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Abstract

Purpose—To explore: (1) the variability of upper cervical cord area (UCCA) measurements from 

volumetric brain 3D T1-weighted scans related to gradient nonlinearity (GNL) and subject 

positioning; (2) the effect of vendor-implemented GNL-corrections; and (3) easily applicable 

methods that can be used to retrospectively correct data.

Methods—A multiple sclerosis patient was scanned at 7 sites using 3T MRI scanners with the 

same 3D T1-weighted protocol without GNL-distortion correction. Two healthy subjects and a 
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phantom were additionally scanned at a single site with varying table positions. 2D and 3D 

vendor-implemented GNL-correction algorithms and retrospective methods based on: (1) phantom 

data fit; (2) normalization with C2 vertebral body diameters; and (3) the Jacobian determinant of 

non-linear registrations to a template, were tested.

Results—Depending on positioning of the subject, GNL introduced up to 15% variability in 

UCCA measurements from volumetric brain T1-weighted scans when no distortion corrections 

were utilized. 3D vendor-implemented correction methods and the three proposed methods 

reduced this variability to less than 3%.

Conclusion—Our results raise awareness of the significant impact that GNL can have on 

quantitative UCCA studies and point the way to prospectively and retrospectively managing GNL-

distortions in a variety of settings, including clinical environments.
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Gradient nonlinearity; upper cervical spinal cord area; spinal cord atrophy; 3D T1-weighted brain 
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INTRODUCTION

Quantifying spinal cord atrophy in neurologic conditions from various etiologies, including 

trauma, inflammation, or neurodegeneration, has gained increasing attention in the 

neuroimaging field, particularly with the development of dedicated spinal cord imaging 

techniques (1–5). In multiple sclerosis (MS), upper cervical cord area (UCCA) is a surrogate 

of atrophy, and has been shown to be associated with physical disability, particularly in 

progressive stages of the disease (6–11). Spinal cord magnetic resonance imaging (MRI) 

remains technically challenging and adds substantial time to a scanning session, therefore 

many clinical sites do not routinely acquire dedicated spinal cord MRI that can provide 

reliable measures of UCCA. However, standard brain high-resolution 3D T1-weighted 

acquisitions that include the upper cervical cord can be used to provide estimates of UCCA 

(12,13).

Gradient nonlinearity (GNL) distortions in MRI are a consequence of technical challenges in 

the design of gradient coils, and an important source of systematic error interfering with the 

integrity of imaging metrics in longitudinal and multi-site studies. These challenges are 

particularly important in modern whole-body MRI scanners designed with shorter bores for 

increased patient comfort and reduced footprint, and fast gradient rise times for faster 

imaging. Moreover, a recent head-only, compact gradient design was reported to provide 

increased peripheral nerve stimulation thresholds (14) and very high slew rates (up to 700 

T/m/s) that provide significantly improved echo-planar imaging performance (15). However, 

such systems have significantly increased GNL effects over standard whole-body scanners, 

including terms associated with asymmetric transverse gradients. Large, multisite initiatives 

have investigated the effect of GNL-distortions on brain tissue volume quantification (16–

19); however, the effect of GNL on UCCA measurements extracted from standard brain T1-

weighted acquisitions has not yet been assessed. This is extremely important, as the spinal 
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cord is located in the periphery of the field of view, where GNL effects are expected to 

introduce maximal errors.

In the present work, we explored: (1) the variability of the UCCA measurements from brain 

3D T1-weighted scans related to GNL and subject positioning; (2) the effect of correction 

algorithms implemented on commercial scanners; and (3) easily applicable methods that can 

be used to retrospectively correct data acquired without optimal distortion correction.

METHODS

Image data acquisition

All human MRI acquisitions reported in the present study were conducted with the approval 

of Ethics Boards of the involved institutions.

MS patient acquisition: A 45-year-old male with stable relapsing-remitting MS was 

scanned at 7 North American Imaging in Multiple Sclerosis (NAIMS) Cooperative sites 

within a period of four months using Siemens 3T MRI scanners equipped with different 

hardware and software versions (4 Skyra, 2 Trio, 1 Verio), with the same uncorrected sagittal 

3D T1-weighted MPRAGE protocol extended to the upper cervical spinal cord: voxel 

size=1×1×1mm3, FOV=256×256×176mm3, TR/TE/TI/FA=1900/2.52/900ms/9°, parallel 

imaging acceleration factor=2, acquisition time=4:17min. Multi-channel coils were used, 

with either head-neck elements (64, 20 or 12) or only head elements (32) with good 

sensitivity in the upper cervical cord region. The acquisition was repeated twice at each site, 

with repositioning.

Table position variation and distortion correction tests: To test for table position 

variation and distortion correction effects on UCCA measurements, two healthy controls 

(HC, both men, 25 and 40 years old, named HC-A and HC-B) were scanned at a single site 

using a Siemens 3T Skyra scanner (bore length=173cm) with the same T1-weighted 

protocol used for the MS patient, with a variety of table positions. Uncorrected and 

distortion-corrected data (using Siemens’s 2D and 3D methods) were exported. Siemens 

methods calculate the geometric displacements from the spherical harmonic expansion of 

the magnetic field generated by the specific gradient coils model (17,20).

Phantom acquisition: To validate the HC acquisitions performing area measurements 

without confounding patient motion, a phantom manufactured in-house (a 13mm diameter 

cylindrical test tube filled with oil) was scanned with varying table positions using the 

above-mentioned T1-weighted protocol without distortion correction. The phantom was 

placed on the posterior elements of the head-neck coil with the main axis along the head-

foot direction. A vitamin pill was placed on the side of the tube at about the position of the 

upper cervical cord of subjects laying in the scanner, and a water sphere was placed on top 

to correctly load the coil.

Healthy control acquisition on a different scanner type: To test for variability 

between scanners of different models, HC-B was additionally scanned twice on three 

Siemens 3T scanners of the same model (Trio, bore length=213cm, 40 cm longer than the 
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Skyra) with T1-weighted brain protocols extended to the upper cervical cord without 

distortion correction.

Data analysis

UCCA measurements: UCCA was measured on the brain T1-weighted acquisitions by 

extracting five consecutive 1mm thick axial slices perpendicular to the long axis of the cord 

at the C2-C3 disc level, and measuring the average area of the cord(13) using the semi-

automated “cord finder toolbox” of the software JIM (version 6.0) (21) with fixed 

settings(22): nominal cord diameter 8mm, number of shape coefficients 24, order of 

longitudinal variation 12. The markers requested by the toolkit were placed at the center of 

the spinal cord in each of the five slices.

After having evaluated the reliability of the method on ten HC (Supporting Information), 

UCCA of the MS patient, HC-A and HC-B was measured by a single operator (NP)

Determination of distance between scanner isocenter and C2-C3 disc 
level: The C2-C3 disc distance from the scanner isocenter (ZCI) was measured by 

determining the Z coordinate of the central slice that was extracted for the UCCA 

measurement for each individual (information provided by the JIM Multi-planar 

Reconstruction tool). If the scanner table was moved after patient positioning, the actual 

table position was extracted from the DICOM header and added to the Z coordinate.

Retrospective correction methods:

Phantom fit:  On uncorrected acquisitions of the cylindrical phantom test tube, axial areas 

(A(ZCI)) were measured at the vitamin pill level as a function of ZCI. A(ZCI) was normalized 

to the area measured at the scanner isocenter position (A0), and fitted to a quadratic model 

(least squares regression, ε(ZCI) indicates the residual):

A(ZCl) ∕ A0 = 1 + a × ZCl + b × ZCl
2 + ε(ZCl) . [1]

The estimated parameters (a,b) were used to extrapolate the UCCA measured from the 

uncorrected images of HC-A and HC-B to the scanner isocenter position (obtaining UCCA0 

for each UCCA(ZCI)).

Normalization using C2 vertebral body diameters:  For all uncorrected acquisitions of 

HC-A, HC-B and the MS patient, the anterior-posterior and right-left diameters of the C2 

vertebral body were measured with the software JIM on a single slice. UCCA(ZCI) was 

divided by the product of the two diameters (Vert(ZCI)) for each acquisition.

For visual comparison with uncorrected data, a further normalization to the value measured 

in the acquisition with the table positioned closest to the scanner isocenter (ZCImin) was 

performed using the equation:
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UCCA(ZCl)
, = [UCCA(ZCl) ∕ Vert(ZCl)] × Vert(ZClmin) , [2]

where UCCA(ZCI)’ indicates the normalized value.

Normalization using the Jacobian determinant of non-linear registrations:  Single-

subject templates were created for HC-A and the MS patient as described by Avants et al 

(23) using the Advanced Normalization Tools (ANTs) software package (http://

stnava.github.io/ANTs). Briefly, this approach employs a non-linear, symmetric, and group-

wise registration procedure that builds an optimal template representing the average shape of 

all images. For this step, “antsMultivariateTemplateConstruction2.sh” was run with default 

parameters, combining rigid (6 parameters), affine (12 parameters) and deformable 

registrations. Degrees of freedom in the deformable registration were equal to the number of 

voxels in the image times 3 (for three dimensional displacement vectors). Four levels of 

spatial resolution were used for each registration step. After template creation, all images 

were nonlinearly registered to the respective single-subject template using the SyN 

algorithm(24) and a cross-correlation similarity metric. The deformation field for each 

transformation was computed. To serve as a measure of in-plane area change, the 

deformation field in the Z-direction was ignored (substituting values with zeroes). The 

determinant of the modified Jacobian (representing the in-plane area shrinkage or 

expansion) was computed voxel-by-voxel. An ROI over 3 slices was drawn on the C2 

vertebra on each template, and the average Jacobian of voxels within the ROI was extracted 

for each image. The UCCA was divided by this latter value for each image. A variant of the 

method can be found in Supporting Information and Supporting Figures S1 and S2.

RESULTS

Inter-site measurement variability in a single MS patient:

Across sites, the relative ZCI ranged from 76mm (ZCImin) to 120mm (ZCImax), which 

corresponded to a 9.6% difference in UCCA (59.4 to 53.7mm2) (Figure 1A). The average 

UCCA measured at the 7 sites was 57.2mm2 with 2.5mm2 standard deviation (SD). Within 

sites, variability in ZCI with repositioning resulted in poorer rescan reproducibility (Figure 

1B).

Table position variation and effect of vendor-implemented distortion correction:

A quadratic decrease in UCCA as a function of ZCI was found in HC-A and HC-B scanned 

without distortion correction at a single site. For HC-A, the relative ZCI ranged from 67 to 

121mm, which corresponded to a 15.2% difference in UCCA (81.2–68.9mm2, 

mean(SD)=76.1(4.2)mm2). For HC-B (Figure 2), the relative ZCI ranged from 74 to 113mm, 

which corresponded to a 12% difference in UCCA (81.6–71.8mm2, 

mean(SD)=78.2(3.6)mm2). The range of ZCI (ZCImax-ZCImin) was very similar to what was 

observed with the single MS patient scanned across the 7 scanners, with similar 

corresponding relative reduction in measured UCCA.
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For HC-A, vendor-implemented 2D correction decreased the difference of UCCA for 

extreme table positions from 15.2% to 6.8% (SD was reduced from 4.2mm2 to 2.0mm2). 3D 

correction further improved the results, reducing the difference of UCCA for extreme table 

positions to 2.1% (SD was reduced to 1.0mm2). For HC-B, 2D correction decreased the 

difference of UCCA for extreme table positions from 12% to 5.9% (SD was reduced from 

3.6mm2 to 2.0mm2). 3D correction reduced the difference of UCCA for extreme table 

positions to 1.8% (SD was reduced to 1.2mm2) (Figure 2).

Table 1 summarizes the effect of vendor-implemented corrections together with the effect of 

the retrospective methods, which will be described in the subsequent sections.

Between-scanner variability for a healthy control:

HC-B was also scanned twice on 3 scanners with the longer bore. The ZCI of the 6 

measurements ranged from 81 to 146mm (65mm difference), which corresponded to a 9.9% 

difference in UCCA (82.0–73.9mm2). For the shorter bore scanner, the ZCI range was 39mm 

and the UCCA difference 12%. Therefore, for the longer bore scanners, a larger ZCI 

variation was reflected in a smaller relative difference in the measured UCCA (Figure 3).

Retrospective correction methods:

Phantom fit: The fit of the phantom data was used to retrospectively correct the HC data. 

For HC-A (Figure 4A) the difference between UCCA measurements at extreme table 

positions was reduced from 15.2% to 2.9% (SD from 4.2mm2 to 0.9mm2) and for HC-B 

from 12% to 3.2% (SD from 3.6mm2 to 1.3mm2).

Normalization using C2 vertebral body diameters: Dividing the UCCA 

measurements for Vert(ZCI) substantially reduced the variability with ZCI, for both the HC 

(SD for HC-A decreased from 4.2mm2 to 1.1mm2 (Figure 4B), for HC-B from 3.6mm2 to 

1.9mm2) as well as for the MS patient (from 9.6% to 1.1% for the extreme table positions, 

SD from 2.5mm2 to 1.6mm2, Figure 4D).

Normalization using the Jacobian determinant: The Jacobian normalization reduced 

the SD of all the UCCA measures from 4.2mm2 to 1.1mm2 for the HC-A (Figure 4C) and 

from 2.5mm2 to 1.7mm2 for the MS patient (Figure 4E).

DISCUSSION

In the present study, we explored the effect of GNL and subject positioning on the variability 

of UCCA measurements from high-resolution brain 3D T1-weighted scans.

The method used here to measure UCCA from brain scans was previously described by Liu 

et al (13) and applied with small variations in other spinal cord quantitative imaging studies. 

Although Liu and colleagues also showed that cord area measurements in a 5 mm segment, 

2.5 cm below the pons, can offer a surrogate measurement for spinal cord UCCA, a 

measurement at the C2-C3 disc level remains the gold standard. Intra-session (test/retest) 

COV and inter-operator ICC of the UCCA measurements showed excellent reliability 

(Supporting Information), indicating that the method was appropriate for the aims of the 
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study. Other software to measure UCCA is available and could have been used as an 

alternative.

Our data showed that varying the distance from the scanner isocenter is potentially a major 

source of variability for UCCA estimation when using uncorrected brain 3D T1-weighted 

acquisitions. We found that GNL can introduce up to 15% variability in UCCA 

measurements, depending on subject positioning. The magnitude of the error in our study is 

in accordance with what was previously reported by Jovicich et al, who concluded that up to 

8% error in measuring a diameter is possible at the periphery of the field of view, where 

GNL-distortions are strongest(17). The measure of UCCA from brain images is particularly 

prone to this effect, as the spinal cord is located toward the periphery of the field of view. 

Correctly dealing with such variability is critical for longitudinal patient monitoring studies, 

since it dwarfs typical clinical changes in UCCA over relevant time spans (1–2 years) (9). 

Defining consistent positioning with respect to the isocenter seems warranted for single-site 

and multi-site studies.

A quadratic decrease in UCCA as a function of ZCI was found in the two HC and the 

phantom scanned without distortion correction at one site. We acquired data from a HC on 

two different 3T scanners. The effect of GNL was more pronounced for the shorter bore 

scanner (bore length=173cm) than for the longer bore scanner (bore length=213cm). This is 

consistent with the idea that stronger distortions are present in short bore scanners where 

technological challenges increase the difficulty in obtaining linearity in gradient 

performance (19).

The decrease in UCCA with ZCI observed for the MS patient scanned at the 7 sites 

presumably reflected the combination of site-specific quadratic dependencies related to 

GNL, superimposed on other sources of variance in the measurement, such as subject 

movement and heterogeneity of hardware/software platforms reflected in different contrast-

to-noise-ratio/blurring at tissue interfaces. Sites E and C used a longer bore scanner. The 

offset towards higher values for the UCCA measured at these sites is therefore consistent 

with the results obtained scanning a HC with different scanner models (Supporting Figure 

S3).

Even though an exhaustive exploration of correction methods available on different scanner 

models and vendors was beyond the scope of the present study, our data suggest that when 

planning to measure UCCA from standard brain high-resolution 3D T1-weighted 

acquisitions, 2D correction methods are suboptimal. At least for the vendor tested here, the 

use of 3D correction methods – introduced by this vendor about a decade ago (16,17) – is 

preferred. If such correction is not applied during acquisition, methods based on spherical 

harmonic expansion of the magnetic field could be applied off-line (17). Since this 

information may not be readily available from the vendors, mapping the distortion field 

using phantoms with fiducial markers or other complex structures is also an option to 

consider (19,25,26), in particular when planning a new study. However, these methods can 

be difficult to implement in clinical environments.

Papinutto et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, we explored three different easily applicable methods that can be used to 

retrospectively correct data acquired with no (or suboptimal) distortion correction. The first 

approach was based on a quadratic fit of phantom-scan data obtained over a range of table 

positions. Once Eq.1 is determined from the fit, it can be applied to correct the UCCA 

estimated from the uncorrected images without requiring any further post-processing. 

Although we used a simple in-house made phantom, larger phantoms with other structures 

could also be used (19,25). This method is straightforward to apply, but it is not always 

possible to acquire phantom data with various table positions in identical hardware/software 

conditions used for the human data acquisitions. This is particularly true in large multi-

center studies or longitudinal studies started several years in the past. As a second approach, 

normalization using diameters of a structure expected to be relatively stable with time and 

pathology (here, the C2 vertebral body) was tested. This is a powerful method for 

calculating % year changes in long-running longitudinal studies, as it doesn’t require 

knowledge about distortion correction, hardware changes, or the positioning of the subject in 

the scanner across time points. This method gave good results for both the HC who 

underwent MRI at one single site and for the MS patient who was scanned at the 7 NAIMS 

sites. Nevertheless, this normalization can be difficult to implement and may lack precision. 

The C2 vertebral body, for example, is not a perfect cylinder at any level, and defining 

anatomical references to measure its diameters on the same plane at different time points can 

be challenging. Therefore this method needs to be further explored in larger datasets. We 

proposed a third method, based on the Jacobian determinant of non-linear registrations. This 

method was the most effective in reducing the GNL-related variability and it does not 

require further acquisitions or difficult measurements, therefore it is likely the most 

interesting to be implemented in typical clinical studies.

The present study has a number of limitations. First, we tested 3T scanners from a single 

vendor. The goal of the study was not to perform an exhaustive exploration of the extent of 

distortions on all possible platforms, and the results here reported would need to be extended 

to scanners of other manufacturers and to other magnetic field strengths. Second, the vendor-

implemented correction algorithms were not exhaustively tested. Further tests are necessary 

to confirm our preliminary results suggesting that 3D methods are reliable, while 2D 

methods are suboptimal. Third, this study did not assess intensity variability due to receiver 

coils non-uniform sensitivity (as done by Losseff et al. (27)) that can be indirectly affected 

by gradient nonlinearity. Finally, solution of the problem using off-line corrections based on 

spherical harmonic expansion of the magnetic field was not tested. Instead, we preferred to 

study three practical methods that could be used in a variety of settings, including clinical 

environments.

CONCLUSIONS

The main goal of this technical note is to raise awareness of the significant impact that 

gradient nonlinearity can have in quantitative UCCA studies. While this problem is well 

described in the brain tissue volume quantification literature, it has not yet been addressed in 

spinal cord quantitative imaging. Our results point the way to managing gradient 

nonlinearity distortions when measuring UCCA from brain scans, taking into account the 

aims and the specific conditions of each study.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A: UCCA of the multiple sclerosis patient measured at the 7 NAIMS sites as a function of 

the distance between the C2-C3 disc and the scanner isocenter (ZCI). B: Within sites 

variability in ZCI with repositioning was associated with poorer rescan reproducibility.
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Figure 2. 
UCCA as a function of the distance of the C2–3 disc from scanner isocenter for a healthy 

control: uncorrected and distortion-corrected data.
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Figure 3. 
UCCA measured in the same healthy control scanned on a Skyra (bore length=173cm, blue 

dots) and on 3 different Trio scanners (bore length=213cm, yellow diamonds), as a function 

of the distance of the C2–3 disc from scanner isocenter.
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Figure 4. 
UCCA as a function of the distance of the C2–3 disc from scanner isocenter: uncorrected 

data (blue diamonds), retrospectively corrected using the fit of phantom data (emerald 

circles), normalized using C2 vertebral body diameters (red circles) and normalized using 

the Jacobian determinant (yellow circles). A, B, C: Healthy control scanned at one site; D, 

E: multiple sclerosis patient scanned at the 7 NAIMS sites.
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Table 1.
Effect of the different correction methods on UCCA measures.

Top row: percent difference of measured UCCA at the extreme table positions (ZCImin and ZCImax). Bottom 

row: standard deviation of the group of measures performed with different table positions or at the different 

sites.

Correction
method:

None Scanner
2D

Scanner
3D

Phantom
fit

Vertebral
diameters

Jacobian

Healthy Control A
(single site)

15.2%
4.2mm2

6.8%
2.0mm2

2.1%
1.0mm2

2.9%
0.9mm2

1.9%
1.1mm2

0.7%
1.1mm2

Healthy Control B
(single site)

12.0%
3.6mm2

5.9%
2.0mm2

1.8%
1.2mm2

3.2%
1.3mm2

1.0%
1.9mm2

–

MS patient
(across 7 sites)

9.6%
2.5mm2

– – – 1.1%
1.6mm2

1.2%
1.7mm2

Magn Reson Med. Author manuscript; available in PMC 2019 March 01.


	Abstract
	INTRODUCTION
	METHODS
	Image data acquisition
	MS patient acquisition:
	Table position variation and distortion correction tests:
	Phantom acquisition:
	Healthy control acquisition on a different scanner type:

	Data analysis
	UCCA measurements:
	Determination of distance between scanner isocenter and C2-C3 disc level:
	Retrospective correction methods:
	Phantom fit:
	Normalization using C2 vertebral body diameters:
	Normalization using the Jacobian determinant of non-linear registrations:



	RESULTS
	Inter-site measurement variability in a single MS patient:
	Table position variation and effect of vendor-implemented distortion correction:
	Between-scanner variability for a healthy control:
	Retrospective correction methods:
	Phantom fit:
	Normalization using C2 vertebral body diameters:
	Normalization using the Jacobian determinant:


	DISCUSSION
	CONCLUSIONS
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.

