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Abstract

Technological advances in profiling cells along genetic, anatomical and physiological axes have 

fomented interest in identifying all neuronal cell-types. This goal nears completion in specialized 

circuits like the retina, while remaining more elusive in higher-order cortical regions. We propose 

this differential success of cell-type identification may not simply reflect technological gaps in co-

registering genetic, anatomical and physiological features in the cortex. Rather, we hypothesize it 

reflects evolutionarily-driven differences in the computational principles governing specialized 

circuits versus more general-purpose learning machines. In this framework, we consider the 

question of cell-types in medial entorhinal cortex (MEC), a region likely involved in memory and 

navigation. While MEC contains subsets of identifiable functionally-defined cell-types, recent 

work employing unbiased statistical methods and more diverse tasks revealed unsuspected 

heterogeneity and adaptivity in MEC firing patterns. This suggests MEC may operate more as a 

generalist circuit, obeying computational design principles resembling those governing other 

higher cortical regions.

Main Text

“That of dividing things again by classes, where the natural joints are, and not trying to 

break any part, after the manner of a bad carver” Plato, Pheadrus 265e, translated by Harold 

Fowler.

As we try to make sense of our world, our mind attempts to ‘carve nature at its joints’ to find 

meaningful categories, or clusters of sensory data, which then form the basis of our thoughts 

and actions. Similarly, when faced with the complexity of neuroscientific data, our mind 

attempts to ‘carve neural data at its joints’ to find meaningful, recurring patterns. One such 

dominant pattern is the notion of a cell-type. Fundamentally, cell-types can be thought of as 

clusters of co-occurring, neurobiological features that arise more often than chance. 

Researchers have defined these features genetically, in terms of recurring gene expression 

patterns, morphologically, in terms of repeated neural shapes, anatomically, in terms of 

organized connectivity patterns, or physiologically, in terms of recurring firing rate patterns 

across stimuli or behavior.

*Corresponding authors: Correspondence: sganguli@stanford.edu (SG), giocomo@stanford.edu (LMG). 

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2019 March 18.

Published in final edited form as:
Nat Neurosci. 2017 October 26; 20(11): 1474–1482. doi:10.1038/nn.4654.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Recently, the goal of identifying all neuronal cell-types has taken on prominence in science, 

as evidenced by the cell atlas project at the Chan Zuckerberg Biohub (https://czbiohub.org/

projects/cell-atlas/), the cell-types database at the Allen Brain Institute (http://

celltypes.brain-map.org/) and the BRAIN Initiative call to identify neural cell-types (https://

braininitiative.nih.gov/pdf/BRAIN2025_508C.pdf). In part, this push to classify cell-types 

reflects recent technological developments that facilitate the identification and manipulation 

of genetically defined cell-types. In contrast, at the level of systems neuroscience, the quest 

to understand how the moment-by-moment dynamics of neural circuits gives rise to 

cognition and behavior has led scientists to focus on physiological firing patterns and search 

for functionally defined cell-types. However, within many brain regions, correspondences 

between genetically and functionally defined cell-types remain unclear. Notable exceptions 

include specialized circuits at the sensory and motor periphery, . The retina, for example, 

possesses clearly defined functional cell-types that co-register with genetic and anatomical 

cell-type definitions–. In contrast, many studies of higher-order cortical regions do not report 

well-defined functional cell-types–. Instead, individual neurons show dissimilar firing 

patterns that lack a simple relationship to sensory or behavioral correlates, thereby 

potentially obscuring our understanding of higher-level circuit organization. However, such 

organization frequently becomes clear when the collective dynamics of a large neural 

population are considered, .

One explanation for the development of such radically different perspectives might simply 

involve the limitations of some experimental methods. For example, extracellular recordings 

alone do not offer access to the genetic or connectivity profile of a cell. Thus, if we could 

observe multiple cellular features simultaneously, across a range of tasks, then we might 

discover lawful relationships between a neuron’s functional firing patterns and its genetic or 

anatomical features. However, any such relationship must also be consistent with the lack of 

clustering in the physiological firing patterns of cortical cells observed in many tasks, . Such 

a lack of clustering remains difficult to reconcile with the idea that a cortical neuron’s 

functional firing pattern is completely determined by its genetic or anatomical cell-type.

A potentially deeper reason for the diverging views about cell-types in the retina versus 

cortical areas is that these regions lie at the extremes of an axis of teleological evolutionary 

origin ranging from specialist circuits to generalist circuits. We define specialist circuits as 

those that solve a set of well-defined tasks that do not fundamentally change over 

evolutionary time-scales. For such tasks, evolutionary processes have had time to bake 

solutions into relatively hard-wired circuits in which genetic identity, connectivity, and 

physiology are tightly correlated. In contrast, generalist circuits may be designed to be 

general purpose learning machines that can solve new tasks evolution could never have 

anticipated. When faced with a fundamentally new situation, generalist circuits must wire up 

a new circuit solution that never previously existed. In such a new and often recurrent 

circuit, any individual cell’s physiological firing pattern cannot be ascribed to that cell alone, 

but rather is an emergent property of the entire learned circuit connectivity. In this situation, 

tight clustering of physiological properties may be more difficult to find, and instead, 

emergent, dynamical population patterns may provide a more satisfactory conceptual 

description of learned circuit function, .
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Here, we discuss the implications of this proposal in the context of cell-types in the medial 

entorhinal cortex (MEC), a region with coding principles that may fall between the extremes 

of specialized circuits like the retina and generalized circuits like the prefrontal cortex. Many 

MEC neurons recorded as rodents forage in open arenas show firing patterns with clear 

correlates to the animal’s location– (Fig.1A). A subset of MEC neurons, classified as grid 

cells, fire in periodic locations that tile the environment, (Fig.1A). The crystalline structure 

of the grid pattern lent support to using tuning curve features to classify MEC neurons into 

functionally-defined cell-types, and thus implicitly suggested that MEC may act as a more 

specialist circuit. In addition to grid cells, these cell-types include: border cells that fire 

maximally near environmental boundaries–, head direction cells that fire when the animal 

faces a particular direction, and speed cells that change their firing rate with running speed, 

(Fig.1A). However, recent evidence suggests MEC may play a more generalist role. Such 

evidence includes deficiencies in the current classification of functional cell-types in MEC, 

and striking flexibility in entorhinal firing patterns in navigational and non-navigational 

tasks, , . Here, we begin by discussing the difficulties of quantitatively defining cell-types, 

and then present extremal examples of specialist versus generalist circuits. With this 

theoretical framing in mind, we revisit the issue of cell-types in MEC and provide a new 

proposal for the general function of MEC.

The search for cell-types as a statistical problem

Any data-driven approach that asserts the existence of well-defined cell-types must solve an 

essential statistical problem: it must demonstrate the existence of distinct subpopulations, 

such that neurons within a subpopulation are significantly more similar than neurons across 

subpopulations. Thus, critical to the notion of cell-type is the quantitative definition of 

similarity. A simple approach to defining similarity is to select a set of neurobiological 

features and consider each cell as a point in this feature space (Fig. 1B). For example, in 

genetically defined cell-types, each axis in this feature space would represent the expression 

level of a single gene. The similarity between cells is then inversely related to the distance 

between cells for an appropriately chosen distance metric in this space. A collection of cell-

types would then constitute tight clusters of cells that occupy a specific location in feature 

space, with relatively large empty spaces separating the tight clusters.

This view, while appealing, has limitations. The gold-standard outcome of this approach 

would reveal that every cell-type forms a tight cluster along multiple genetic, anatomical and 

physiological axes (Fig. 1B). While this gold-standard may be feasible in specialized 

circuits, generalist circuits may show more diverse profiles. For example, cells may cluster 

along one subset of axes and spread out along other axes (green dots in Fig. 1C). More 

generally, cells may spread out uniformly along a continuum. Intermediate cases between a 

continuum and tight clustering can also occur, resulting in a non-uniform density of cells in 

feature space (blue and red dots in Fig. 1C). This could result in a focus on the extreme ends 

of higher density, potentially yielding an incomplete view of circuit function. Finally, 

perhaps the most serious pitfall is that we do not choose the right axes, or we cannot 

measure them. This causes large populations of cells to lie at the origin of the feature space, 

essentially invisible to any cell-type analysis (orange dots in Fig. 1C). Below, we review how 
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cells cluster in feature space for hypothesized specialized and generalist circuits, and then 

review the situation for functionally-defined MEC cell-types.

Examples of specialist versus generalist circuits

The retina serves as an ideal example of a specialist circuit (Fig. 1D). The retina must 

transform complex spatiotemporal light patterns from a large number of photoreceptors into 

firing patterns in a limited number of retinal ganglion cell nerve fibers. Given the bottleneck 

presented by the optic nerve, the retina must perform this transformation efficiently, taking 

into account the statistical properties of natural images. These statistical properties have 

likely remained invariant across hundreds of millions of years, allowing cell-types with 

consistent genetic, anatomical and physiological definitions to evolve, , with each cell-type 

dedicated to specific aspects of this transformation (Fig. 1D). For example, unbiased 

clustering of genetic, immunohistochemical, electrical and physiological response features 

led to a general consensus that the mouse retina contains ~50 distinct cell-types. In this 

fashion, the retina is moving towards becoming a gold-standard example of a specialist 

circuit where physiological function can be ascribed to individual cells, in a manner that is 

correlated with each cell’s genetic identity, connectivity pattern, and morphology.

In contrast to the efficient coding of natural scenes, a problem defined by image statistics 

that have remained invariant over evolutionary time-scales, many higher-order cortical 

regions must support cognitive processes in which input statistics can change rapidly. For 

example, autobiographical memory requires rapid associations between vast numbers of 

highly processed neural representations, such as different individuals, emotions or spatial 

locations. Evolution could not have anticipated the full breadth of these combinations and 

instead, brain regions that support this type of flexible coding, like the hippocampus, may 

have evolved to operate as general purpose learning circuits.

A recent example of this principle in prefrontal cortex involves a decision making task in 

which different fractions of colored dots move left or right (Fig. 1E). Depending on a visual 

context signal, the monkey must use an eye movement to report either the majority color, or 

the majority direction of motion of the dots (Fig. 1E). Over the course of evolution, no 

monkey has encountered this specific task, yet the monkey can learn this task and recordings 

from prefrontal cortex reveal striking neural correlates of the solution. However, these neural 

correlates do not exhibit any discernible functional cell-types, as each neuron encodes 

different degrees of sensory, motor, and cognitive aspects of the task. In contrast, emergent 

neural population dynamics, obtained through dimensionality reduction methods, reveal 

highly organized neural state space dynamics (Fig. 1E). These dimensionality reduction 

methods yield linear combinations of cells, or population firing patterns, that provide 

essential clues to the mechanism for context dependent gating of sensory evidence. Thus, at 

least for this study, carving neural circuits at the joint of single cells was not as conceptually 

informative as carving them at the higher level of population dynamics.

The essential nature of this example has been replicated in recordings from other cortical 

regions. For example, in motor cortex during reaching movements, the identification of a 

neural preparatory state – a population level activity pattern that occurs immediately prior to 
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motion – could only be achieved when the notion of cell-types was set aside and the 

collective activity of many neurons was considered, , (Fig. 1F). Also, in a sequence memory 

task, prefrontal cortex neurons exhibited a high degree of ‘mixed selectivity’ for various task 

parameters, which can be an advantageous coding scheme for learning arbitrary rules, , . 

Finally, recent studies posit that neurons in mouse posterior parietal cortex are ‘category 

free’, reflecting random combinations of task parameters and hence inherently defy the 

notion of functionally-defined cell-types (Fig. 1G). Thus, an emerging body of work is 

raising the possibility that well-defined physiological cell-types, especially in higher cortical 

regions, may not constitute a fundamental organizing principle for understanding network 

function.

Defining cell-types in medial entorhinal cortex

With the precise cell-type identification in the retina and the category-free approach in 

prefrontal cortex serving as bookends, where does the idea of cell-types in MEC fit? A high-

order cortical region that supports memory and navigation–, MEC contains neurons that have 

been classified morphologically–, biophysically, and genetically–. However, as alluded to 

previously, one of the prominent cell-type classifications in MEC has been along functional 

axes (Fig. 1A). These MEC cell-types are often identified from neural activity recorded as 

rodents explore open arenas and include grid, border, head direction and speed cells, , , , 

(Fig. 2A). To classify these neurons, researchers often calculate a ‘score’ (e.g. grid score), 

which quantifies specific features of a neuron’s tuning curve (e.g. 60° symmetry). This score 

is then compared to that expected by chance, which is determined from a null distribution of 

scores generated by randomly time-shifting spike trains of a single cell and re-computing the 

score. This null distribution can be generated from shuffles pooled across the entire 

population, or within the same cell (Fig. 2A).

This approach has pushed forward our understanding of how MEC encodes behaviorally-

relevant information and, in the process, built a framework for hypotheses about the 

mechanisms generating MEC cell-types and their function in navigational behavior. For 

example, the classification of grid, head direction, and speed cells as functionally-dedicated 

cell-types led to the hypothesis that MEC is responsible, at least in part, for path-integration 

based navigation, . In addition, studies leveraged the common tuning curve structure of grid 

cells along the dorsal-ventral MEC axis to demonstrate that grid spatial scale increases 

discretely along the same axis, , which provided guidance for the type of network 

architecture computational models could use generate grid cell responses–.

Another benefit of a functionally-defined classification approach in MEC is that it captures 

common computational principles in a neural population where the links between functional 

and genetic or anatomical features remains unclear. In other words, MEC neurons are like 

the green dots in Figure 1C: cells can be classified by their functional properties (features 1 

and 3) but remain difficult to classify based on other features (feature 2). For example, grid 

cell firing patterns occur in approximately equal numbers of CalbindinD-28K-positive 

pyramidal cells and Reelin-positive cells, two classes of cells that differ in their biophysics, 

morphology, projections and microcircuit organization, , –. Furthermore, while the 

biophysical, molecular, and morphological features of MEC neurons vary along the dorsal-
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ventral MEC axis, , , grid cells have been identified across this entire axis, although this 

dorsal-ventral organization likely contributes to the dorsal-ventral expansion of grid spatial 

scale, , , . Finally, classification of speed cells by genetic or morphological features remains 

challenging, as speed coding is observed in both interneurons and excitatory principal 

neurons, , . Thus, functional definitions currently remain the primary modus for MEC cell-

type classification, as the functional axis remains the only known coordinate frame in which 

subsets of MEC neurons show clear correlates to behavior.

However, despite the insights gained from using tuning curves to classify MEC cell-types, 

this approach carries limitations. One disadvantage is that classified neurons must exhibit a 

tuning curve that follows an experimenter-defined shape. The number of classified MEC 

cells then relies on the heterogeneity of experimenter-defined shapes, rather than the true 

heterogeneity of tuning. This can result in an incomplete picture of the coding principles 

neurons might follow for a given behavior (Fig. 2B). In MEC, for example, many papers 

utilize tuning curve scores that result in narrowly defined MEC cell-types (Fig. 2B), leaving 

the features encoded by the majority of MEC cells unclassified (i.e. orange dots, Fig. 1C). A 

second issue arises from classifying cell-types by requiring scores to surpass a threshold 

(Fig. 2A). This could result in the discretization of a population of neurons that possess an 

underlying continuous representation of navigational variables. Indeed, recent data indicated 

the strength with which conjunctive MEC cells encode multiple navigational variables falls 

along a continuum, generating a distribution similar to the red and blue dots in Figure 1C. 

Finally, tuning curves assume a static relationship between an external sensory stimulus and 

the neural response. Thus, this framework will miss behavior or state-dependent coding 

properties.

An alternative way to advance the field is to apply more unbiased methods – analysis 

techniques that can better confront cell-type diversity and do not rely on assumptions 

regarding tuning curve shapes. One example of such an approach is the use of statistical 

models that learn the relationship between a set of variables and a single-neuron spike train–

(Fig. 2C). These models can be built to have the flexibility to learn any tuning curve shape 

for a given variable (e.g. position), while maintaining the power to determine whether that 

variable significantly explains neural spiking. This latter aspect of the framework is critical, 

as it offers an explicit report as to whether knowing a variable significantly explains spiking 

variability, resulting in an approach more robust to heterogeneity in behavior compared to 

the score-based approach. While the model-based method still requires the researcher to 

identify the variables to which a neuron might respond, this framework allows considerable 

freedom in the mapping from external variables to neural spike trains. Although information 

about tuning curve shape is inherently absent, tuning curve features can be quantified from 

the learned mappings and cells such as grid cells, still identified. However, as we discuss in 

the following section, the flexibility of this framework provides a more inclusive, and richer, 

view of MEC coding properties than previously suspected.

The axes for defining entorhinal coding

Indeed, recent works employing statistical models have revealed high degrees of 

heterogeneity and multiplexing in MEC neurons. First, by fitting models of speed-dependent 
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firing, researchers demonstrated that speed tuning is heterogeneous, as the sign of this 

relationship can be positive or negative and the shape can take linear, saturating or non-

monotonic forms, , . Expanding upon this result, the application of a statistical model in 

which position, head direction and running speed were used as variables to explain neural 

spiking empirically demonstrated that a high degree of heterogeneity exists for the encoding 

of all navigational variables in MEC (Fig. 2C, 3A). In this approach, the position, head 

direction, and/or running speed of a mouse over time were fed as inputs to a linear-

nonlinear-Poisson (LN) model. This information was then used to try to produce a spike 

train matching, as close as possible, that observed from an MEC neuron. This approach 

detected navigational-encoding in 71% of MEC neurons, a higher number than the 41% 

detected from the score approach used by the majority of published papers (Fig. 2B, 3A). 

Further, this model identified a higher degree of multiplexing than the tuning curve score 

approach (37% versus 7%). Along a similar vein, recent work using spatial information 

captured spatial coding in the vast majority of MEC neurons, with grid and border cells 

composing only a small minority of these position encoding cells. As spatial information 

quantifies the degree of positional information carried by a single spike and does not make 

strict assumptions about tuning curve shape, this approach is similar in spirit to model-based 

approaches. However, unlike model-based approaches, the use of spatial information does 

not provide a model capable of predicting spiking in novel navigational settings. Taken 

together, these studies support the idea that MEC coding is highly heterogeneous and 

contains many cells with unconventional, yet meaningful coding features, .

Multiplexing in MEC also extends to coding non-spatial stimuli. In rats required to associate 

odors with reward, a subset of grid cells encoded information about the context of the reward 

rather than just the spatial location of the animal. Moreover, tasks with more complex 

behavioral demands than open field foraging have revealed significant heterogeneity in the 

repertoire of variables MEC cells encode. For example, using a treadmill to force rats to run 

in place for a specific amount of time, a model-based analysis revealed that subsets of MEC 

cells encode time elapsed, distance traveled or a combination of both variables (Fig. 3B). 

This hints at the idea that while MEC circuit computations may have evolved to support the 

traversal of trajectories through physical space, they can also generalize to encode variables 

necessary to support spatiotemporal trajectories through mental space, such as an episodic 

memory. Extending this idea, recent work examined MEC coding as rats navigated through 

a one-dimensional auditory space (Fig. 3C). In this task, rats pressed a bar to increase the 

frequency of an auditory tone, which took a variable amount of time, and then released the 

bar once the tone reached a learned frequency. Subsets of classically defined grid, border 

and head direction cells encoded different task variables, with their activity aligning to the 

initial bar press, a specific auditory frequency, or the bar release (Fig. 3C). Interestingly, 

MEC neurons did not respond during passive playback of the auditory stimulus, consistent 

with the idea that MEC neural responses reflect navigation through a behaviorally relevant 

stimulus space regardless of the coordinate frame of that space. Future work using such 

complex tasks combined with neural recording will further answer to what extent MEC is a 

generalist circuit that can encode any set of variables relating to real or imagined navigation. 

Combined, these studies also raise the idea that at least in certain tasks, functionally-defined 

cell-types can be found in MEC. Whether these task-specific functional cell-types map to 
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genetic or anatomical features, or how they behave across many tasks, remain intriguing 

questions.

In contrast, recent analyses employing the LN model demonstrate that MEC neurons likely 

encode navigational variables along a continuum and that subsets of MEC neurons change 

their coding across behavioral states, which is more consistent with a generalist circuit. For 

example, the strength with which MEC neurons encode multiple navigational variables (e.g. 

position and head direction) exhibited a continuous distribution (Fig. 3D), and therefore 

defied classification into highly discrete functionally-defined cell-types. In addition, this 

approach revealed state-dependent changes in the encoding of navigational variables by 

MEC neurons. In particular, many MEC neurons dynamically altered the variables they 

encoded during fast versus slow running speeds. For example, some MEC neurons that 

encoded head direction at slow running speeds encoded both position and head direction at 

high speeds. Such dynamic codes could extend to variables beyond speed, such as time or 

attentional state, ideas future work could aim to address. Combined, the above studies raise 

the possibility that MEC is a highly adaptive and flexible brain circuit, whose distribution of 

responses recorded in any experiment will depend strongly on the task used to probe MEC 

function. Moreover, unbiased statistical methods may be required to reveal the richness of 

this function.

A generalist role for medial entorhinal cortex

Recent results, as reviewed above, demonstrate more heterogeneity and state-dependence in 

MEC firing patterns than previously suspected. In addition, by moving to tasks with relevant 

non-spatial variables, MEC neurons have been shown to play roles in representing 

navigation along more diverse trajectories than through physical space alone. Taken 

together, these results suggest that MEC behaves more like a generalist than specialist 

circuit. If so, what is the general computational principle governing MEC codes?

One possibility is that the MEC, potentially in conjunction with the hippocampus, computes 

what we call the episodic state of the animal (Fig. 3E). The episodic state is the minimal 

function of the past stream of sensory and motor experience that is required to predict either 

future sensory experience or future actions that lead to reward. For example, during spatial 

navigation, knowledge of the position and velocity of the animal is sufficient to predict its 

future sensory experience over short time-scales. It is important to note that position and 

velocity are abstract variables, meaning they are not directly accessible to the animal via a 

set of dedicated primary sensory receptors. Instead, they must be computed from multiple 

lower-level sensory and motor variables that are directly accessible in the sensorimotor 

periphery. The presence of high-level position and velocity coding in MEC during spatial 

navigation suggests that MEC plays a role in the computation of episodic state by extracting 

these abstract variables from the peripheral sensorimotor stream. If this is the case, then 

MEC circuitry could contribute to the computation of episodic state in diverse scenarios 

beyond just spatial navigation.

Data currently at least supports the idea that MEC can improve the computation of episodic 

state in the context of spatial navigation. For example, application of the LN model to 
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different speed bins revealed that MEC neurons encode more information about spatial 

location at high compared to low running speeds, an example of improved computation of 

episodic state for navigation. However, the power, and limits, of MEC to compute general 

episodic states could be more broadly tested by examining MEC neural responses as animals 

perform tasks in environments that set up novel contingencies between past motor actions, 

past sensory experience, and future sensory experience and reward. This could be achieved, 

in rodents for example, by leveraging virtual reality technology, . Moreover, if episodic state 

computation really is the generalist role that MEC plays, then at what joints might we best 

carve function out of data from entorhinal cortex? Taking cues from previous successful 

analyses in other generalist brain regions–, we may wish to analyze MEC data at the level of 

population patterns rather than single cells. In essence, the minimal goal of any circuitry that 

computes episodic state is to assign different neural population patterns to different states, 

thereby tracing out a neural manifold of firing patterns as a function of the episodic state. 

There may be higher order emergent structure in this neural manifold that is not apparent at 

the level of highly heterogeneous single cells, and this higher order structure may provide 

clues into the mechanisms of episodic state computation in MEC. Indeed, theoretical work 

has shown that across many neural networks trained to solve the same complex task, 

correspondences in neural representations at the level of single neurons can be rare, while 

correspondences at the level of population patterns can be common. This theory, in addition 

to prior empirical work–, motivates the search for relationships between neural activity and 

behavior at the level of population patterns rather than single cells, not only in MEC, but 

also in other generalist circuits solving complex tasks.

Discussion

In this Perspective, we present a new way of thinking about MEC functional cell-types, born 

of unbiased statistical approaches for defining how MEC cells encode information. 

Moreover, we posit a potentially useful specialist-generalist conceptual axis for thinking 

about the relationship between cell-types and network function across diverse brain regions. 

We propose that, given the high degree of heterogeneity and adaptivity of MEC firing 

patterns, the circuit may behave more like generalist circuits like the prefrontal cortex, rather 

than specialist circuits like the retina. As a result, it may be more useful to conceptualize 

MEC function in terms of higher-level population patterns, rather than in terms of single 

neuron functional cell-types.

Overall, our discussion of generalist circuits raises a central issue: if functionally defined 

cell-type clusters are not prevalent in recordings from higher-order cortical regions–, then 

what role do genetically and anatomically defined cell-types play in generalist network 

function? In specialist circuits, genetically and anatomically defined cell-types have been 

extremely useful to identify, because of the tight correlation between such defined cell-types 

and single cell physiology. We propose that in contrast, in generalist circuits, the diversity of 

genetically and anatomically defined cell-types exist not to determine single-cell 

physiological firing patterns but rather to implement a general purpose learning circuit in 

which plasticity enables the circuit to learn new population patterns relevant for a task. Then 

the critical question to ask is, how do different cell-type features, like layer specificity, 

subcellular localization of connectivity, and plasticity rules conspire to sub-serve general 
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purpose learning? While it may not be the case that the conjunction of these cell-type 

features determine the final learned single-cell physiological firing patterns, they certainly 

must define the path whereby the generalist circuit translates new problems into new 

network solutions.

Another interesting possibility is that brain regions we consider to be generalist circuits still 

implement canonical computations that are largely invariant across multiple regions. In this 

case, differences in physiological responses across such circuits could simply reflect 

differences in their upstream inputs, even though the underlying transformation from input 

to output is similar across circuits. Understanding such circuits then necessitates a shift in 

perspective from understanding neural representations to understanding neural 

transformations, which would require simultaneous measurements of circuit inputs and 

outputs. With such measurements in hand, one may be able to discover specific functional 

roles for genetically identified cell-types in implementing different aspects of the 

transformations, if not the representations, underlying canonical circuit computations. 

Whether a single or a small set of canonical computations repeated across the brain would 

be powerful enough to solve a great diversity of generalist tasks that evolution could not 

anticipate is an intriguing open question.

In summary, while there is a strong drive to identify cell-types, it remains unclear whether a 

conceptual understanding of how our cognitive capabilities arise from the on-going 

dynamics of circuits in our brain will be found at the level of single cells and cell-types. 

After all, it is highly likely that a virtuoso musician has the same complement of genetically 

identifiable cell-types as any other human, but not all humans can generate such beautiful 

music. Thus, to understand the neural dynamics underlying our greatest achievements, we 

may have to conceptually carve neural function at some higher level of organization beyond 

individual cells and their types.
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Figure 1. 
The range at which clear cell-type clustering emerges varies across neural circuits. A. Left-

most panel: schematic of the open field foraging paradigm often used to identify MEC 

neurons in rodents. Right panels: example tuning curves of grid, border, head direction, and 

speed cells. Spatial tuning curves are color coded for minimum (blue) and maximum 

(yellow) values. [Reproduced from Hardcastle et al., 2017]. B. Schematic of cell-type 

clusters in an arbitrary feature space. Each point represents a cell, and is colored by the 

cluster to which it belongs. In this example, all cell-types cluster along each feature 
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independently. C. Schematic of challenges to clustering cell-types in an arbitrary feature 

space. The green cells only cluster along one axis, the red and blue cells exist along a 

continuum, and the orange cells do not exhibit significant values for these features. D. 
Schematic of retinal ganglion cell-types. [Reproduced with permission from Masland 2001]. 

E. Schematic of task employed in Mante et al., 2013 and observed cell responses along task 

parameters. Top: schematic of task, in which a monkey must choose the correct target that 

corresponds with the dominant motion or color of the presented dots. Bottom left: cell 

responses along motion, choice, color, and context axes. Responses are the de-noised 

regression coefficients from a multivariate linear regression model. Bottom right: Schematic 

of the dimensionality-reduced population level response during the motion context, 

projected onto the axes of choice and motion. [Reproduced with permission from Mante et 

al., 2013]. F. Left: schematic of reaching task to assess preparatory activity in motor cortex. 

Right: Example motor neural activity, projected into a 2-dimensional latent space, during 

reaching. Blue dots indicate 100 ms before target onset, green dots indicate time of go cue 

(when the reach could commence), and the black dots denote the neural activity at the time 

of movement onset. [Reproduced with permission from Shenoy et al., 2013]. G. Left: 

schematic of task used in Raposo et al., 2014. In this task, the rat chose the left or right port 

based on the visual, auditory or combined visual-auditory stimulus. Right: Modality (visual 

or auditory) versus choice (left or right) preference for cells recorded in posterior parietal 

cortex during this task. Preference for the task variables was computed from the area under 

the receiver operating characteristic curve; for example, a value of +1 for choice preference 

indicates the neuron always firing more during trials with a contralateral choice. The 

absence of clustering in this space indicates a lack of functional cell-types. [Reproduced 

from Raposo et al., 2014].
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Figure 2. 
Capturing coding in MEC using a tuning curve score versus model-based method. A. 
Schematic of the tuning curve and score method conventionally used to characterize grid 

cells and other functionally-defined MEC neurons, . Far-left: Spatial tuning of a grid cell in a 

1 × 1 m open arena. Red dots denote neural spikes and black lines indicates the animal’s 

trajectory. Blue lines denote the spatial bins used to generate firing rate tuning curves. 

Middle-left: firing rate tuning curve. Each pixel corresponds to the average spikes/second of 

the grid cell at that binned spatial position and is color coded for minimum (blue) and 

maximum (yellow) values. Middle-right: spatial autocorrelation of the tuning curve. To 

generate a grid score, the inner ring of fields (circled in black) is first rotated 30, 60, 90, 120, 

and 150 degrees and correlated to the original ring. The grid score is the minimum 

correlation at 60 or 120 degrees minus the maximum correlation at 30, 90, or 150 degrees. 

Right: distribution of 500 grid scores generated by adding a random amount to the spike 

train (modulo the length of the session) of the given cell, and re-computing the grid score. 

The blue line denotes the 99th percentile of the shuffled distribution, while the red arrow 

indicates the actual grid score for this example cell. B. Top: Pie chart of MEC cell 

classifications based on the score method. Based on dataset used in Hardcastle et al., 2017. 

Bottom: Examples of position (left), head direction (middle), and speed (right) tuning curves 

that are not characterized by the score method. C. Schematic of a model-based approach 

using the forward-search method to identify the set of navigational variables encoded by the 
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cell. In this approach, position, head direction, and speed information are used to predict 

neural spikes (black and red lines). The model uses this information by learning a set of 

parameters (images under ‘Statistical model’) that transform the animal’s position, head 

direction, or speed to firing rate. Single-variable contribution to neural spiking can be 

assessed by analyzing the performance of the simplest model (top of diagram) and 

continually adding variables to this model to see if performance improves.
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Figure 3. 
Entorhinal neurons represent multiple task variables in heterogeneous ways. A. Cells with 

low grid, border, head direction, and speed score that were detected as encoding position 

(top), head direction (middle), or speed (bottom) by a model-based method. [Reproduced 

from Hardcastle et al., 2017]. B. Schematic of task used in Kraus et al., 2015 and example 

results. In this task, animals ran in place on a treadmill that varied in speed and running 

duration (top). A subset of grid cells encodes time on the treadmill, in addition to location in 

2-dimensional space (bottom) [Reproduced with permission from Kraus et al., 2015]. C. 
Schematic of an auditory frequency task, in which rats pressed a bar to play sequentially 

higher auditory frequencies, releasing the bar when a learned frequency was played. A 

subset of grid cells, as assessed in a 2-dimensional environment, responded to the initial 

press, the release, or a given frequency (example in bottom left). When plotted in a space 

defined by linear model coefficients that capture tuning to frequency, lever pressing, or lever 

releasing, MEC neurons cluster along these three axes (bottom right) [Reproduced with 

permission from Aronov et al., 2017]. D. MEC neurons detected as encoding combinations 

of position (P), head direction (H), and speed (S) plotted in a variable-contribution space. 

This space represents the normalized contribution of each variable to spike prediction, which 

is computed from differences in the performance of models of varying complexity. In this 

space, MEC neurons lack significant clustering. [Reproduced from Hardcastle et al. 2017]. 

E. Schematic of the episodic state hypothesis. The axes denote a dimensionality-reduced 

space in which neural data is projected onto, while the blue line illustrates the potential 

trajectory of population-level neural data in this space during a behavioral task.
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