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Abstract

Restriction of dietary protein intake increases food intake and energy expenditure, reduces growth, 

and alters amino acid, lipid, and glucose metabolism. While these responses suggest that animals 

‘sense’ insufficient consumption of amino acids, the basic physiological mechanism mediating the 

adaptive response to protein restriction has been largely undescribed. In this review we make the 

case that the liver-derived metabolic hormone FGF21 is the key signal which communicates and 

coordinates the homeostatic response to dietary protein restriction. Support for this model centers 

on the evidence that FGF21 is induced by settings of insufficient dietary protein or amino acid 

intake and is required for adaptive changes in metabolism and behavior. FGF21 occupies a unique 

endocrine niche, being induced when energy intake is adequate but protein and carbohydrate are 

imbalanced. Collectively, the evidence thus suggests that FGF21 is the first known endocrine 

signal of dietary protein restriction.
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1. Introduction

The ability to sense and respond to nutrient restriction is one of the most essential 

physiological functions in biology. Survival is dependent on the organism procuring 

sufficient nutrients to meet metabolic needs and doing so in a fashion that responds to 

changes in the external environment or internal physiology. However, free-feeding animals 

often face a complex nutritional landscape where individual food sources vary in 

macronutrient content, energy density, palatability, and availability. Effectively navigating 

this nutritional landscape requires choices that maximize nutrient intake while minimizing 

procurement cost. Although considerable progress has been made in understanding the 

neural regulation of feeding behavior, much of this work has focused on food intake in terms 

of total food (grams) or energy (calories). Yet it seems intuitive that we eat for more than 
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just calories/energy. Roughly 6 years ago we summarized the evidence for the homeostatic 

regulation of dietary protein intake while also noting that the neuroendocrine mechanisms 

governing this behavior were largely undefined (Morrison et al., 2012). Here we provide an 

update by making the case that the metabolic hormone FGF21 is a key component in the 

homeostatic mechanism mediating responses to protein restriction.

2. Impact of Dietary Protein Restriction on Behavior and Metabolism

Consumption of essential amino acids is required for life, and regulatory systems exist to 

detect insufficient protein intake and coordinate adaptive changes in feeding behavior and 

metabolism. For instance, a large amount of evidence indicates that reduced dietary protein 

content increases total food intake across a range of species, while also increasing energy 

expenditure, reducing growth, and altering the expression of a variety of genes associated 

with amino acid, glucose and lipid metabolism within the liver and elsewhere (Berthoud et 

al., 2012; Morrison et al., 2012; Anthony et al., 2013; Davidenko et al., 2013; Ghosh et al., 

2014; Gosby et al., 2014; Martens & Westerterp-Plantenga, 2014; Morrison & Laeger, 

2015). Additional evidence suggests that variations in amino acid composition can also 

influence feeding behavior, such that animals increase their consumption of diets that are 

moderately restricted in one or a few amino acids, avoid diets that are severely imbalanced 

in AA composition, and selectively find and consume the missing amino acid when faced 

with multiple food options (Hrupka et al., 1997; Torii & Niijima, 2001; Anthony & Gietzen, 

2013; Cummings et al., 2017; Wanders et al., 2017). Finally, the specific response is often 

dependent on the magnitude of the dietary restriction, with methionine restriction producing 

adaptive changes in food intake and metabolism within a specific ‘window’ of dietary 

restriction (Forney et al., 2017a; Forney et al., 2017b). Methionine intakes higher than this 

threshold producing no overt phenotype and methionine intakes below producing negative 

physiological outcomes that are more accurately described as deprivation.

In addition to changes in feeding behavior, early work by Rothwell and Stock demonstrated 

that increases in food intake during protein restriction were not accompanied by the 

predicted increase in body weight (Rothwell et al., 1982, 1983). More recent work provides 

clear evidence that protein restriction increases whole-body energy expenditure, both at 

room temperature and thermoneutrality, and that these effects are associated with activation 

of brown adipose tissue, increases in UCP1, and the browning of white fat (Rothwell & 

Stock, 1987; Laeger et al., 2016; Hill et al., 2017). Although the physiological reason for 

this increase in energy expenditure is unclear, it could be argued that the increase in energy 

expenditure allows the animal to burn off excess calories in an effort to procure the missing 

amino acids (Felicetti et al., 2003; Sorensen et al., 2008). However, we recently 

demonstrated that preventing hyperphagia in protein-restricted mice increased weight loss 

and did not block the increase in energy expenditure, while deletion of UCP1 blocked both 

the increase in both food intake and the increase in energy expenditure during protein 

restriction (Hill et al., 2017). Taken together, these data not only suggest that increased 

energy expenditure is independent of hyperphagia, but that increased energy expenditure 

may in fact drive food intake.
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As expected, dietary protein restriction also influences metabolism within multiple tissues, 

including muscle, fat and liver. The liver in particular responds to reduced amino acid intake 

by inhibiting protein synthesis and amino acid catabolism and increasing amino acid 

biosynthesis (Anthony et al., 2004; Kilberg et al., 2005), effects which buffer against 

dramatic or persistent falls in circulating amino acids during protein restriction (Anderson et 

al., 1990; Kalhan et al., 2011; Laeger et al., 2014b). Protein restriction promotes other 

changes within the liver, altering the expression of genes associated with amino acid and 

lipid metabolism, enhancing insulin sensitivity, and increasing autophagy (Mortimore & 

Schworer, 1977; Guo & Cavener, 2007; Hasek et al., 2013; Stone et al., 2014; Fontana et al., 

2016; Henagan et al., 2016; Maida et al., 2016; Cummings et al., 2017). The liver is also 

uniquely positioned to sense and respond to alterations in dietary protein content due to its 

direct sensing of absorbed amino acids via the portal circulation. The observations led our 

lab to focus on the possibility that the liver produced a signal that communicated protein 

status, and this effort eventually led to the link between FGF21 and dietary protein 

restriction (Laeger et al., 2014a).

3. Nutritional Regulation of Liver FGF21 Expression

FGF21 is a member of a large group of fibroblast growth factors that influence an array of 

physiological and cellular functions (Nishimura et al., 2000). While most FGFs act in a 

paracrine fashion, FGF21, FGF15/19 and FGF23 form a subgroup of ‘endocrine FGFs’ 

which circulate in appreciable amounts within the bloodstream and thereby act as true 

endocrine hormones (Angelin et al., 2012; Itoh et al., 2015). Initial interest in FGF21 

stemmed from the discovery that FGF21 promoted glucose uptake in adipocytes 

(Kharitonenkov et al., 2005). Soon it was demonstrated that FGF21 treatment reduced body 

weight, glucose and lipid concentrations in models of obesity (Kharitonenkov et al., 2005; 

Kharitonenkov et al., 2007; Coskun et al., 2008), leading to substantial interest within both 

the basic research and pharmaceutical communities regarding FGF21’s potential as 

treatment for obesity/diabetes. Multiple prior reviews thoroughly cover the discovery of 

FGF21 and the early description of its metabolic effects (Potthoff et al., 2012; 

Kharitonenkov & Adams, 2014; Fisher & Maratos-Flier, 2016; Kharitonenkov & DiMarchi, 

2017; Potthoff, 2017).

In addition to defining the pharmacological potential of FGF21, significant effort also 

focused on defining the physiological significance of FGF21. Early work in rodent models 

shaped the FGF21 narrative by demonstrating that circulating FGF21 is induced by fasting 

and ketogenic diets and principally produced by the liver, that PPARα was the key molecular 

regulator of FGF21 expression, and that FGF21 contributed to the adaptive responses to 

fasting (Badman et al., 2007; Inagaki et al., 2007; Badman et al., 2009; Potthoff et al., 2009; 

Markan et al., 2014). However, the effect of fasting and ketogenic diets to increase FGF21 is 

not nearly as robust in humans as initially observed in mice (Galman et al., 2008; 

Christodoulides et al., 2009; Dushay et al., 2010). FGF21 is also increased in settings of 

obesity (Zhang et al., 2008; Chavez et al., 2009; Dushay et al., 2010), which appears 

contradictory for a fasting hormone which lowers body weight and improves glucose 

homeostasis. The elevated FGF21 levels observed during obesity has led some to suggest 

that obesity is an FGF21 resistant state, and it has been demonstrated that the FGF21 co-
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receptor beta-Klotho (Klb) is significantly downregulated and FGF21 signaling attenuated in 

liver and fat of obese models (Fisher et al., 2010; Markan et al., 2017). However, subsequent 

studies indicate that FGF21’s effects on metabolic endpoints are not impaired in models of 

obesity (Hale et al., 2012; Laeger et al., 2017), and it has been speculated that loss of FGF21 

signaling in white adipose tissue could represent an adaptive effort to shunt lipids to brown 

adipose during obesity (Schlein et al., 2016; Markan et al., 2017). Finally, several recent 

studies suggest that alcohol intake also increases FGF21 and that FGF21 inhibits alcohol 

intake (Schumann et al., 2016; Talukdar et al., 2016; Desai et al., 2017; Soberg et al., 2018; 

Song et al., 2018). The connection between liver FGF21 secretion and obesity, steatosis, 

alcohol consumption and metabolic stress has led to a broader view of FGF21 as a signal of 

metabolic or cellular stress (Maratos-Flier, 2017). Indeed, various manipulations which 

trigger cellular stress increase FGF21 production, even in tissues such as muscle which 

normally do not produce significant quantities of FGF21 (Kim et al., 2012; Brahma et al., 

2014; Keipert et al., 2014; Guridi et al., 2015; Harris et al., 2015; Touvier et al., 2015; 

Vandanmagsar et al., 2016; Pereira et al., 2017b). These data collectively suggest that 

diverse signals are capable of regulating FGF21 production in liver and other tissues, but 

considerable debate remains regarding the relevance of these various inputs in a 

physiological context. In the next section we suggest that one key physiological effect of 

FGF21 is to signal macronutrient imbalance, particularly insufficient protein in the context 

of high energy/carbohydrate.

3.1 Increased FG21 in response to high carbohydrate.

The first connection between carbohydrate intake and FGF21 derived from a study 

demonstrating that refeeding with high carbohydrate diets induced a robust increase in liver 

and circulating FGF21 (Sanchez et al., 2009). This effect appeared to be specific for liver, as 

treatment of primary rat hepatocytes with glucose also increased FGF21 mRNA expression 

(Iizuka et al., 2009). However, the role of carbohydrate as a regulator of FGF21 gained 

significant momentum when it was demonstrated that fructose ingestion acutely increased 

circulating FGF21 in humans (Dushay et al., 2015). Multiple studies have since 

demonstrated that both acute ingestion of carbohydrate (generally sucrose, fructose or 

glucose), as well as longer-term exposure to high carbohydrate diets, leads to increases in 

both hepatic FGF21 mRNA expression and circulating FGF21 protein (Solon-Biet et al., 

2016; von Holstein-Rathlou et al., 2016; Fisher et al., 2017; Iroz et al., 2017; Lundsgaard et 

al., 2017; Maekawa et al., 2017; Pereira et al., 2017a). The mechanism of this carbohydrate-

induced increase in FGF21 in the liver appears to be primarily driven by carbohydrate 

response element binding protein (ChREBP). The FGF21 promoter contains ChREBP 

elements, carbohydrate intake induces ChREBP binding to the FGF21 promoter, and 

deletion of ChREBP blocks the carbohydrate-induced increase in FGF21 (Iizuka et al., 

2009; von Holstein-Rathlou et al., 2016; Fisher et al., 2017; Iroz et al., 2017). Interestingly, 

the transcription factor PPARα is also required for glucose-induced increases in FGF21 

expression, and available evidence highlights an important interaction between PPARα and 

ChREPB signaling in the context of FGF21 regulation (Iroz et al., 2017). Taken together, 

these data provide compelling evidence that dietary carbohydrates engage a specific 

transcriptional pathway to control FGF21 production.
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3.2 Regulation of FGF21 by dietary protein restriction.

The identification of FGF21 as a signal of dietary protein restriction was initiated by De 

Sousa-Coelho and colleagues (De Sousa-Coelho et al., 2012). Their work demonstrated that 

the FGF21 promoter contained amino acid response elements (AARE) and that depletion of 

the amino acid leucine promoted binding of the transcription factor ATF4 to these AAREs, 

leading to robust increases in FGF21 expression in vitro and in vivo. Subsequent work 

demonstrated that FGF21 was increased by ER stress via the same ATF4-dependent pathway 

(Schaap et al., 2013; Jiang et al., 2014), thereby supporting ATF4 as an alternative 

mechanism for FGF21 regulation in the liver. ATF4 is a key molecular mediator of the 

classic integrated stress response (ISR), which coordinates the cellular response to various 

stressors, including amino acid depletion (Wek et al., 2006; Kilberg et al., 2009). This 

connection between FGF21, amino acid restriction and the ISR led our lab to hypothesize 

that perhaps the restriction of dietary protein contributed to the increases in FGF21 observed 

during fasting. Our work demonstrated that liver FGF21 expression and circulating FGF21 

protein levels are increased by protein restriction in mice, rats and humans, and that this 

effect is independent of any change in energy intake (Laeger et al., 2014a). In fact, 

restricting energy intake without restricting protein decreased FGF21 expression. 

Subsequent work by multiple groups has confirmed that FGF21 is robustly increased by 

dietary protein restriction (Fournier et al., 2014; Ozaki et al., 2015; Chalvon-Demersay et 

al., 2016; Gosby et al., 2016; Maida et al., 2016; Pezeshki et al., 2016; Solon-Biet et al., 

2016; Larson et al., 2017; Pereira et al., 2017a). This effect to increase FGF21 also extends 

to other situations of amino acid restriction, including the restriction of leucine, methionine/

cysteine, the depletion asparagine, and the restriction of multiple non-essential amino acids 

(De Sousa-Coelho et al., 2012; Wanders et al., 2015; Wilson et al., 2015; Maida et al., 2016; 

Wanders et al., 2017). Contrastingly, available evidence suggests that the restriction of 

branched-chain amino acids may not increase FGF21, at least not persistently (Fontana et 

al., 2016; Cummings et al., 2017). Importantly, multiple groups have independently 

extended this observation to humans, suggesting that increases in FGF21 during dietary 

protein restriction is conserved across mammalian species (Laeger et al., 2014a; Fontana et 

al., 2016; Gosby et al., 2016; Maida et al., 2016).

Currently the mechanisms driving increases in liver FGF21 in response to protein restriction 

are not fully clear. Initial work implicated the classic integrated stress response pathway, 

particularly activation of the amino acid sensor GCN2, increased elF2a phosphorylation, the 

binding of ATF4 to the FGF21 promoter, and increases in FGF21 expression (De Sousa-

Coelho et al., 2012). Indeed, deletion of GCN2 markedly attenuates the increase in FGF21 

during protein restriction as well as in a model of asparagine depletion (Wilson et al., 2015; 

Laeger et al., 2016). However, GCN2-deficient mice appear to compensate over time, such 

that FGF21 expression eventually increases even in the absence of GCN2 (Laeger et al., 

2016). Consistent with changes in FGF21 levels, the metabolic response to protein 

restriction is also impaired in GCN2-deficient mice for only the first few weeks of dietary 

protein restriction. The identity of this compensatory, GCN2-independent mechanism is 

currently unclear, but it seems possible that other components of the integrated stress 

response could contribute. For instance, PERK is known to promote FGF21 expression in 

response to classic ER stress signals and could potentially compensate for loss of GCN2 
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(Schaap et al., 2013), while other integrated stress response components such as Nupr1 and 

IRE1α-XBP1 have been implicated on FGF21 regulation (Jiang et al., 2014; Maida et al., 

2016). GCN2 seems to be wholly unnecessary for increases in FGF21 in the context of 

methionine restriction, and while initial work suggested that PERK was activated, PERK is 

also dispensable for changes in FGF21 expression and metabolism during methionine 

restriction (Wanders et al., 2016; Pettit et al., 2017). Contrastingly, PPARα-deficient mice 

fail to increase FGF21 during protein restriction (Laeger et al., 2014a), and therefore PPARα 
is required for the effects of protein restriction, fasting and carbohydrate excess to increase 

FGF21 (Badman et al., 2007; Inagaki et al., 2007; Iroz et al., 2017). Although PPARα is 

required, there is no evidence that PPARα signaling is activated by protein or amino acid 

restriction (Ghosh et al., 2014; Laeger et al., 2014a), an outcome which suggests that 

PPARα likely plays a structural or constitutive role in FGF21 transcriptional activity during 

protein restriction, just as it appears to do in response to carbohydrate excess (Iroz et al., 

2017). In summary, multiple lines of evidence suggest that protein restriction potently and 

persistently increases liver FGF21 expression and circulating FGF21 concentrations.

3.3 FGF21 as a signal of protein:carbohydrate imbalance

The above discussion suggests that FGF21 is not simply a fasting hormone, but is regulated 

by multiple nutritional inputs. One complication of many nutritional studies, including our 

own, is that protein and carbohydrate are often concomitantly altered to maintain a diet that 

is isocaloric with the control. As such, low protein diets are also marginally higher in 

carbohydrate, and it could be argued that this carbohydrate contributes to the increase in 

FGF21 induced by low protein diets. However, FGF21 is also increased by the restriction of 

individual amino acids acids (De Sousa-Coelho et al., 2012; Wanders et al., 2015; Wilson et 

al., 2015; Maida et al., 2016; Wanders et al., 2017; Cummings et al., 2018), and in this 

situation there is no change in carbohydrate content. High carbohydrate cannot explain the 

effect of ketogenic diets to increase FGF21, as ketogenic diets are virtually devoid of 

carbohydrate. Interestingly, several studies demonstrate that ketogenic diets increase FGF21 

only when protein is reduced (Laeger et al., 2014a; Stemmer et al., 2015), and therefore 

dietary protein or amino acid restriction is sufficient to increase FGF21 regardless of the 

carbohydrate content of the diet. A similar argument could be made of pure sucrose/glucose/

fructose/alcohol solutions, as these treatments are devoid of protein and therefore dilute 

protein intake. However, a recent study demonstrated that high carbohydrate diets increase 

FGF21 even when protein intake is controlled (Lundsgaard et al., 2017), and the specific, 

critical role played ChREBP in mediating the effects of glucose provides a specific 

mechanism linking carbohydrate intake to FGF21 expression.

Collectively these data suggest that FGF21 is independently regulated by multiple 

macronutrient inputs, and this conclusion is supported by a study using the geometric 

framework to define the macronutrient regulation of FGF21 in 858 mice eating 25 diets 

which varied in protein, carbohydrate, fat, and energy density (Solon-Biet et al., 2016). This 

study provides strong evidence that low protein and high carbohydrate independently 

increase FGF21, but energy intake itself does not influence FGF21. Taken together these 

observations suggest that FGF21 is primarily regulated by an imbalance between protein and 

carbohydrate intake, being particularly increased when protein intake is restricted and 
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carbohydrate intake is excessive. FGF21 therefore responds to a nutritional state that is 

different from leptin and other energy balance signals. Two alternative nutritional scenarios 

can be envisioned which highlight these unique roles. The first scenario is one in which food 

is generally scarce, resulting in the restriction of energy intake. In this scenario, classic 

energy balance signals (leptin, insulin, ghrelin, etc.) govern metabolic and behavioral 

adaptions to dietary (energy) restriction. The second scenario is one in which low protein, 

high carbohydrate foods are readily available, but protein rich foods are scare. In this case 

energy balance signals are not engaged because energy intake is sufficient, but FGF21 is 

specifically increased because protein intake is low but carbohydrate intake is high. It is thus 

attractive to hypothesize that the induction of FGF21 in this state provides an endocrine 

mechanism to coordinate adaptive responses to imbalanced, protein-poor diets (Felicetti et 

al., 2003; Sorensen et al., 2008; Morrison et al., 2012). However, for this scenario to be 

relevant FGF21 must be physiologically required for adaptive responses to protein 

restriction.

4. FGF21 is essential for metabolic responses to protein restriction

It is generally accepted that physiological systems sense ‘nutrient restriction’ and engage 

adaptive mechanisms which both mitigate the consequences of restriction and promote a 

restoration of physiological function once food becomes available. Powerful examples exist 

for responses to the restriction of energy, sodium and water. While available evidence 

suggests that animals sense and respond to protein restriction, the primary mechanisms 

mediating the adaptive response to protein restriction is largely unknown (Morrison et al., 

2012; Morrison & Laeger, 2015). However, work from our lab and others increasingly 

suggest that FGF21 is robustly increased by dietary protein restriction and required for 

adaptive responses to low protein diets.

The initial observations demonstrating FGF21’s required role stems from straightforward 

studies assessing the impact of low protein diets in FGF21-deficient mice. Protein restriction 

in mice produces an array of metabolic responses, including reduced body weight and 

adiposity and increased energy expenditure and food intake. These effects are lost in FGF21-

deficient mice, whose growth rate is not reduced by the low protein diet (Laeger et al., 

2014a). These data therefore indicate that FGF21 is the missing endocrine signal which 

coordinates adaptive behavioral and metabolic responses to dietary protein restriction. 

Subsequent work from multiple groups has replicated these core observations. Metabolic 

responses to protein restriction persist beyond 6 months of exposure, and FGF21 is fully 

required for this persistent response (Laeger et al., 2016). FGF21 also contributes to the 

effects of protein restriction on other metabolic endpoints, most notably improving insulin 

sensitivity in both diet and genetic models of obesity (Maida et al., 2016). The contribution 

of FGF21 to dietary protein restriction has also been extended to methionine restricting 

diets, where it was shown that FGF21 was required of the changes in energy expenditure and 

glucose homeostasis during MR, but not effects on lipid metabolism (Forney et al., 2017a; 

Wanders et al., 2017).

We have also indirectly validated the contribution of FGF21 via a separate set of studies 

focusing on the mechanism for FGF21 induction during protein restriction (Laeger et al., 
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2016). As described above, the amino acid sensor GCN2 is required for acute increases in 

FGF21 during protein restriction, such that GCN2-KO mice phenocopy FGF21-KO in their 

failure to respond to protein restriction, at least initially. However, GCN2-KO mice exhibit a 

delayed response to protein restriction, and this delayed metabolic response is explained by 

a delayed increase in FGF21 (Laeger et al., 2016). Because the response to protein 

restriction in GCN2-KO mice is tied to the increase in FGF21, this observation provides 

independent evidence that FGF21 is required for metabolic responses to protein restriction. 

Therefore, an increase in circulating FGF21 levels during protein restriction is required for 

the animal to ‘sense’ protein restriction and adapt metabolically and behaviorally, and this 

novel mechanism may provide a window into the biology underlying this robust but poorly 

understood response.

5. Biology of FGF21 action in the context of a low protein diet.

FGF21 is required for metabolic responses to protein restriction, but the mechanisms 

through which FGF21 produces these metabolic responses are less clear. More generally, 

understanding where and how FGF21 acts to regulate metabolic endpoints, both 

pharmacologically and physiologically, remains an important scientific question. While a 

full review of the FGF21 signal transduction cascade and the gamut of effects and sites of 

action implicated in the response to pharmacological FGF21 treatment is beyond the scope 

of this review, the growing consensus from this work suggests FGF21 largely acts through a 

heterodimer of FGFR1 and the co-receptor beta-Klotho (Klb) (Ding et al., 2012; Lee et al., 

2018). Klb appears to be essential for the biological effects of FGF21, with adipose tissue 

and brain being key targets (Sarruf et al., 2010; Yang et al., 2012; Owen et al., 2013; Owen 

et al., 2014; BonDurant et al., 2017). Indeed, the brain has proven to be an essential mediator 

of FGF21 action in the context of pharmacological treatment (Sarruf et al., 2010; Bookout et 

al., 2013; Owen et al., 2014; von Holstein-Rathlou et al., 2016), although effects on adipose 

tissue or an interacting effect between multiple tissues remains a possibility (BonDurant et 

al., 2017). To date none of these questions have been rigorously tested within the context of 

protein restriction. Currently the mechanisms through which the brain senses and regulates 

macronutrient specific intake is poorly understood (Berthoud et al., 2012), but recent work 

has implicated FGF21 in this context by demonstrating that FGF21 acts to specifically 

reduce sweet taste (Talukdar et al., 2016; von Holstein-Rathlou et al., 2016) and alcohol 

consumption (Schumann et al., 2016; Talukdar et al., 2016). Similarly, genetic studies have 

linked FGF21 to macronutrient intake (Chu et al., 2013; Tanaka et al., 2013; Heianza et al., 

2016; Schumann et al., 2016; Soberg et al., 2017). Finally, we contend that dietary protein 

restriction represents a valuable physiological context in which to test the mechanism of 

FGF21 action, both because it provides an alternative to studies using pharmacological 

doses/administration and because signaling of protein restriction represents an important 

physiological role for FGF21.

6. Conclusions and Future Directions

The above discussion highlights three main conclusions: First, dietary protein restriction 

triggers an array of adaptive responses that include changes in feeding behavior, energy 

expenditure, growth rate, and metabolism. Second, protein restriction produces a large 
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increase in circulating levels of FGF21 within a range of mammalian species. Third, the 

metabolic effects of protein restriction appear, in large part, to require increased circulating 

FGF21. Collectively, these data provide strong evidence that FGF21 is the first known 

hormone that coordinates adaptive behavioral and metabolic responses to protein restriction. 

However, many unanswered questions remain. First, the specific mechanisms connecting 

dietary protein intake to FGF21 production remain unclear. For instance, are certain amino 

acids preferentially sensed or are all amino acids (essential and non-essential) treated 

equally, and what are the intracellular signaling events that drive increased FGF21 

expression in the liver during protein restriction. It will also be important to define how these 

mechanisms transcriptionally interact with other nutritional signals that also engage FGF21. 

As noted earlier in this review, FGF21 is independently increased by high carbohydrate 

intake and low protein intake, and could therefore be more broadly labeled as a hormone 

signaling macronutrient imbalance. Second, if FGF21 indeed functions to coordinate 

adaptive responses to protein restriction/macronutrient imbalance, then how does FGF21 

signaling interact with classic signals of energy balance such as leptin? To what extent do 

these ‘protein’ and ‘energy’ signals interact to control feeding behavior or metabolism? A 

third set of questions surround the mechanism through which FGF21 produces its metabolic 

effects in the context of dietary protein restriction. In which tissues (brain, fat, liver) does 

FGF21 primarily act; how does FGF21 signaling translate into changes in energy 

expenditure, feeding or glucose homeostasis; which of these effects are primary and which 

are secondary. A fourth set of questions surround the extent to which signals beyond FGF21 

contribute to the overall adaptive response to protein restriction, as it seems unlikely that a 

single hormone mediates the broad and extensive effects that protein restriction induces. 

Finally, although evidence demonstrates that protein restriction also increases FGF21 in 

humans, the extent to which the specific metabolic effects produced by protein restriction in 

rodents translate to humans is an important question. Within the fields of obesity and 

metabolism it is almost axiomatic that adequate or even high protein diets are ‘healthy’, as 

they tend to reduce food intake and promote fat loss while also supporting the maintenance 

of lean mass. However, recent studies in flies and rodents suggest that high protein diets may 

have negative effects on insulin sensitivity and longevity while low protein diets exert 

metabolic benefits and extend lifespan (Grandison et al., 2009; Piper et al., 2011; Levine et 

al., 2014; Solon-Biet et al., 2014; Solon-Biet et al., 2015; Fontana et al., 2016; Cummings et 

al., 2017; Piper et al., 2017). These latter studies support the longstanding consensus that 

dietary restriction promotes healthspan and lifespan and suggest that the restriction of 

protein may be a contributing mechanism. Future studies are therefore needed to specifically 

define whether FGF21 contributes to these effects, and how these novel pathways can be 

leveraged to improve health in humans.
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Highlights

1. Dietary protein restriction triggers adaptive changes in metabolism and 

behavior

2. FGF21 is increased by excess carbohydrate and/or insufficient protein intake

3. Adaptive responses to protein restriction require intact FGF21

Hill et al. Page 18

Front Neuroendocrinol. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Impact of Dietary Protein Restriction on Behavior and Metabolism
	Nutritional Regulation of Liver FGF21 Expression
	Increased FG21 in response to high carbohydrate.
	Regulation of FGF21 by dietary protein restriction.
	FGF21 as a signal of protein:carbohydrate imbalance

	FGF21 is essential for metabolic responses to protein restriction
	Biology of FGF21 action in the context of a low protein diet.
	Conclusions and Future Directions
	References

