A well-known problem of direct regression models for the cause-specific CIF is that the sum 

of all probabilities may exceed 1 for certain covariate patterns. This is particularly 

problematic in the oldest age groups where patients are at a higher risk of dying from 

competing events leading to very high overall probability of death. This is also the case in 

our approach and it is sometimes avoided if models are not misspecified, for example, by 

adjusting for all appropriate covariates with any potential interactions and by including time-

dependent effects. In some situations models may fail to converge when specified correctly, 

but this will depend on the use of better initial values for the optimiser so that it is not 

searching in the wrong direction. As an informal assessment of misspecification of the 

models, we can compare the CSHs derived from our approach to standard CSH regression 

modelling methods by allowing for appropriate model complexity on both scales. However, 

in many datasets, the all-cause CIF will not get close to one, since, in many studies, follow-

up is usually restricted. Shi et. al. 34 has previously offered a solution to the constraint 

problem by modelling a baseline asymptote for one cause-specific CIF, with the remaining 

CIFs expressed as a function of this plateau. However, the limitation of this is that the one-

to-one correspondence between the covariate effects and cause-specific CIF is lost. 

Alternatively, a non-linear constraint can be imposed to ensure that the all-cause CIF is 

indeed always bounded by 135.

If interest is only in the covariate effects on one cause, it is not imperative to model all 

cause-specific CIFs as this may unnecessarily complicate the analysis. In these cases, a 

single Fine & Gray model may suffice or model the cause-specific CIF using time-

dependent weights 33. On the other hand, we argue that there is an advantage to 

understanding covariate effects on all cause-specific CIFs to get a fuller understanding of the 

impact of a given covariate.

A potential criticism of the FPM approach is the need to specify the positioning and number 

of knots. However, this has been shown to have little influence on the cause-specific CIF 

through sensitivity analyses and other similar studies have also been carried out on the 

sensitivity of knots26,27,23. An additional concern in the use of splines is that there are no 

formal constraints to ensure monotonicity of the CIF. Although, in theory, there is a potential 

that we may observe non-monotonicity in the modelling process because of the lack of 

constraints, in practise, this is rarely a problem in larger datasets. This is demonstrated in the 
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simulations with 5000 observations where all models converged. In our simulation for 200 

and 500 observations, there is a lack of convergence in a small proportion of models which 

increases with the number of degrees of freedom (see Table 1). These issues in convergence 

are potentially avoidable through a more refined choice in initial values used in the 

estimation process. Therefore, when fitting FPMs to smaller data, it is recommended that 

fewer degrees of freedom are used for the restricted cubic splines.

In smaller simulated datasets, where N = 200, 500, some models struggled to converge under 

the FPM approach. In these cases, since the likelihood is evaluated at the last observed time 

for either cause, we found that the reason for non-convergence was mainly attributed down 

to insufficient follow-up time for a cause which led to inappropriate extrapolation. Other 

possible reasons for convergence issues in these smaller datasets, as mentioned previously, 

may be due to the lack of events for a given cause towards the last observed follow-up time 

and over-fitting models. Therefore, when fitting FPMs to smaller data, such as clinical trial 

data, it is recommended that fewer degrees of freedom are used for the restricted cubic 

splines. However, this paper concentrates on the implementation of methods for population-

based data which usually contain observations well above 5000. Hence, as demonstrated in 

the simulation, fitting models using the FPM approach in this scenario show excellent 

performance regardless of the choice in the number of degrees of freedom.

Conclusions

The choice of analytic approach ultimately depends on the research question to be answered 

and the scale on which we wish to make our inferences. Our proposed method is most useful 

when we wish to make inferences on absolute risks and understand covariate effects on all of 

the cause-specific CIFs simultaneously. As discussed above, there are further advantages of 

implementation from within a FPM approach. A generalisation of the Weibull distribution 

with RCS is used to model and more flexibly capture the baseline log-cumulative SDH 

function. As opposed to standard semi-parametric approaches, since the cumulative SDH 

function is estimated in FPMs, it is easy to obtain other predictions that facilitate risk 

communication, some of which have already been discussed. Alternatively, to make 

inferences on aetiology, the alternative CSH approach for FPMs is available, making it 

possible to fit equivalent models on both scales. In fact, literature suggests that reporting on 

both CSH and SDH regression models is advantageous for understanding the overall impact 

of cancer on risk. CSH functions are also easy to derive from the flexible parametric SDH 

regression models in this paper since all K causes are modelled simultaneously. Finally, to 

ensure that the methods are accessible for researchers, a user-friendly command, stpm2cr, 

is available in Stata36. In the Appendix, the code for fitting the models in Sections, and are 

included.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Subdistribution hazards (SDH) simulated from a mixture Weibull distribution with 

paramaters λ1,1 = 0.6, γ1,1 = 0.5, λ1,2 = 0.01, γ1,2 = 0.35 and p1 = 0.5 for the SDH for cause 

1 and λ2,1 = 0.01, γ2,1 = 0.8, λ2,2 = 0.7, γ2,2 = 1.45 and p2 = 0.5 for cause 2
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Figure 2. 
A comparison of predicted cause-specific cumulative incidence functions from a Fine & 

Gray (FG) model and a log-cumulative subdistribution hazards flexible parametric model 

adjusted for time-depedent effects on the competing events (Log-CSDH FPM2). Predictions 

are made for 75 to 84 year old male patients diagnosed with regional stage colorectal cancer.
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Figure 3. 
Predicted cause-specific cumulative incidence functions comparing empirical estimates 

(Aalen-Johansen) against a proportional log-cumulative subdistribution hazards flexible 

paramteric model adjusted for time-depedent effects on the competing events (PSDH FPM2) 

on the right plot and a non-proportional log-cumulative subdistribution hazards flexible 

parametric model (Non-PSDH FPM) on the left plot. Predictions are made for 75 to 84 year 

old male patients diagnosed with regional stage colorectal cancer.
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Figure 4. 
Predicted age-specific time-dependent cause-specific hazards and cumulative incidence 

functions after fitting a non-proportional log-cumulative subdistribution hazards flexible 

paramteric model (SDH FPM) comapred against a non-proportional cause-specific hazards 

flexible parametric model (CSH FPM) for 60, 70 and 80 year old male patients diagnosed 

with regional stage colorectal cancer.

Mozumder et al. Page 22

Stat Med. Author manuscript; available in PMC 2018 October 08.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 5. 
Absolute differences (regional stage minus localised stage), with 95% CIs (dashed line), 

between 65 year old patients with local and regional stage cancer at diagnosis.
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Figure 6. 
Predicted cancer-specific cumulative incidence functions (CIFs) for empirical Aalen-

Johansen estimates compared against log-cumulative subdistribution hazards (Log-CSDH) 

estimates from a cure model (left). Stacked cause-specific CIFs and cure proportion (dashed-

line) from a Log-CSDH cure model. The dashed-line partitions patients who are still alive 

into those who are bound to die (BTD) from cancer and not BTD from cancer (right). 

Predictions obtained for 55 to 64 year old male patients diagnosed with regional stage 

colorectal cancer.
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Table 2

Subdistribution hazard ratios (SHRs) estimated from a Fine & Gray model, log-cumulative subdistribution 

hazards flexible parametric model (Log-CSDH FPM) and a Log-CSDH FPM adjusted for time-depedent 

effects on the competing events (Log-CSDH FPM2). SHRs compare regional stage patients to localised stage 

patients aged 75 to 84 years old assuming proportionality.

Fine & Gray Model Log-CSDH FPM Log-CSDH FPM2

SHR 95% CI SHR 95% CI SHR 95% CI

Colorectal: 3.503 [ 3.224 3.805 ] 3.429 [ 3.157 3.725 ] 3.504 [ 3.225 3.808 ]

Other Causes: 0.753 [ 0.703 0.806 ] 0.720 [ 0.673 0.771 ] 0.737 [ 0.689 0.789 ]

Heart Disease: 0.731 [ 0.661 0.807 ] 0.686 [ 0.622 0.757 ] 0.719 [ 0.651 0.794 ]
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