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Abstract

The sodium bicarbonate cotransporter (NBCe2, aka NBC4) was originally isolated from the 

human testis and heart (Pushkin et al. IUBMB Life 50:13–19, 2000). Subsequently, NBCe2 was 

found in diverse locations where it plays a role in regulating sodium and bicarbonate transport, 

influencing intra-cellular, extracellular, interstitial, and ultimately plasma pH (Boron et al. J Exp 

Biol. 212:1697–1706, 2009; Parker and Boron, Physiol Rev. 93:803–959, 2013; Romero et al. Mol 

Asp Med. 34:159–182, 2013). NBCe2 is located in human and rodent renal-collecting duct and 

proximal tubule. While much is known about the two electrogenic sodium bicarbonate 

cotransporters, NBCe1 and NBCe2, in the regulation of sodium homeostasis and pH balance in the 

rodent kidney, little is known about their roles in human renal physiology. NBCe2 is located in the 

proximal tubule Golgi apparatus under basal conditions and then disperses throughout the cell, but 

particularly into the apical membrane microvilli, during various maneuvers that increase 

intracellular sodium. This review will summarize our current understanding of the distribution and 

function of NBCe2 in the human kidney and how genetic variants of its gene, SLC4A5, contribute 

to salt sensitivity of blood pressure.
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− Exchanger (SLC26A6)

Various transporters are involved with bicarbonate transport since reabsorbing bicarbonate 

filtered by the kidney is necessary to maintain acid-base and pH balance in the body. 
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Approximately 4320 meq/day of HCO3
−(24 meq/L × 180 L/day) are filtered by the 

glomeruli. Much (~90 %) of this bicarbonate is reabsorbed by the renal proximal tubule 

(RPT) and the remainder in the thick ascending limb and collecting duct. The reabsorption 

process is thought to occur via the combination of H+ ions secreted into the tubular lumen 

by the sodium hydrogen exchanger (NHE3) and the vacuolar H+ATPase [1], and 

reabsorption of the filtered bicarbonate by a series of events initiated by carbonic anhydrase 

type 4 (CA IV) (Fig. 1). CA IV dissociates carbonic acid (H2CO3) into H2O and CO2, which 

is membrane permeable, diffuses into the cell. Bicarbonate can also be reabsorbed from or 

secreted into the tubule lumen, the latter occurring if there is an excess generated in the renal 

tubule, through members of the solute carrier protein family (SLC4). Therefore, we will 

briefly review this transporter family and what is known about its location in the kidney.

There are 10 members of the bicarbonate transporter family (encoded by the SLC4 gene 

family), many of which are found in the kidney [2••, 3••]. This review is focused on the 

electrogenic members of the SLC4 family, extensively studied by Boron and Boulpaep, and 

discovered in the renal proximal tubule (RPT) [4], as well as NBCe2 (SLC4A5) originally 

found in the liver, testis, and spleen by Pushkin [5], which mediate cotransport of 2–3 

bicarbonate ions along with each sodium ion. NBCe2 is found predominantly at the apical 

side of the proximal tubule cell (vide infra), while NBCe1, originally found in the 

salamander and rodent [4, 6], is found exclusively at the basolateral membrane [3••, 7•, 8]. 

Although there are six published splice variants of NBCe2, only two (NBCe2-A and 

NBCe2-C) are expressed with all the transmembrane domains intact and thus may be the 

only functional members of the NBCe2 variant family [9]. NBCe2-A contains a unique 16 

amino acid insert almost at the end of the carboxy terminal tail between transmembrane 

segments 11 and 12 when compared with NBCe2-C (Fig. 2). NBCe2-C is the only NBCe2 

variant to have electrogenic activity, and thus, the 16 amino acid insert probably prevents 

NBCe2-A from expressing electrogenic activity. In order to visualize both isoforms by 

immunoblotting or immunohistochemistry, an amino terminal tail-directed antibody should 

be selected.

NBCe1 is transcribed under the control of two distinct promoters making four possible 

messenger RNAs. However, only three isoforms have been identified as follows: NBCe1-A, 

NBCe1-B, andNBCe1-C [9]. Of these three transcripts, only NBCe1-A is expressed in the 

kidney where it is located in the basolateral membrane of the S1 and S2 segments of the 

proximal tubule [8]. By contrast, NBCe2 is found in the luminal membrane of all segments 

of the RPT (vide infra).

Recently, we demonstrated that under basal conditions, the human RPT expresses low levels 

of NBCe2 which can be enhanced by increasing the intracellular sodium concentration, 

either by increasing the extracellular concentration of sodium or adding monensin, an 

ionophore, into the incubating media. Presumably, this results in an increase in sodium 

bicarbonate cotransport [10•]. The increase in NBCe2 activity in RPT cells (RPTC) is 

transient in those carrying wild-type SLC4A5 and persistent in those carrying rs7571842 

SLC4A5 [11••]. Others have determined that approximately 75 % of bicarbonate secretion 

into the intestinal lumen in the sea bass is due to the activity of carbonic anhydrase, while 

another 10–20 % is 4,4’-diisothiocyanatostilbene-2,2’-disulfonate sensitive. NBCe2 and 
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NBCe1 are inhibited by 4,4’-diisothiocyanatostilbene-2,2’-disulfonate [2••, 3••]. This 

suggests that a sodium bicarbonate cotransporter, such as NBCe2, may be involved with this 

activity [12]. Thus, there is some precedent for a sodium bicarbonate cotransport beyond the 

well-accepted carbonic anhydrase pathway in the regulation of bicarbonate transport [1, 2••, 

3••, 4–6, 7•, 9].

Human SLC4 proteins come from 10 different genes that encode sodium-dependent 

transporters and sodium- independent exchangers, including bicarbonate [1, 2••, 3••, 4–6, 7•, 

8, 9, 13]. They can be ubiquitously or discretely expressed with specific functions. In the 

renal proximal tubule, it appears that bicarbonate and chloride secretion into the tubule 

lumen via the apical membrane is also mediated by SLC26A6 encoding the putative anion 

transporter 1 (PAT1) (aka CFEX) [14]. When studied in RPTCs from the spontaneously 

hypertensive rat (SHR) and its normotensive control, the Wistar-Kyoto rat (WKY), PAT1 

activity was found to be increased in the SHR [15–17]. However, there are other 

SLC26−encoded proteins in the renal proximal tubule that may contribute to bicarbonate 

transport [14–20]. The Cl−/HCO3
− exchanger activity in the kidney appears to be the sum of 

the activities of SLC26A4, SLC26A6, and SLC26A9 in WKY and SHR RPTCs; all these 

transporters are overexpressed in the SHR [15]. Simão et al. [15] make a compelling 

argument that these transporters may be an adaptive process to the sustained increase in 

sodium and bicarbonate transport in the RPTCs in the SHR. However, the increased 

transport could also be a result of gain-of-function single nucleotide polymorphisms (SNPs) 

in SLC4A5 [11••] (vide infra).

NBCe1 and NBCe2 may regulate renal sodium and bicarbonate transport to varying degrees 

depending on the salt balance of the individual. The activities of other sodium-dependent 

transporters and sodium-independent exchangers in the SLC4 and SLC26 families affect the 

activities of NBCe1 and NBCe2. These transporters and exchangers, in turn, affect the 

activity of proteins involved in sodium and hydrogen transport, such as NHE3, Na+/K+

−ATPase, and the H+−ATPase in the renal proximal tubule. Since a full review of all the 

sodium, bicarbonate, and hydrogen transporters is beyond the scope of this review, we 

suggest the following review articles [1, 2••, 3••, 7•, 9, 18–21].

The Role of the Kidneys in the Regulation of Blood Pressure

Seminal studies on blood pressure regulation were performed by Guyton et al. [22] who 

hypothesized that ultimately the kidney contributes to the most critical regulation of intra- 

arterial pressure aided by interactions with the nervous, cardiovascular, and endocrine 

systems, among others. The gastrointestinal tract also contributes to the regulation of blood 

pressure [23–26]. Within the kidney, the angiotensin type 1 receptor (AT1R) is considered 

one of the dominant regulators of blood pressure homeostasis [27]. However, the D1−like 

dopamine receptors (D1 receptor (D1R) and D5 receptor (D5R)) and angiotensin type 2 

receptor (AT2R) exert important counter regulatory roles when excess salt and volume need 

to be excreted [28]. There is no evidence that NBCe2 and NBCe1 are regulated directly by 

anti-natriuretic (AT1R) or natriuretic renal receptors (D1R, D5R, and AT2R) since adding 

their agonists in RPTCs were ineffective in changing the expression ofNBCe1 orNBCe2 
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(unpublished data from our laboratory). We speculate that intracellular sodium may be the 

primary stimulus in the regulation of NBCe1 and NBCe2.

NBCe2 Localization in the Kidney

NBCe2 protein is minimally expressed in the human and rodent RPT under basal conditions; 

this may have limited the detection of its protein expression by immunohistochemistry and 

its functional activity, even though its mRNA was detectable [29••]. Well-characterized 

antibodies against NBCe2 have been lacking. In addition, the commercially available 

antibodies were ambiguously labeled due to changes in nomenclature for NBCe2 (aka 

NBC4) which further hindered progress in this area of research. Newer NBCe2 antibodies 

have made it recently possible to determine the location of NBCe2 in the human kidney 

[10•]. We validated a commercial NBCe2 antibody by preadsorption of NBCe2 immunore-

activity with the immunizing peptide. We then used this antibody to study NBCe2 

expression in empty vector- and NBCe2-shRNA-treated cells, by western blot and 

immunofluorescence microscopy of RPTCs and HEK293 cells expressing an epitope-tagged 

NBCe2 lentiviral expression construct. NBCe2 immunofluorescence was alsofound in the 

cortical collecting duct [10•], but not in the distal convoluted tubule in fresh and frozen renal 

tissue sections; the latter finding in agreement with a previous report [30].

NBCe2 Subcellular Location and Translocation

Understanding the subcellular localization of NBCe2 is important in determining whether or 

not NBCe2 contributes to the transport of bicarbonate from the tubular (luminal) fluid into 

the RPTC. We studied NBCe2 expression in connecting tubule and cortical collecting duct 

(identified by L1-CAM) and RPT (identified by CD13 and Lotus tetragonolobus agglutinin) 

in fresh human renal slices [10•]. NBCe2 staining in the renal cortical collecting duct is 

consistent with earlier reports of its expression in principal cells [30]. We found that an 

increase in intracellular sodium caused by increasing the NaCl concentration in the 

incubation medium from 120 to 170 mmol/L or exposure to the ionophore, monensin (1–10 

μimol/L), was the stimulus that increased NBCe2 expression and activity, i.e., increase 

bicarbonate transport across the luminal membrane [10•]. Under basal conditions, in the 

RPTC, NBCe2 is concentrated in the Golgi bodies with some diffuse staining throughout the 

cell. Increasing intracellular sodium causes the recruitment of NBCe2 to intracellular 

punctate structures subjacent to the apical membrane of the RPT. Electron microscopy 

demonstrated migration of NBCe2 from the sub-apical compartment to the microvilli 

following the increase in intracellular sodium. Total internal reflection fluorescence 

microscopy demonstrated vesicle-like structures at the apical membrane in polarized 

RPTCs. This location is similar to that shown for NHE3 in RPTs of rats after the induction 

of hypertension where NHE3-mediated sodium transport is still functional, albeit at a lower 

level, even after its movement in the microvilli or in the inter-microvilliary cleft. [31] We 

also confirmed apical RPT localization of NBCe2 by western blot studies of apical 

membranes isolated by two different methods: CD-13 immunoprecipitation and magnesium 

precipitation [10•].

Felder et al. Page 4

Curr Hypertens Rep. Author manuscript; available in PMC 2018 October 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



NBCe1 Versus NBCe2

In the kidney, NBCe1 (particularly NBCe1-A) has been well characterized to provide 

electrogenic transport of sodium and bicarbonate across the basolateral membrane of the 

RPT in rodents [1, 2••, 3••, 9, 32] and humans [33]. NBCe1, encoded by SLC4A4 [1, 2••, 

3••, 9], is located in the human RPT [10•, 30, 33], medullary thick ascending limb (mTAL), 

and collecting duct [30]. NBCe1, by transporting bicarbonate from inside the RPT across the 

basolateral membrane, promotes H+ ion secretion into the tubular lumen which can then 

combine with bicarbonate that was exchanged with chloride via PAT1. The resultant 

carbonic acid is acted upon by CA IV to continue the process of bicarbonate reabsorption. 

The renal tubular reabsorption of bicarbonate helps to maintain normal plasma bicarbonate 

and pH [1, 2••, 3••, 4, 13, 18, 19]. Germline deletion of SLC4A4 (NBCe1) [33] or SLC4A5 
(NBCe2) [34] in mice causes metabolic acidosis and hypertension in the case of SLC4A5. 

The latter occurs because of an increase in sodium reabsorption in the distal nephron [35].

The electrogenic sodium bicarbonate cotransporter activities of NBCe1 and NBCe2 are 

considered indistinguishable [2••, 3••]. In humans, the relationship of these two transporters 

is better understood, in that RPTC NBCe1 appears to be located in the basolateral membrane 

[36], whereas NBCe2 is located in the apical membrane [10•]. Our immunofluorescence 

studies were performed in various model systems to ensure the validity of our interpretation 

of the results. We measured NBCe2 protein in the apical membranes and NBCe1 in the 

basolateral membranes of RPT of flash-frozen human kidney, primary cultures of RPTCs 

exfoliated into human urine, primary cultures of RPTCs isolated from surgical-discard fresh 

human kidneys, and immortalized human RPTCs from cell lines isolated from seven 

different individuals. We localized NBCe2 expression to the RPT subapical membrane in 

flash-frozen human kidney tissue, as well as in fresh renal cortical tissue. Higher expression 

of NBCe2 and lower expression of NBCe1 were found when intracellular sodium was 

increased (vide supra). We also demonstrated that bicarbonate-dependent pH recovery in 

RPTCs was due, in part, to NBCe2 at the apical membrane [10•]. These data support our 

hypothesis that NBCe2 expression is increased and recruited to the RPTC apical membrane 

microvilli by an increase in intracellular sodium.

Dysregulation of NBCe2 Activity

Essential hypertension is likely caused by genetic variants in key blood pressure-regulating 

pathways, instigated or exacerbated by environmental factors. The nephron segments 

responsible for the bulk of sodium retention in human polygenic/essential hypertension are 

the renal proximal tubule (RPT) and the medullary thick ascending limb of Henle (mTAL) 

[37–40]. However, renal distal tubular mechanisms also contribute to the increased sodium 

retention in hypertension [39, 40], especially in monogenic forms of hypertension [39–41]. 

NBCe2 is located in these nephron segments [10•, 30]. The gene SLC4A5, which encodes 

NBCe2 [2••, 3••, 9, 19], has been significantly associated with high blood pressure and/or 

salt sensitivity [42••, 43••, 44••, 45••, 46, 47]. The increased activity ofNBCe2 [44••, 45••, 

46, 47] at the luminal membrane [43••], and decreased activity of NBCe1, at the basolateral 

membrane [48], in hypertension do not conflict with the increase in RPT sodium transport in 

the genetic hypertension [37–40]. The increased sodium reabsorption in the renal proximal 
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tubule of young SHRs is a consequence of the high activity of the main mechanisms of 

sodium transport in this nephron segment, NHE3, and Na+/K+−ATPase [49–51]; SLC26A6 
activity is also increased in the SHR [15–17]. The increased activity of these exchangers and 

pump [37–40, 49–53], with the increased activity of NBCe2 in the RPT [43••] and the 

decreased activity of NBCe1 [48] result in a decrease in overall HCO3
− reabsorption. Low 

plasma HCO3
− and high anion gap are associated with hypertension [54–57]. Mice with 

germline deletion of SLC4A5 on SV129/C57 background were reported to be acidotic with 

elevated blood pressure that was thought to be due to increased distal tubule bicarbonate 

transport via other bicarbonate sodium transporters, e.g., SLC26A4 and SLC4A7 [34, 35]. 

Increasing bicarbonate consumption in wild-type SV129/C57 mice elevated their blood 

pressure to the levels seen in SLC4A5 knockout mice [34]. Mice with germline deletion of 

SLC4A5 on mostly C57BL/6 background have normal blood pressure on a normal diet but 

an acid diet caused hypertension that was due to increased epithelial sodium channel-

mediated sodium reabsorption [35, 58].

Human essential hypertension is also caused by increased renal reabsorption of electrolytes, 

including bicarbonate and sodium [59, 60]. Salt sensitivity has been estimated to be present 

in 51 % of hypertensive and 26 % of normotensive subjects [60]. Salt sensitivity of blood 

pressure, even in the absence of hypertension, is similar to hypertension in that they both 

lead to significant increases in morbidity and mortality due to stroke, blindness, heart attack, 

and renal failure [61]. We, and others, examined the relationship between SNPs in NBCe2 

and salt sensitivity. At the University of Virginia (UVA), we examined the genetic 

associations with blood pressure in 185 subjects of European ancestry ages 18–70 years and 

body mass index (BMI) of 18–30 [43••]. In a collaborative study, the genetic associations 

with blood pressure traits were performed on specimens from the HyperPATH Cohort with 

subjects with mild hypertension studied from four international centers (Brigham and 

Women’s Hospital, University of Utah Medical Center, Vanderbilt University, and Hospital 

Broussais (Paris, France)) [43••, 62]. We tested the hypothesis that SNPs in SLC4A5 are 

associated with salt sensitivity (≥7-mmHg increase in mean arterial pressure during a 

randomized transition between high- and low-sodium diets) in 185 whites consuming an 

isocaloric constant diet starting with either 7 days of low (10 mmol Na+/day) or 7 days of 

high sodium (300 mmol Na+/day) intake and then switching to the other diet. Three variants 

were associated with salt sensitivity, two in SLC4A5 (P<0.001) and one in GRK4 (P 
=0.020). Of these, two SNPs in SLC4A5 (rs7571842 and rs10177833) demonstrated highly 

significant results and large effect sizes, using logistic regression. These two SNPs had P 
values of 1.0×10−4 and 3.1×10−4 with odds ratios of 0.221 and 0.221 in unadjusted 

regression models, respectively, with the G allele at both sites conferring protection. The 

association of these SNPs with salt sensitivity was replicated in the HyperPATH Cohort at 

Harvard with a meta-analysis demonstrating significant associations of both SNPs with salt 

sensitivity (rs7571842 (P = 1.2×10−5); rs1017783 (P =1.1× 10−4)) [43••]. Our results [43••] 

are consistent with the association ofrs1017783 and increased blood pressure in African-

Americans, Mexican-Americans, Euro-Americans, and Taiwanese [42••, 44••, 45••, 46, 47, 

63••, 64]. Another SLC4A5 SNP (rs 10022637) (P =2.07×10−6) was found to be associated 

with salt sensitivity in a large cohort of Han Chinese; SLC4A5 rs1017783 was not 

genotyped [65].
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Some investigators believe that despite the strong association between the SLC4A5 locus 

and salt sensitivity in the absence of hypertension, NBCe2 may not contribute to the 

phenotypes of salt sensitivity or hypertension since it has only a minor role to play (if at all) 

in renal sodium and bicarbonate transport, under conditions of “normal” sodium intake. 

However, there are two compelling reasons to support the notion that SLC4A5 contributes, 

at least in part, to the sodium retention in hypertension. Increased sodium transport is 

involved in genetic hypertension [37–41, 43••, 59, 66••]. Although SLC4A5 may not be a 

major contributor to sodium balance, relative to other sodium transporters, it may be an 

important player under conditions of high salt intake. Thus, even a decrease of only 0.1 % in 

sodium excretion over a period of time can lead to hypertension. For illustrative purposes, an 

average individual excretes 1 % of filtered sodium (~250 mmol/day). A reduction in sodium 

excretion of only 0.1 % leads to sodium retention of 25 mmol/day or 125 mmol in 5 days 

provided that there is no corresponding natriuresis. A short-term (5 days) change in sodium 

diet in normotensive and hypertensive human subjects from low to high and vice versa can 

also lead to a directional change in plasma sodium of about 3 mmol [67, 68]. One-month 

reduction of sodium intake from ~ 170 to 100 mmol/day has also been reported to be 

associated with a 0.4-mmol decrease in plasma sodium [68]. Fortunately, extrarenal 

regulatory mechanisms [69] participate in the maintenance of sodium homeostasis and 

pressure-natriuresis mechanism, in addition to the increased production and action of 

natriuretic hormones/factors and decreased production and action of anti-natriuretic 

hormones/factors help to eliminate most of the ingested sodium [25]. However, we have 

demonstrated that SLC4A5 mRNA, as well as its protein prod-uctNBCe2, is increased by 

sodium intake [10•]. Individuals with polymorphisms in SLC4A5 would have a further 

increase in NBCe2 expression and therefore an increase in sodium and bicarbonate 

cotransport in their RPT. Thus, we have demonstrated a functional link between SLC4A5 
polymorphisms and renal sodium transport that could make contributions to salt sensitivity 

[11••]. As previously mentioned, studies from various investigators including ourselves have 

demonstrated a genetic link between NBCe2 polymorphisms and hypertension [11••, 42••, 

43••, 44••, 45••, 46, 47, 63••, 64, 65]. However, these polymorphisms are not in the coding 

region for SLC4A5 (NBCe2). We have further clarified the mechanism by which SLC4A5 
rs10177833 may lead to an increase in expression and activity of NBCe2. HNF4A is a 

transcriptional regulator present in the RPT that plays a key regulatory role in a large 

number of pathways [70–72]. We found that SLC4A5 rs10177833 causes an increase in 

HNF4A binding to the SLA4A5 gene resulting in an increase in NBCe2 mRNA, NBCe2 

protein expression, and increased NBCe2-mediated bicarbonate and sodium transport under 

conditions of elevated intracellular sodium [11••] (Fig. 3).

Summary and Conclusion

Ion transporters and exchangers mediate the balance of influx and outflux of ions through 

the cell membrane in all tissues. The normal balance of pH and sodium is critical to the 

maintenance of life in the short-term and health in the long-term. Since pH is so critical to 

immediate cell health, nature seems to have endowed cells throughout the body with a rich 

variety of bicarbonate cotransporters and hydrogen pump and channel. We have studied 

NBCe2 and NBCe1 regulation of renal bicarbonate transport and how they work in concert 
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to maintain sodium balance. A consequence of a hyperactive NBCe2, as a result of SNPs in 

the SLC4A5 gene, may be that in a subset of salt-sensitive individuals, NBCe2 

polymorphisms, e.g., SLC4A5 rs1017783, lead to an increase in renal sodium bicarbonate 

reabsorption, which apparently is only partially compensated by a partial reduction in 

NBCe1 and increase in PAT1 activities. We speculate that blocking the increased synthesis 

and/or activity of NBCe2 may be a novel approach to mitigate the increased renal sodium 

reabsorption in some salt-sensitive individuals.
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Fig. 1. 
Model of a human renal proximal tubule cell (RPTC). Top figure—under basal conditions 

the principal avenue for bicarbonate (HCO3
−) uptake from the lumen into cytosol is via the 

breakdown of carbonic acid (H2CO3) to water and carbon dioxide (CO2) by luminal 

carbonic anhydrase type IV (CA IV), followed by the diffusion of CO2 into the cytosol via 

the membranes of the microvilli. CA II then converts water and CO2 back into carbonic acid 

where it spontaneously breaks down into bicarbonate and hydrogen ion, with the latter 

secreted into the lumen via the sodium hydrogen exchanger type 3 (NHE3). Two to three 

bicarbonate ions can then be reabsorbed into the blood stream along with each sodium ion 

via NBCe1-A at the basolateral membrane. Bottom figure—increasing intracellular sodium 

concentration caused by high extracellular sodium concentration or monensin increases 

NBCe2 mRNA and protein expressions and activity that become persistent in the presence 

of single nucleotide polymorphisms of NBCe2, while only marginally attenuating the 

protein expression and activity of NBCe1-A in RPTCs. This results in a net increase in 
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sodium transport into the basolateral space. PAT1 activity increases because of an increase in 

intracellular bicarbonate. NHE3 activity also increases because the increase in luminal 

NBCe2 activity increases intracellular H+ following the conversion of intracellularly 

transported HCO3
− to H2CO3 and its dissociation to H+ and HCO3

− resulting in a further 

increase in sodium reabsorption
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Fig. 2. 
Generic model of NBCe2 showing its three domain structure, carboxy and amino terminal 

tails, and glycosylation (Gly) sites along the extracellular domain between transmembrane 

domains 5 and 6. NBCe2 exists in two isoforms (NBCe2-A and NBCe2-C). NBCe2-A 

differs from NBCe2-C mainly by the presence of an 18 amino acid (aa) insert in the 

connector between transmembrane domains 11 and 12 (adapted from reference [9])
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Fig. 3. 
The mechanism causing the increase in sodium transport in RPTCs carrying the SLC4A5 
rs10177833 is shown on the same model depicted in Fig. 1. These RPTCs have an increase 

in HNF4A binding to the SLC4A5 gene resulting in an increase in NBCe2 mRNA, as well 

as an increase in NBCe2 protein and activity under high salt conditions. The resulting 

increase in intracellular sodium and bicarbonate is associated with an increase in PAT1 

activity and slight reduction in NBCe1 activity
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