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ABSTRACT: Currently, there is a high level of interest in deep learning and multitask
learning in many scientific fields including the life sciences and chemistry. Herein, we
investigate the performance of multitask deep neural networks (MT-DNNs) compared to
random forest (RF) classification, a standard method in machine learning, in predicting
compound profiling experiments. Predictions were carried out on a large profiling matrix
extracted from biological screening data. For model building, submatrices with varying
data density of 5−100% were generated to investigate the influence of data sparseness on
prediction performance. MT-DNN models were directly compared to RF models, and
control calculations were also carried out using single-task DNNs (ST-DNNs). On the
basis of compound recall, the performance of ST-DNN was consistently lower than that
of the other methods. Compared to RF, MT-DNN models only yielded better prediction
performance for individual assays in the profiling matrix when training data were very
sparse. However, when the matrix density increased to at least 25−45%, per-assay RF
models met or partly exceeded the prediction performance of MT-DNN models. When
the average performances of RF and MT-DNN over the grid of all targets were compared, MT-DNN was slightly superior to
RF, which was a likely consequence of multitask learning. Overall, there was no consistent advantage of MT-DNN over standard
RF classification in predicting the results of compound profiling assays under varying conditions. In the presence of very sparse
training data, prediction performance was limited. Under these challenging conditions, MT-DNN was the preferred approach.
When more training data became available and prediction performance increased, RF performance was not inferior to MT-
DNN.

1. INTRODUCTION

Recently, there has been increasing interest in machine
learning (ML) and, especially, deep learning (DL) in many
areas of science including pharmaceutical research.1−3 In ML,
one can distinguish between single-task (ST) and multitask
(MT) learning. MT learning is based on the idea that the
predictive performance of a given task can be improved by
using the data available for related tasks.4 In the context of
compound activity prediction, which is a core task in
computational medicinal chemistry, this principle implies that
some structural features and/or molecular properties should be
common to active compounds, regardless of their targets. This
“basis set” of activity-relevant features would then be
complemented by others to yield target-specific biological
activities. Hence, bioactivity data from various assays might be
considered to predict activities in a given assay on the basis of
shared activity determinants, a key assumption underlying MT
learning. By contrast, in ST learning, one trains models on the
basis of compounds that were active or inactive in an individual
assay in order to predict the potential activities of test
compounds.

For MT learning, deep neural network (DNN) architectures
(MT-DNNs) have become very popular,2,3 raising expect-
ations that they might yield further improved predictive
performance compared to standard ST−ML approaches.2,3,5 A
frequent reasoning is that MT-DNNs make explicit use of
moreand more diversetraining data than ST−ML
approaches, which further expands the knowledge base for
predictions. For example, Ramsundar et al. compared the
performance of MT-DNN with different architectures, ST-
DNN, and random forest (RF) predictions on four data sets
(Kaggle, Factors, Kinase, and UV). Their results suggested that
MT models offered improvements over RF calculations for
correlated tasks.3 However, the effect of training matrix density
was not explored. Xu et al. compared the performance of ST-
DNNs and MT-DNNs for different quantitative structure−
activity relationship prediction tasks.5 Their results indicated
that the prediction performance and relative performance of
ST-DNNs and MT-DNNs varied greatly across data sets
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containing either on-target potency values or off-target
absorption, distribution, metabolism, and excretion properties.
Furthermore, Xu et al. concluded that MT-DNN only
outperformed ST-DNN when test compounds showed
structural similarity and activity that correlated with training
set instances from other tasks.5 Recently, attempts have also
been made to predict experimental compound profiling
matrices.6 Such matrices are obtained by screening a
compound collection in different assays against closely related
or diverse targets and yield activity profiles of test compounds.
Importantly, the composition of such matrices is highly
unbalanced because the majority of compounds are usually
inactive across assays (otherwise, specific biological activities
would not exist). In the first investigation,6 ST and MT models
were derived for individual assays in matrices to predict active
compounds. Under conditions of experimental data imbalance,
prediction performance using different ML approaches was
overall reasonable and DNNs did not further increase the
performance over RF or support vector machine (SVM)
classifiers.6

General reasons for varying MT-DNN performance might
include, for example, the high complexity of MT-DNN
hyperparameter optimization and lack of transparence and/or
the nature of training data that is available.7,8 For example,
Rodriǵuez-Peŕez et al. have shown that activity prediction on
the basis of ST-SVM classification and ranking became more
accurate and stable with increasing numbers of available
training instances and that a lower-bound threshold for active
training examples was required.8 In addition, a recent study by
de la Vega de Leoń et al. investigated the effects of missing
data on the performance of MT methods.9 In particular, the
authors explored the performance of MT-DNN and Macau
(Bayesian factorization) methods at different percentages of
missing data. A minimum number of training instances was
required to generate effective models, but the predictive ability
saturated when increasing amounts of data were added.9

Furthermore, Reker et al. have shown that only small subsets of
ligand−target interaction matrices were required for ML
modeling to reach upper limits of predictive performance.10

In this case, RF models were built for predicting interacting
versus noninteracting ligand−protein pairs from concatenated
molecular and protein descriptors.10

Taken together, the studies discussed above have revealed a
significant influence of training set size on the quality of both
ST− and MT−ML models. However, the influence of training
data sparseness on comparative ST− and MT−ML predictions
remains to be investigated. Our current study was designed to
address this issue by further extending previous work on the
modeling of compound profiling matrices,6 which is a
prediction task of high relevance for biological screening and
medicinal chemistry. Herein, a large compound profiling
matrix combining different screening assays was used to derive
submatrices of systematically increasing density for the training
of RF, MT-DNN, and ST-DNN models that were then used to
predict the activity profile of test compounds. Thereby, the
relative performance of predictions using methods of different
computational complexity on training matrices of stepwise
increasing data density was investigated, thus directly
addressing the issue of training data sparseness for comparative
prediction of profiling results. The study design and results of
our investigation are presented in the following.

2. RESULTS AND DISCUSSION
2.1. Study Design. 2.1.1. Focusing on Profiling Matrices.

Compound profiling matrices from biological screening
represent challenging test cases for ML because of the
experimental assay variance and, more importantly, inherent
data imbalance. This is the case because most screening
compounds are inactive in given assays, which typically yield
on the order of ∼0.1−1% active compounds (hits).11

Previously, we have investigated a variety of ML approaches
for predicting the experimental results of assays forming
complete or nearly complete matrices using the largest possible
amount of training data on a per-assay basis.6 In a complete
(100% dense) matrix, all cells are filled with experimental
observations. Matrices of decreasing density have increasing
amounts of missing data points (“empty” cells). Here, we
change the analysis scheme and attempt assay predictions by
systematically deriving submatrices of varying density for
training, thereby directly assessing the influence of data
sparseness on the model quality.

2.1.2. Matrices of Varying Density. From a large profiling
matrix comprising more than 140 000 compounds tested in 53
assays (with 0.8% actives), different series of matrices with
stepwise increasing data density were extracted, covering the
range of 5−100% density, with increments of 5% per step.
Further details are provided in the Materials and Methods
section. Hence, 20 matrices with varying density levels were
obtained. Figure 1 shows the distribution of the number of

active compounds per assay for five exemplary matrices with
different densities of 5, 25, 50, 75, and 100%, respectively. The
figure illustrates that increasing data density correlated with
increasing numbers of active compounds available for training.

2.1.3. Training and Predictions. For each of the 20 matrices
with increasing density, ML models were derived at each
density level. The resulting models were then used to predict
active compounds. For ST predictions, an individual model
was built for each assay (target) to predict active compounds
on a per-assay basis. Individual predictions were then
combined. For MT predictions, multioutput models were
derived for all assays at each density level to predict the

Figure 1. Active compounds per assay. Distributions of the number
(#) of active compounds per assay are reported in boxplots for five
different matrix density levels. Black points represent outliers.
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complete activity profile of a compound. The resulting ST and
MT models were used to predict a constant test set comprising
25% of the original profiling matrix that was excluded from
training.
2.1.4. Selected Methods. As an ST−ML approach, RF was

selected. This choice was motivated by the results of our
previous ST matrix predictions where RF was the overall best
approach, achieving slightly better performance than SVMs
and ST-DNNs.6 As an MT−ML method, MT-DNN was
chosen, which represents the currently most complex MT
approach. Thus, RF and MT-DNN essentially delineate
opposite ends of the ML spectrum ranging from methods of
low to high computational complexity and an increasing “black
box” character. As a control, ST-DNN models were also
generated and evaluated.
In the following, the results of our systematic activity

predictions using RF and MT-DNN models trained at different
density levels are presented and compared. The results were
averaged over three independent trials.
2.2. Influence of Matrix Density on Prediction

Performance. We first investigated how training sample
sizes influenced the predictive ability of ST models based upon
data from only one assay or MT models based upon data from
all assays. Therefore, a pairwise comparison of ST or MT
models at different density levels was carried out using the area
under the receiver operating characteristic (ROC) curve
(AUC) as a figure of merit. For a given assay, the AUC
difference at two density levels was required to exceed 2% to
classify one prediction to be superior to another. The training
matrix yielding the best (worst) performing model was
considered to be of superior (inferior) density. Figure 2a,b
reports the results for RF and MT-DNN, respectively. The
number of assays for which a model trained with a given matrix
density provides better results compared to another matrix
density is reported. In addition to the pairwise comparison
shown in the heatmap, the panel on the right reports a cross-
density comparison for the same method. For both methods,
models trained at higher density levels produced better
predictions on a per-assay basis than the models trained at
lower density levels, as clearly revealed by the heatmap
representations. Thus, consistent with earlier observations,
increasing numbers of positive training instances resulted in
increasing prediction performance, here for both ST and MT
models. The separation between predictions with models
trained at higher or lower density was even more extensive for
RF than MT-DNN, as also indicated by the distribution of
superior assay counts in Figure 2. Hence, RF models were
overall more affected by missing data than MT-DNN models.
2.3. Method Comparison. Next, the performance of RF

and MT-DNN was compared at different density levels.
2.3.1. Relative Performance for Individual Tasks. Pre-

diction performance was first compared on a per-assay basis
using AUC and Matthew’s correlation coefficient (MCC). A
model was considered superior if it achieved at least 2% better
performance than its counterpart. This criterion was used as a
disjunctive requirement for the AUC and MCC measures.
Then, the number of individual assays in which a method was
superior to another was separately calculated for both figures of
merit. Figure 3 reports the average number of assays for three
independent trials. Figure 3a shows the mean number of assays
with larger AUC values for a given method at varying density
levels. MT-DNN was clearly superior to RF when very sparse
matrices were used for training. However, at increasing density

levels, performance differences became smaller, and at a
density level of 50% or greater, the performance of RF began
to meet and then slightly exceed the performance of MT-
DNN. Figure 3b reports the corresponding comparison on the
basis of MCC calculations. In this case, MT-DNN models
produced better predictions at low density levels of up to 25%.
At further increasing density, however, RF models were clearly
superior to MT-DNN. Thus, on the basis of the AUC and
MCC performance measures, similar trends were observed on
a per-assay basis, with MT-DNN models yielding better
prediction performance for training on very sparse matrices
and RF models having better prediction performance at
increasing density levels, especially when evaluated on the basis
of MCC calculations. At high density levels, that is, in the
presence of large amounts of training data, RF models were

Figure 2. Prediction performance at different matrix densities.
Heatmaps record the average number of assays for which larger
AUC values were obtained at a given (superior) matrix density (y-
axis) compared to another (inferior) density (x-axis). On the right,
bar graphs report the number of assays (count) at a given density level
for which better prediction performance was achieved than at any
other density for the same method. (a) RF and (b) MT-DNN.
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superior on a per-assay basis to the much more complex MT-
DNN models.
To provide additional control calculations, ST-DNN models

were also generated. Figure 3c compares ST- and MT-DNN
models on the basis of AUC values. MT-DNN models
outperformed ST-DNN models in most assays at varying
density levels. ST-DNN models only yielded better AUC
values in a few cases. At decreasing matrix density, perform-
ance differences between MT- and ST-DNN increased, and
MT-DNN was progressively superior. Figure 3d shows the
results of MCC calculations. Here, ST-DNN models yielded

larger MCC values for more assays than MT-DNN models.
However, for very sparse training matrices, the relative
performances of both methods became comparable.

2.3.2. Global Prediction Performance. Figure 4a shows the
mean AUC, balanced accuracy (BA), and MCC values over all
assays at varying density levels. Values of different performance
measures are reported in Table 1. Different from the results
obtained for individual assays, on average, predictions were
slightly superior for MT-DNN compared to RF when assessed
on the basis of AUC and clearly superior on the basis of BA
calculations. However, on the basis of MCC calculations, the

Figure 3. Per-assay comparison of prediction performance using different methods. For different trials covering all matrix density levels, the mean
(dot) and standard deviation (error bar) of the number of assays are given for which one method achieved higher prediction performance than the
other on the basis of different measures. RF, MT-DNN, and ST-DNN models were compared. (a) MT-DNN vs RF on the basis of AUC, (b) MT-
DNN vs RF; MCC, (c) MT-DNN vs ST-DNN; AUC, and (d) MT-DNN vs ST-DNN; MCC.
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global prediction was only slightly better for MT-DNN models
at very low density levels of up to 25%. Then, the prediction
performance of RF models gradually exceeded the performance

of MT-DNN models, consistent with the results in Figure 3b.
Hence, Figure 4a shows that different performance measures
produced different results. As a consensus, we would conclude
that average results over all assays were slightly better for MT-
DNN than RF.
To better understand apparent differences resulting from the

application of alternative performance measures, confusion
matrices were generated at different density levels using mean
values. Rates derived from raw counts of true positives (TPs),
false positives (FPs), false negatives (FNs), and true negatives
(TNs) were calculated. Figure 4b shows the TP rate (TPR)
and TN rate (TNR), which are defined as follows:
TPR = TP/(TP + FN) and TNR = TN/(TN + FP).
Therefore, TPR and TNR are related to FN rates (FNR) and
FP rates (FPR), respectively. TPR and FNR displayed the
same tendency for RF and MT-DNN. At increasing density,
TPR increased and FNR decreased. However, for MT-DNN,
FPR increased and TNR decreased at increasing density levels,
whereas they remained essentially constant for RF across all
levels. Thus, MT-DNN predicted more FPs than RF at
increasing density. We note that the constantly used test set
contained a mean of 35 523 inactive and only 305 active
compounds per target, given the inherent data imbalance.
Consequently, figures of merit that use absolute values such as
MCC are strongly affected by the different magnitudes of the
numbers of active and inactive compounds. Conversely, other
measures relying on proportions only yield small differences,
which correspond, however, to large differences in the absolute
number of errors.
On the basis of MCC calculations, MT-DNN model

performance was clearly inferior to RF, except at lower density
levels, when the number of FPs and TNs decreased and
increased, respectively. On the other hand, the model
performance assessed by BA taking only the TPR and TNR
into account was superior for MT-DNN, given that the TPR
was consistently higher for MT-DNN and differences in TNR
were comparably small. These aspects must be taken into
consideration when judging relative prediction performance on
imbalanced data sets using alternative figures of merit.
ST-DNN was also included in the global comparison as a

control. On the basis of AUC values, ST-DNN performed
consistently worse than the other two methods. In addition,
ST-DNN models produced BA values falling in between those
of RF and MT-DNN and MCC values that were overall
comparable to RF.
The consensus view emerging from the results comparing

MT-DNN and RF shown in Figures 3 and 4 was that MT-
DNN was only superior to RF when models were trained on
the basis of very sparse matrices. When examining the relative
prediction performance (Figure 3), MT-DNN models only

Figure 4. Global prediction performance using different methods. For
different trials covering all matrix density levels, the mean prediction
performance over all assays is compared for MT-DNN and RF using
different measures. (a) AUC (top), BA (middle), and MCC
(bottom), (b) TPR (right), and TNR (left).

Table 1. Evaluation of Predictions Applying Different Performance Measuresa

AUC BA MCC TPR TNR

matrix density (%) MT-DNN RF MT-DNN RF MT-DNN RF MT-DNN RF MT-DNN RF

5 0.700 0.666 0.551 0.521 0.080 0.058 11.9 4.6 98.3 99.5
25 0.763 0.744 0.623 0.548 0.117 0.117 28.3 10.2 96.3 99.5
50 0.790 0.781 0.653 0.570 0.126 0.156 35.2 14.7 95.4 99.4
75 0.803 0.793 0.674 0.581 0.126 0.173 40.3 16.9 94.5 99.3
100 0.810 0.804 0.693 0.591 0.128 0.190 44.8 19.1 93.9 99.3

aReported are mean AUC, BA, and MCC values for global predictions using MT-DNN and RF models trained at varying matrix density levels. In
addition, mean TPR and TNR values are given.
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displayed superior performance to RF models at training
matrix density levels of up to 25−45%, depending on the
performance measures that were applied. By contrast, at
increasing matrix density, RF calculations often met or
exceeded the prediction performance of MT-DNN at the
level of individual assays. Global prediction results (Figure 4)
also showed that when enough training data were available, RF
models were at least as good as MT-DNN models. Only global
BA values were consistently higher for MT-DNN, but for the
remaining performance measures (AUC, MCC), MT learning
only provided a notable advantage at low matrix density levels.
2.4. Concluding Discussion. In this work, we have

systematically explored the effects of using varying amounts of
training data on MT-DNN and RF modeling. As a prediction
task representing experimental results, a large compound
profiling matrix was selected. The analysis was facilitated by
generating assay submatrices of varying density for model
derivation. The resulting models were then compared on the
basis of a consistently used test submatrix of 100% density.
There was no significant global correlation between prediction
tasks. Differences in the performance of (low-complexity) RF
and (high-complexity) MT-DNN models were observed at
different density levels.
When trained on very sparse matrices, MT-DNN models

yielded better prediction performance than RF models.
However, when the density increased to 25−45%, per-assay
RF models met or slightly exceeded the prediction perform-
ance of MT-DNN models. Thus, compared to a RF, a standard
ML classifier, MT-DNN models only provided a learning
advantage for individual assays when training data were very
limited. However, when predictions were averaged over all
assays, MT-DNN was the overall superior approach, albeit by a
confined margin, depending on the applied performance
measures. This observation reflected the presence of more
stable predictions as a likely consequence of MT learning. On
the basis of AUC values, ST-DNN was consistently inferior to
MT-DNN and RF but produced higher MCC values than MT-
DNN for matrices of increasing density. In all instances,
performance assessment yielded partly different results,
depending on the measures that were used, emphasizing the
need to consider alternative performance measures in ML.
Taken together, the results of our analysis show that there

was no consistent advantage of MT-DNNs over RF in
predicting profiling assay results, as one might have
anticipated, given high expectations often associated with
MT DL. These findings should balance such expectations, at
least for applications of DL in compound screening. However,
they are also encouraging from the point of view that
reasonable prediction performance was also achieved on a
complicated prediction task with a standard ML classifier of
much lower complexity than DNN architectures. Clearly,
under most challenging conditions of data sparseness, when
prediction performance was limited, MT-DNN was the
superior approach. When increasing amounts of training data
became available, and the model quality generally improved,
the performance of MT-DNN and RF was comparable.
Taken together, our findings also suggest that MT-DNN

might be preferred over standard classification methods such as
RF in special situations, for example, when the main objective
is modeling a single task (activity) and only very little training
data are available for this task, but extensive data are available
for related (correlated) tasks (such as similar activities). In
addition, MT-DNN might be an approach of choice when the

main objective is improving global prediction performance
over multiple screens, and only sparse training matrices are
available.
In future work, additional prediction tasks in chemistry and

other challenging prediction conditions should be explored to
further evaluate potentially significant advantages of DL and
MT learning over standard ML approaches.

3. MATERIALS AND METHODS
3.1. Assay Data. A large compound profiling matrix was

algorithmically extracted12 from PubChem confirmatory assays
as described previously6 and provided the basis for our
analysis. This matrix consisted of 143 310 compounds tested in
53 assays (covering a diverse range of 53 unique target
proteins).6 In the matrix, activity versus inactivity of
compounds in assays was recorded in a binary format (i.e., 1
vs 0). The matrix density of experimental observations was
96.4%. As reported in Table 2, the majority of screened

compounds (77%) were consistently inactive in all assays, 13%
of the compounds had single-target activity, and 10% had
multitarget activity. The resulting global proportion of matrix
cells containing activity annotations was 0.8%. As reported
previously,6 the intra- and interassay similarity of active matrix
compounds was generally low.

3.2. Matrix Modifications. For computational modeling,
the matrix was completed (100% density) by conventional zero
filling,13 that is, missing experimental data (3.6%) were
compensated for by inactivity annotations. The complete
matrix was then randomly divided into training (75%) and test
data (25%). The test set submatrix was complete (100%
density). By contrast, training sets of varying density were
created ranging from 5 to 100% density, with increments of
5%. To these ends, 95% of the compound-assay annotations
were randomly removed, and assay data were added back in
5% increments, yielding cumulatively built training sets of
stepwise increasing density.

3.3. Machine Learning. Using a consistent molecular
representation, two distinct ML approaches of different designs
and computational complexity were investigated including
(ST-)RF and MT-DNN. As a control, ST-DNN calculations
were carried out.

3.3.1. Molecular Representation. The folded (1024-bit)
version of the extended connectivity fingerprint with bond
diameter 4 (ECFP4) was used as a molecular representation.14

ECFP4 was computed using in-house Python scripts based
upon the OEChem Toolkit.15

3.3.2. Calculation Protocol. For each matrix density level,
RF and MT-DNN models were trained and used to predict the
same test data. Three independent trials with different random
seeds were carried out for training sets covering all density
levels, as detailed above. In each trial, RF and MT-DNN
models were built for individual assays using the same
cumulative training sets and compared. The use of different

Table 2. Matrix Compounds with Different Activity Statusa

activity status number of compounds

consistently inactive 110 272 (77%)
single-target activity 19 054 (13%)
multitarget activity 13 984 (10%)

aReported are the numbers of matrix compounds with different
activities across all assays.
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random seeds for modeling modified the initialization of MT-
DNN and cross-validation partitions of RF models.
Models were only built for assays for which the training

matrices and the test matrix consistently contained active
compounds. The different training sets included active
compounds from all 53 assays, whereas the test set was
found to contain active compounds from 47 assays. Thus, RF
and MT-DNN models were ultimately built for 47 assays
(targets).
Figure 5 shows the distribution of pairwise Pearson

correlation coefficients (r) between learning tasks encoded

by the matrix. The maximum r value was 0.79 and the mean r
value 0.03, which indicated very low global correlation between
tasks (while significant correlation between tasks typically
supports transfer and MT learning).
3.3.3. Random Forest. The RF approach utilizes an

ensemble of decision trees that are built with different subsets
of samples by bootstrapping.16 Variance is reduced by training
decision trees using different subsets of the training set.
Moreover, a random sample of features is considered during
node splitting, which avoids the presence of correlated trees
because of feature dominance.16 In this study, the scikit-learn
implementation of RF was used.17 The number of trees was set
at 100, and two hyperparameters were optimized using twofold
cross-validation including the number of randomly selected
features available at each bifurcation (max_features) and the
minimum number of samples required to reach a leaf node
(min_samples_leaf). Cross-validation optimization was inde-
pendently carried out on a per-assay basis such that different
optimum hyperparameters could be derived for each RF
model. Tested values for max_features included the total
number of features, the square root, and the logarithm to base
two of the number of features. In addition, for min_sam-
ples_leaf, candidate values were 1, 5, and 10. Class weights
were set according to the ratio of samples from each training
label (i.e., active vs inactive) such that errors in the minority
class were preferentially penalized.7 Default values were used
for all remaining hyperparameters.17

3.3.4. Multitask Deep Neural Networks. Feed-forward
DNNs learn a function that approximates the input values to
an output (class) without backward connections or loops
within the network architecture.18,19 DNNs can be used for
MT activity predictions by considering multiple nodes in the
output layer, yielding MT-DNNs.19 A DNN is constituted by
different layers including an input layer, hidden layers, and an
output layer.20 Each layer contains a number of neurons that
assign weights to the values originating from the previous layer,
adds them, and passes the sum through an activation function

∑= +y f w x b
j

j jk k k

i

k

jjjjjjj
y

{

zzzzzzz

Here, yk is the output and xj is the input of neuron k, f is the
activation function, wkj are the weights connecting neuron k
with xj, and bk is the so-called bias.21 Ultimately, the output
layer transforms the values of the last hidden layer into the
output values (classes). Weights are derived during training by
the iterative value modification to obtain the desired output y.
Gradient descent is computed using back-propagation to
optimize the weights and biases.20 For weight and bias
adjustment, back-propagation required the actual labels
(active/inactive) of the training set. For MT-DNN calcu-
lations, Keras22 and TensorFlow23 Python implementations
were used.
For MT-DNNs, many optimization-relevant hyperpara-

meters are available. Because 20 successive density levels and
three trials per level were investigated, an exhaustive evaluation
of alternative hyperparameter settings was computationally
infeasible. Instead, a set of hyperparameters permitting
validation loss convergence was chosen for comparison of
different density levels, as suggested by previous optimization
studies.6,20 These parameter settings included, first, a
pyramidal network architecture with two hidden layers of
2000 and 1000 neurons, respectively. In addition, the rectified
linear unit (ReLU) function was chosen as an activation
function, except for the output layer, in which the sigmoid
function was employed. Furthermore, as an optimization
function, stochastic gradient descent (SGD) was used, the
batch size was 1024, and the initial learning rate (LR) was set
to 0.01 and iteratively decreased when the training loss reached
a plateau and remained constant. To avoid overfitting, a fall-
out rate of 25% was applied. A total of 800 epochs were
computed, and the best resulting model was used for
prediction. Class weights were considered. For internal
validation, an 80−20% data split was applied. Binary cross-
entropy was used as the loss function and the reduction of the
LR and the choice of the best model after 800 epochs were
based on minimizing this validation loss.

3.3.5. Single-Task Deep Neural Networks. As additional
control calculations, ST-DNN models were built and evaluated
at the same 20 density levels. Hyperparameter values were set
according to previous optimization results.6 The ST-DNN
network architecture included two hidden layers with 2000 and
1000 neurons, respectively. ReLU was the activation function,
except for the output layer, which used the softmax function.
The optimization function was SGD, the batch size was set to
128, and the LR was set to 0.0001. To avoid overfitting, a
drop-out rate of 25% was permitted, and L2-regularization was
applied. Furthermore, batch normalization was applied to all
layers, and a total of 100 epochs were computed.

Figure 5. Correlation between learning tasks. The histogram shows
the distribution of pairwise Pearson correlation coefficients (r)
between all learning tasks (training data) on a logarithmic x-scale.
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3.4. Performance Measures. The performance of ML
models was evaluated using confusion matrices and three
different measures including the area under the ROC curve
(AUC),24 MCC,25 and BA.26 AUC evaluates the global
ranking of test compounds. MCC and BA are defined below

=
× − ×

+ + + +

MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

= +BA
1
2

(TPR TNR)
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