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Abstract

Phantoms, both numerical (software) and physical (hardware), can serve as a gold standard for the 

validation of MRI methods probing the brain microstructure. This review aims to provide 

guidelines on how to build, implement, or choose the right phantom for a particular application, 

along with an overview of the current state-of-the-art of phantoms dedicated to study brain 

microstructure with MRI. For physical phantoms, we discuss the essential requirements and 

relevant characteristics of both the (NMR visible) liquid and (NMR invisible) phantom materials 

that induce relevant microstructural features detectable via MRI, based on diffusion, intra-voxel 

incoherent motion, magnetization transfer or magnetic susceptibility weighted contrast. In 

particular, for diffusion MRI, many useful phantoms have been proposed, ranging from simple 

liquids to advanced biomimetic phantoms consisting of hollow or plain microfibers and capillaries. 

For numerical phantoms, the focus is on Monte Carlo simulations of random walk, for which the 

basic principles, along with useful criteria to check and potential pitfalls are reviewed, in addition 

to a literature overview highlighting recent advances. While many phantoms exist already, the 

current review aims to stimulate further research in the field and to address remaining needs.
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1. Introduction

With the nominal resolution of human MRI being limited to the millimeter level, research 

efforts in microstructural imaging have been shifted to biophysical modeling of the MRI 

signal in terms of the underlying microstructural properties of the biological tissue of 

interest. Along with the exponential growth of the field of microstructural imaging (Novikov 

et al., 2018), the need for its validation has become increasingly important. This review is 

dedicated to phantoms for the validation of microstructural MRI methods in the brain that 

are described elsewhere in the current Special Issue (Does, 2018; van Zijl et al., 2018) and in 

(Jelescu and Budde, 2017; Novikov et al., 2016). While phantoms for quantitative MRI in 

general have been recently reviewed (Keenan et al., 2018; Selwyn, 2014), the focus here is 

on what makes phantoms relevant for microstructural MRI. Most microstructural phantoms 

are currently used for the validation of diffusion MRI (dMRI), though magnetic 

susceptibility, magnetization transfer (MT) and intra-voxel incoherent motion (IVIM) are 

also microstructural effects of interest discussed here.

Both physical and numerical phantoms will be reviewed here in terms of their characteristic 

requirements, and how they can serve for validation of microstructural imaging, a critical 

and necessary step to enable microstructural quantification in normal subjects and patients. 

Specifically, we aim for microstructural phantoms that can serve for validating the range of 

biophysical models developed so far to describe the brain in health and disease. While such 

phantoms are potentially very useful by providing a so-called ground-truth of the brain 

microstructure, developing them can be challenging. Physical phantoms, on the one hand, 

typically cannot reproduce all the complexity of in vivo tissue, and their MR images tend to 

have pronounced artifacts due to unknown material properties being overlooked. Numerical 
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simulations, on the other hand, often do not match with physical (in vivo or phantom) 

measurements due to ignoring any other biophysical effects than the one(s) being simulated. 

Our aim here is to provide an overview of existing phantoms as well as guidelines on how to 

choose or manufacture a synthetic or numerical microstructural phantom that addresses the 

needs of a given project.

While experimental MRI sequence testing specifically requires physical phantoms, 

validation of biophysical models and fiber tracking algorithms can make use of both 

physical and numerical phantoms. Complementary to physical phantoms, numerical or 

software phantoms offer a controlled and flexible tool to simulate the effect of diffusion, MT 

and magnetic susceptibility variations on the MR signal in a known microstructural 

geometry. We focus here on Monte Carlo (MC) simulations, as this method really enables to 

go down to the microstructural level, and offers the greatest flexibility in terms of simulating 

different MR contrasts and realistic microgeometries. General guidelines and potential 

pitfalls are considered, along with an overview of different numerical phantoms employed 

for the validation of microstructural MRI so far.

2. Physical phantoms to validate brain microstructure

The term physical or hardware “phantom” is used here for well-characterized objects in 

terms of size and composition, that can be used for evaluating the accuracy and precision of 

MRI methods to study brain microstructure. Given this definition, the main focus will be on 

non-biological, man-made phantoms, with the exception of a brief discussion on the use of 

simple biological phantoms (based on food) for validation of MRI. While biological tissue is 

typically not well-characterized, appropriately engineered biological tissue can be very 

useful for validating microstructural features, which is discussed further in the Discussion, 

and in detail elsewhere in this Special Issue and in (Jelescu and Budde, 2017).

To provide both a systematic and practical overview, the requirements for a microstructural 

phantom of the brain are outlined here, followed by describing the characteristics of the 

main components (ingredients) of such phantom: a (NMR visible) liquid and additional 

(NMR invisible) substances or materials that induce a desired microscopic effect. We also 

present an overview of current hardware phantoms used in diffusion, IVIM, MT, and 

susceptibility weighted imaging.

2.1 Physical Phantom Requirements

When searching for a hardware phantom suitable for the validation and testing of 

microstructural imaging of the brain, the following requirements can be considered as 

minimally required:

(1) The phantom exhibits “microstructural” properties that affect the NMR 

properties of the liquid molecules on the microstructural scale, resulting in, e.g., 

restricted or hindered diffusion, MT, or local field inhomogeneities due to 

magnetic susceptibility differences. Furthermore, the phantom demonstrates 

realistic microstructural properties similar to as observed in the brain. Realistic 

bulk MR properties similar to those observed in the brain can be achieved 
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empirically by doping a water or gel such that the measured microstructural 

parameters of interest, in terms of diffusion, relaxation, susceptibility and MT, 

are similar to those parameters as measured in the brain. More fundamentally, 

the goal would be to create a phantom with a similar micro-environment as the 

brain, which is typically far from trivial to obtain. Often this is due to practical 

limitations, e.g., the quest is still ongoing for hollow fibers with a diameter of 

less than one micron to mimic axons. But there are also more fundamental 

reasons, as the actual brain microstructural properties (e.g., intra-, extra-cellular 

diffusivities, compartment fractions, magnetic susceptibility of myelin, etc.) are 

not very well-known in normal condition, let-alone in case of pathology.

(2) The phantom is well-characterized, especially in terms of its “microstructural 

properties”, i.e. sizes, magnetic susceptibility, surface relaxation, etc. This often 

implies characterization using orthogonal imaging methods, including other 

MRI modalities, as well as other (ideally non-destructive) 3D high resolution 

imaging methods, based on light, electron or atomic force microscopy or using 

X-ray (a detailed comparison of available techniques is in table 2 of (Goggin et 

al., 2016)).

In addition to the ones above, other requirements, as listed in (Keenan et al., 2018; Tofts, 

2004; Tofts et al., 2000) and the following below may further increase the usefulness of a 

microstructural phantom:

(3) The phantom materials are easily obtainable, cheap, stable and nontoxic. It 

should be noted that phantoms made of organic materials are not ideal from this 

perspective, though could be kept much longer when doped with very small 

concentrations of acute toxic compounds such as sodium azide (NaN3) (Deene 

et al., 2000), Thiomersal (INN), Germall-plus® (Ernest et al., 2005) or 

antimicrobial or antifungal preservatives such as diazolidinyl urea (Lavdas et al., 

2013), which on their turn may alter the toxicity and limit its use in clinical 

settings.

(4) The phantom is easy to assemble and can be made reproducible. This 

requirement along with requirement (1) of phantom features covering a range of 

realistic parametric values are particularly important in longitudinal and multi-

site trials, where phantoms may be used to calibrate microstructural MRI 

methods. To illustrate this point, a study using a standardized apparent diffusion 

coefficient (ADC) phantom based on polyvinylpyrolidone (PVP) solutions at 

0˚C (Boss et al., 2015; Keenan et al., 2018; Palacios et al., 2017) showed inter-

scanner reproducibility of < 6% among 5 different sites, 2 field strengths, and 3 

vendors (Boss et al., 2015). Another study using an ice-water phantom showed a 

coefficient of variation for the diffusion coefficient D of 3% among 8 different 

scanners, 5 sites, 2 field strengths and 2 vendors (Grech-Sollars et al., 2015). 

This implies that phantoms to test inter-scan and inter-site reproducibility should 

be stable and ideally have an even better reproducibility, making (pure) liquids 

therefore arguably the most suitable phantoms in this case.
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Indeed, while (pure) liquids are typically not featuring microstructural 

properties, more crucial are the requirements of having high stability, 

reproducibility and being very well-characterized, particularly when performing 

large multi-site comparisons where sharing the same phantoms among all sites is 

not practically feasible. In particular, one should consider a phantom that is able 

to generate a signal (decay) that covers (at least) the same range as compared to 

the microstructural MRI measurement of interest. For the example of dMRI, a 

pure liquid exhibits a mono-exponential signal decay from which it will, 

depending on the chosen D, start to deviate when approaching the noise floor for 

sufficiently high diffusion weighting or b-value. Comparing the directional 

signal decays among different scanners can then reveal accuracies in gradients or 

b-value calibration, and differences in noise floor and image reconstruction 

(adaptive combine versus sum of squares combination techniques). Next, the 

effect of signal-to-noise ratio (SNR) on estimation of the microstructural 

parameters of interest can then be further evaluated using numerical simulations 

of noise propagation.

While the ideal microstructural phantom mimicking brain and fulfilling all the criteria above 

may currently not exist, there is an increasing number of phantoms being proposed for the 

validation of microstructural experiments, particularly for dMRI. Next, we discuss the basic 

components of those phantoms.

2.2 Phantom Components

Physical phantoms consist of an NMR visible liquid (i.e. resulting in signals by using an 

MRI sequence with particular parameter settings including TE and TR) that may serve as a 

phantom on its own, or often is doped with or used for immersing an NMR invisible material 

in to induce the desired microstructural properties. Here, we will discuss and illustrate the 

critical factors of both the NMR visible liquids and NMR invisible materials, that determine 

the SNR and microstructural properties of a phantom, separately.

NMR visible liquids—Pure liquids exhibit isotropic Gaussian diffusion and are 

characterized with a well-established (timeindependent) diffusion constant. While just 

simple liquids are useful as a standard for quality assurance (QA) when calibrating diffusion 

protocols and evaluating new diffusion sequences and post-processing methods, they also 

form the basic component of microstructural phantoms when used for immersing 

microstructurally confined (NMR-invisible) materials. Several characteristics of liquids 

should be taken into account when using liquids as the main component of (microstructural) 

phantoms:

(1) The diffusion coefficient D, depending on the viscosity, molecular size (mass) 

and temperature (cf. Figure 1 for H2O), affects the diffusion properties of the 

phantom.

(2) The longitudinal T1 (Gowland and Stevenson, 2004) and transverse T2 

(Boulby and Rugg–Gunn, 2004) relaxation times of the liquids define an upper 

bound for the maximal possible SNR of the measurement, as combining the 

liquids with other (NMR invisible) materials may further shorten relaxation 
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times due to surface relaxation and local field inhomogeneities, as discussed 

below. T1 increases with static magnetic field strength, while T2 in pure liquids 

is not expected to change with magnetic field strength (Bloembergen et al., 

1948). In addition, D, T1 and T2 values depend on the temperature (cf. Figure 1 

for H2O ) and typically change 1–3%/˚C, and without special precautions, MRI 

measurements based on these properties are subject to an uncertainty of about 

2˚C, corresponding to errors of about 5% in the parameter values (Tofts, 2004).

(3) The proton NMR spectrum of the liquid (Bovey et al., 1988), in particular, the 

presence of single or multiple proton NMR spectral lines, is important to 

consider, as the latter can result in chemical shift artifacts, as illustrated in 

Figure 1 for linear alkanes (dodecane and n-tridecane) when using echo-planar 

imaging (EPI). Alternatively, multiple spectral lines can also be employed as an 

internal temperature probe (Spees et al., 2012) or to create multi-compartment 

phantoms for diffusion (Fieremans et al., 2012b) or relaxation (Ababneh et al., 

2004).

NMR invisible materials—Phantom materials are used either for doping or immersing in 

the liquid to induce microstructural properties that can be measured with MRI, e.g., by 

restricting the diffusion over micron length scales, or by magnetic susceptibility and surface 

relaxation effects, thereby creating a true microstructural phantom. Following properties of 

the phantom material, combined with the liquid properties, then determine the overall 

characteristics of the microstructural phantom:

(1) Dimensions:  Brain microstructural phantoms ideally exhibit features (either 

restricting the diffusion, inducing magnetic susceptibility differences, MT, or additional T2 

relaxation) over length scales similar as observed in the brain. The dimensions are 

particularly important for diffusion phantoms, with dMRI probing length scales Dt, with 

the diffusion time of the experiment. With standard monopolar diffusion weighting (Stejskal, 

1965), is typically < 50 ms, hence a phantom with restrictions over length scales ~ 10 μm 

filled with water (D ≈ 2 μm2/ms at room temperature) will give contrast on dMRI using 

conventional sequences. Increasing using stimulated echo diffusion weighting (Merboldt et 

al., 1985; Tanner, 1970) consequently enables probing longer by varying mixing time 

without the need of increasing TE and might be considered for phantoms with larger 

“microstructural” dimensions.

In brain, typical length scales range from less than 1 micrometer for cell organelles and inner 

axon diameters (Aboitiz et al., 1992; Caminiti et al., 2013; Caminiti et al., 2009; Innocenti et 

al., 2015) to tens of micrometers for neurons and correlation lengths of cell and axon 

packings. This (sub) micrometer resolution is what makes realistic microstructural imaging 

phantoms often quite challenging, both for manufacturing and characterization.

For manufacturing, 3D printing (also known as rapid prototyping or additive manufacturing) 

has been proposed for medical imaging phantoms (Bieniosek et al., 2015), though the 

technology is currently not available yet for manufacturing microstructural phantoms 

because of achievable resolution and/or scalability. In particular, commercially available 
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polyjet 3D printers can jet layers of liquid photopolymers as thin as 16 microns to build 

complex models with a resolution (typically multiple layers thick) that is still much larger 

than the brain microstructure. Alternatively, steriolithography (SLA) methods using 

dedicated laser technology (Anscombe, 2010), either subtractive or additive, offer a higher 

resolution (up to submicron), though a potential issue is scalability of this technology to 

produce samples with macroscopic size big enough to image with MRI.

(2) Magnetic Susceptibility:  Local variations in magnetic susceptibility χ due to 

differences between the liquid and the phantom material induce a local inhomogeneous field. 

If the magnetic properties of the phantom are well-characterized, it may serve to test and 

validate quantitative susceptibility imaging (Bowtell et al, special issue). Magnetic 

susceptibility differences, however, are often not well characterized, and also affect other 

microstructural parameters: In particular, the local variations in χ cause additional 

mesoscopic (Kiselev and Novikov, Special Issue) T2 relaxation (Borgia, 1996; Jensen and 

Chandra, 2000a, b; Kiselev and Posse, 1999; Novikov and Kiselev, 2008; Weisskoff et al., 

1994; Yablonskiy and Haacke, 1994). Furthermore, they may cause distortion artifacts, and 

the corresponding internal gradients could compromise the accurate determination of 

diffusion parameters (Does et al., 1999; Farrher et al., 2017; Kiselev, 2004; Laun et al., 

2009; Pampel et al., 2010; Zheng and Price, 2007; Zhong et al., 1991). Note that these 

effects will depend on the magnetic susceptibility differences, the phantom geometry and 

corresponding correlation length over which they are played out, as well as the B0-field, and 

the employed NMR sequence (gradient-echo or spinecho with given TE), all determining the 

specific regime (diffusion narrowing versus static dephasing), as explained in detail by 

Kiselev and Novikov in this Special Issue.

As an illustration, for a crossing fiber phantom, the observed SNR and precision on diffusion 

parameter estimation can vary between the individual (identical) bundles, as the B0-field 

inhomogeneity depends strongly on the orientation of each bundle with respect to the static 

B0-field (more parallel orientation results in more uniform B0-field and corresponding 

higher SNR).

To reduce the unwanted effects on the SNR and diffusion properties, χ-differences within 

the phantom should be minimized. (Wapler et al., 2014) measured the magnetic 

susceptibility difference from water, χ − χH2O , of many widely-used materials in MR 

engineering and MR microtechnology and present a comprehensive overview of available 

susceptibility data. They conclude that several materials with various physical properties are 

available with χ − χH2O  below ±0.3 ppm, with PMMA the most MR-compatible material, 

χ − χH2O ≈ 0.02 – 0.04 ppm.

Alternatively, susceptibility matching can be obtained by doping the liquid. In the case of 

water (χH2O= −9.05ppm), when the phantom material χ is larger (less diamagnetic), the 

water can be doped with paramagnetic contrast agents to match the susceptibility, as 

previously proposed to reduce line broadening in spectroscopy measurements (Stoll and 
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Majors, 1982). Similarly, when the phantom material χ is lower (more diamagnetic) than 

water, the water can doped with salt (Farrher et al., 2017; Laun et al., 2009). By doing this, 

the relaxation rates and conductivity are potentially altered as well.

(3) Surface Relaxation:  The partial absorption of magnetization to the wall or surface 

has been studied in the field of porous media (Kleinberg, 1996; Mitra et al., 1993; Sen et al., 

1994), and its effect can be characterized by the material’s surface relaxivity p, which has 

dimensions of velocity, as it describes the strength of the interaction between the material 

surface and the fluid.

While surface relaxation is typically not considered or the surface relaxivity is not described, 

it can alter the SNR, diffusion properties and MT effects of microstructural phantoms. 

Surface relaxation always causes additional T2-decay,R2, surf = ρ S
V  (Kleinberg, 1996), with S

V

the surface-to-volume ratio, resulting in SNR loss. Its effect on diffusion is not universal and 

depends on the specific microstructural geometry and the diffusion time; In general, D 
increases due to surface relaxation at short times (Mitra et al., 1993), whereas it typically 

decreases at long times except for the case of specific confined geometries such as dead 

spaces (Sen et al., 1994). The effect of surface relaxation on T2 depends on the amount of 

surface, S
V , and this dependency can be quite significant, as illustrated in (Fieremans et al., 

2008a) for fiber phantoms made of different materials and densities.

To minimize the (typically unknown) effects of surface relaxation, materials with a low may 

be more suited when making microstructural phantoms. In the case of water, ⍴ is related to 

the water wettability (Chen et al., 2006; Schrader, 1992), defined by the contact angle 

between a droplet of fluid on a horizontal surface in thermal equilibrium (Yuan and Lee, 

2013), with a lower contact angle indicating a more hydrophilic material and 

correspondingly more surface relaxation. Hence, to minimize the effect of surface 

relaxation, hydrophobic phantom materials may be most appropriate. On the other hand, 

hydrophilic materials may be preferred to avoid the presence of air bubbles (causing internal 

gradients due to susceptibility mismatch). This issue can be minimized by making phantoms 

under water, and removing remaining bubbles using vacuum chambers and ultrasonic baths 

(Fieremans et al., 2008a).

(4) Proton Density:  The phantom SNR is determined by its proton density and the T1 and 

T2 relaxation times of the liquid (influenced by the NMR invisible phantom materials, as 

described above). The proton density in microstructural phantoms depends on the amount of 

NMR visible and invisible materials and is typically much lower than in brain due to, e.g., 

the use of plain fibers rather than hollow fibers or the use of capillaries with thick walls. The 

loss in signal due to the decrease in proton density can be compensated by using liquids with 

longer relaxation times compared to in vivo brain. As an example: for a phantom mimicking 

white matter (WM) with a given proton density PDph = 0.3, in order to obtain similar SNR at 

a given TE of 100 ms as in vivo, the corresponding T2 in the phantom should be 

T2, ph ≈ − TE /ln
PDt

PDph
exp−TE

T2, t
≈ 200 ms, assuming the proton density of tissue water, 2, in 

brain WM is about 65 % (Tofts, 2003) with a corresponding T2,t of about 80 ms at 3T. 
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Furthermore, as the other properties described in (2) and (3) may further lower the T2 and 

resulting SNR, deionized water with no additional doping is often used as an MR-visible 

component in microstructural phantoms.

2.3 Examples

An overview based on literature is given here of the current state-of-the-art on phantoms 

used for diffusion, IVIM, susceptibility and MT, respectively, along with their applications. 

While some materials (e.g., gels and doped liquids) are used as phantoms for different 

modalities simultaneously, the majority of them are predominantly used for one modality, in 

particular diffusion.

Diffusion phantoms: Diffusion phantoms exist with increasing complexity ranging from 

liquids (see Figure 1, Table 1), to advanced microstructural phantoms mimicking brain 

(Figure 2, Table 2) and plants (e.g., Figure 3).

Liquids:  Water is the universal test liquid used for MRI, due to its properties of being inert, 

stable and readily available. Potential drawbacks of water are its low viscosity, making it 

prone to vibrational artifacts, its intrinsic long T1- and T2-values on the order of 1 s or more, 

depending on the dissolved oxygen, and its relative high diffusion coefficient (2 μm2/ms, cf. 

Figure 1) at room temperature compared to those values in brain, e.g., at 3T for WM T1 ~ 

700–800 ms, T2 ~ 80–110 ms (Oros-Peusquens et al., 2008; Wansapura et al., 1999), and 

mean diffusivity ranging 0.3 – 1 μm2/ms (Tofts, 2004). At 0˚C, ice-water has a D of 1.1 

μm2/ms (Easteal et al., 1989), and when surrounding it by an insulating bath filled with ice 

and water, it has been shown useful as a temperature-controlled fluid in ADC phantoms in 

multi-center studies (Chenevert et al., 2011; Grech-Sollars et al., 2015; Malyarenko et al., 

2016; Mulkern et al., 2015). Furthermore, (distilled) water is also by far the most commonly 

used fluid inside microstructural phantoms, where the long intrinsic T1- and T2-values are 

typically helping to have a reasonable SNR, as the proton density in such phantoms is 

typically much lower, and surface relaxation and local susceptibility differences cause 

additional T2(*) relaxation.

More pure liquids and their corresponding temperature dependency are listed in (Holz et al., 

2000). Particularly the alkanes, both cyclic and linear, have been proposed as an alternative 

for water because of a relative low D at room temperature as compared to water (Table 1, 

Dowell and Tofts, 2010), though they have other disadvantages such as toxicity and multiple 

spectral lines for linear alkanes (illustrated in Figure 1). In addition, silicon oils and 

polymers are commonly used to test for gradient calibration (Price, 2009; Spees et al., 

2012), including ethylene glycol and decamethylcyclopentasiloxane, also known as D5, both 

having a low diffusion coefficient (cf. Table 1).

Aqueous solutions proposed to mimic diffusion in brain are listed in Table 1 (including 

diffusion properties and potential (dis)advantages) and demonstrated in Figure 1. Commonly 

used are solutions with sucrose (Table 1), polyvinylpyrolidone (PVP, Table 1), and agar gels. 

Aqueous solutions with human serum albumin have also been characterized in terms of their 

diffusivity and relaxation values (Fukuzaki et al., 1995). It should be noted that the diffusion 

properties of protons in aqueous solutions may not be Gaussian and thus may demonstrate 
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diffusion time-dependence, e.g., in the case of sucrose solutions (Hara et al., 2014; Wang et 

al., 2017). Gels created by varying concentrations of agar (or other gelling agents 

(Hellerbach et al., 2013)), contrast agents, and sucrose, are popular phantoms as they create 

the possibility of varying values of T1, T2 and D independently (Laubach et al., 1998; 

Lavdas et al., 2013).

Mixtures, e.g., based on acetone and water have been proposed (Wang et al., 2017), 

whereby the D of acetone decreases due to hydrogen-bond strengthening, and the NMR 

spectrum of this phantom can be reduced to a single peak (acetone) by replacing water 

(H2O) with deuterium oxide (D2O). The entire physiological range can be obtained by 

varying the concentration of the solute, as illustrated in Figure 1.

Dairy cream is an oil-in-water emulsion that, due to its two distinct components, has found 

application as an isotropic phantom both for bi-exponential T2 relaxation (Jones et al., 1998) 

and diffusion (Ababneh et al., 2004; Fieremans et al., 2012b) mimicking brain WM. In 

particular, the protons from the triglycerides of the fat globules in cream were found to be 

responsible for a very slow diffusing component, proportional to the percentage of milk fat, 

with a short T2 of about 38 ms, whereas the water protons were responsible for a fast 

diffusion component with a longer T2 of about 135 ms (Jones et al., 1998). When heating the 

cream prior to imaging, the fat T2 increases and water T2 decreases, which, for TEs typically 

used in clinical dMRI protocols, results in D of 1.1 μm2/ms and diffusion kurtosis K of 1.2, 

similar to values observed in brain WM (Fieremans et al., 2012b). Furthermore, as shown in 

Figure 1, the fat-water frequency shift can be utilized to visualize both water and fat 

separately (using, e.g., echo-planar imaging), and serve to predict the values of the two 

components added together.

Liquid crystals consisting of water, detergent (sodium dioctyl sulfosuccinate, Aerosol-OT), 

and isooctane have been used to create phantoms exhibiting (microscopic) anisotropy, due to 

the self-assembled detergent aggregates hindering the translational motion of the water 

molecules (Nilsson et al., 2018). The proposed phantom (illustrated in Figure 1) requires 

preparation by mixing the components and mild heating followed by cooling to room 

temperature, after which it is thermodynamically stable, with diffusion properties suitable 

for testing dMRI methods, i.e. mean diffusivity comparable to brain tissue, arbitrary values 

of fractional anisotropy (FA), and microscopic FA equal to the theoretical maximum of 1.

Anisotropic microstructure phantoms:  Microcapillaries (see Table 2 and Figure 2) are 

used to simulate restricted diffusion and create anisotropic phantoms useful for testing new 

diffusion sequences, as well as validating pore size mapping methods using dMRI. Such 

phantoms consist of hollow fiber systems that are made from glass or plastic with an internal 

diameter (I.D.) ranging from 1 – 50 μm, and external outer diameters (O.D.s) of 75 μm or 

more (cf. Table 2). Capillary phantoms with a well-known I.D. serve as phantoms to study 

the diffusion in the intra-axonal space (in which case the capillaries are immersed in NMR 

invisible fluids such as fomblin, fluorinert, deuterated 1,2-dichlorobenzene), and have been 

used to evaluate axonal diameter mapping using single and double pulsed-field-gradient 

methods (see Table 2 for references). Yet, the capillary I.D. as listed in Table 2 are larger 
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than the values observed for axon diameter from histology (Aboitiz et al., 1992; Caminiti et 

al., 2009; Innocenti et al., 2015).

Experimentally, potential issues with capillary phantoms could be low signal in the case of 

low ratios of I.D./O.D, and filling the capillaries with water without the presence of air 

bubbles. Capillary action, occurring when the adhesion to the surface material is stronger 

than the cohesive forces between the water molecules, enables the fluid, e.g., water, to get 

into the capillary, and is limited by surface tension and gravity. For hydrophilic surfaces, the 

tension is small, which will enhance capillary action and get water into the tube, while 

hydrophobic surfaces increase surface tension, hence will make it harder for water to get into 

the capillaries. From this perspective, it is beneficial to have capillaries made of a 

hydrophilic material, which makes it relatively straightforward to fill them with water and 

remove air bubbles. On the other hand, hydrophilic materials also have increased NMR 

surface relaxation (Chen et al., 2006), resulting in a decrease in T2 for the water inside 

hydrophilic capillaries, which will lower the overall SNR of the dMRI experiment, as well as 

potentially affect the diffusion properties, as discussed in Section 2.2.

Glass capillary arrays (GCAs) phantoms, (Figure 2 and Table 2) as proposed by 

(Benjamini et al., 2014; Komlosh et al., 2017; Komlosh et al., 2011)), consist of capillaries 

(with I.D. of 10 μm) that are tightly packed hexagonally with no fluid in between, thereby 

maximizing the signal from within the capillaries. A three-step procedure using controlled 

activity of water vapor has been proposed to fill the GCAs with water (Komlosh et al., 2011) 

or decamethylcyclopentasiloxane (Komlosh et al., 2017).

Hollow fibers have been recently proposed to manufacture so-called biomimetic phantoms 

given their ability to more closely mimic microstructure. Hollow aligned fibers with an 

adjustable size distribution, created using electrospinning with cyclohexane infused into the 

pores, have been used to create inner axon-like structures with I.D. ranging from 9.5 – 13.4 

μm (Hubbard et al., 2015) (a similar phantom has also been proposed for cardiac dMRI (Teh 

et al., 2016)). In addition, hollow polypropylene yarns, also dubbed ‘taxons’ with an I.D. of 

about 12 μm and O.D. of 34 μm, have been proposed to represent WM microstructure by 

mimicking both intra- and extra-axonal space, and used to study the effect of dispersion and 

crossings on fiber tracking (Guise et al., 2016), as well as very recently to validate 

compartment size and fraction measurements (Fan et al., 2018).

Plain (solid/non-hollow) fibers with an O.D. of 10 – 20 μm have also been used frequently 

as anisotropic phantoms (see Table 2, Figure 2), for quality assurance and testing of 

diffusion sequences, as well as for evaluating diffusion fiber tracking algorithms (Fillard et 

al., 2011). Based on the criteria listed above, the microstructural properties depend on the 

fiber material (magnetic susceptibility, and hydrophobic versus hydrophilic), the fiber 

diameter and the fiber density. We previously performed a detailed comparison of several 

fibers in terms of their microstructural diffusion properties (Fieremans, 2008; Fieremans et 

al., 2008a), and concluded that the most appropriate fiber phantoms to mimic dMRI 

measurements in brain WM are densely packed fiber bundles made from a hydrophobic fiber 

material with a magnetic susceptibility close to water and sufficiently small diameter. 
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Several ways have been proposed to pack the fibers tightly enough to give rise to anisotropy, 

including the use of shrinking tubes.

Plain fiber bundles serve as a phantom to model the extra-axonal space, and have been used 

to study the effect of axonal packing geometry on the (time-dependent) diffusion coefficient 

(Burcaw et al., 2015), as well as to validate the short-time limit (Latour et al., 1994; Mitra et 

al., 1993) using oscillating gradients diffusion weighting schemes (Lemberskiy et al., 2017).

While most anisotropic phantoms are cylindrical, planar phantoms can also be created by 

stacking thin plates in 1d. Such phantoms have been described either consisting of 100 μm 

thick glass plates with 20 μm in between to calibrate the b-matrix in dMRI (Kłodowski and 

Krzyżak, 2016; Krzyżak and Olejniczak, 2015), or consisting of permeable membranes to 

study exchange, described further below.

Isotropic microstructure phantoms:  Compared to the vast selection of anisotropic 

microfiber phantoms described in literature, relatively fewer microscopically restricted 

isotropic phantoms have been proposed. These include yeast suspensions, described in the 

next section, and cross-linked dextran gels, consisting of beads with a size discretely ranging 

over 20–300 μm (sephadex™), which have been used in dMRI (Liang et al., 2017; Magin et 

al., 2011) as well as for testing IVIM and susceptibility weighted imaging, both discussed 

below. Other employed phantoms include packings of poly(ethyl methacrylate) beads with a 

diameter of 42 μm (Koch and Finsterbusch, 2008), and styrene beads with diameters of 0.05, 

5, 6, and 10 μm (Capuani et al., 2013).

Permeable microstructure phantoms:  Most microstructural phantoms proposed in 

literature consist of multiple compartments with typically impermeable walls (or a 

permeability that is not well known). In addition to red blood cells (Latour et al., 1994; 

Stanisz et al., 1998) and yeast, as discussed in the next section, recently, a dedicated 

hardware phantom has been proposed consisting of a 1d stack of polycarbonate films made 

permeable by punching holes with a tunable submicron size, and used to study the time-

dependent diffusion (Papaioannou et al., 2017).

Simple biological phantoms:  Certain food, plants and fruits (Hills, 1998) that are widely 

available have been used as test-objects for MRI and reviewed here briefly, with an in-depth 

overview of phantoms based on biological tissue being beyond the scope of this review. 

Monocotyl plants or monocots such as celery (Apium graveolens) and asparagus 
(Asparagus officinalis) are described in the literature to evaluate the effect of 

inhomogeneous susceptibility on dMRI (Neeman et al., 1991; Trudeau et al., 1995) and as 

anisotropic dMRI phantoms (Baete et al., 2013; Boujraf et al., 2001; Lätt et al., 2007; 

Panagiotaki et al., 2010; Sigmund and Song, 2006). Figure 3 shows a microscopic image of 

a cross-section through the inner part of the asparagus, composed of parenchyma in which 

vascular bundles are embedded. There is an increase in size of vascular bundles towards the 

center of the stem. Figure 3 shows a close-up of a vascular bundle, consisting of the phloem 

(smaller cells, either tubular filled with air, or spherical filled with water) and xylem (long 

tubular cells with a thick wall), with the latter exhibiting anisotropic diffusion. The resulting 

dMRI parametric maps and fiber tract are shown in Figure 3. While widely available, the 
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low degree of anisotropy, presence of air bubbles, and poor characterization (e.g., on 

exchange through the cell walls), limit the use of plants as microstructural phantoms, though 

they have shown to be useful to test dMRI sequences.

Yeast is a well-studied eukaryotic model organism that in suspension has been used as a 

twocomponent system featuring isotropic diffusion of both the intracellular and extracellular 

water with exchange in between. Yeast cells are spherical with a diameter of about 3 – 7 μm 

(Silva et al., 2002; Tanner, 1983), intracellular diffusivity of ~ 0.65 μm2/ms at room 

temperature (Åslund and Topgaard, 2009), extracellular diffusivity depending on the packing 

density of the cell suspension (e.g., 1.2 μm2/ms at room temperature for an intracellular 

fraction of 0.41), and exchange times measured to be in the range of 250 ms (Table VI in 

(Tanner, 1983)), and 280 ms in (Åslund et al., 2009). Since the first characterization by 

Tanner (Tanner, 1983; Tanner and Stejskal, 1968), yeast cell suspensions have been shown 

very useful as a simple well-characterized phantom to validate methods for assessing 

exchange, intracellular diffusion, and compartment shapes (Åslund et al., 2009; Åslund and 

Topgaard, 2009; Cory and Garroway, 1990; Eriksson et al., 2013; Lasič et al., 2011; Lasič et 

al., 2014; Shemesh et al., 2011; Shemesh et al., 2012; Silva et al., 2002). Interestingly, 

(Cheng and Cory, 1999) demonstrated (and verified under the microscope) that radiation 

treated yeast cells (whose DNA had lost its ability to duplicate) become pronouncedly 

prolate, whereby the eccentricities of the prolate cells are controlled by the culture times.

Finally, in addition to dairy cream described above, avian egg latebra presenting in the yolk 

has been shown to exhibit bi-exponential diffusion signal decay measured over the range up 

to b-value = 5 ms/μm2, with diffusion parameters similar to those observed in vivo in human 

brain, and additionally, a very slow diffusing water component over the range up to a b-value 

of 50 ms/μm2 (Maier et al., 2014).

IVIM Phantoms:  Various phantoms have been proposed for the testing and validation of 

IVIM (Cho et al., 2012; Karampinos et al., 2010; Lee et al., 2016; Maki et al., 1991; Ohno et 

al., 2017). With the exception of cotton surgical sponges being used in which water flows 

under the influence of gravity (Lorenz et al., 1991), all other phantoms relied on 

programmable (peristaltic) pump systems. These are then used to pump water at various 

rates, e.g., through intramedic polyethylene tubing with I.D. 0.86 mm and O.D. 1.27 mm 

(Karampinos et al., 2010), or through a cellulose sponge (Cho et al., 2012), or through 

crosslinked dextran gels (sephadex™) (Bihan et al., 1988; Lee et al., 2016; Lorenz et al., 

1991; Maki et al., 1991). In these gels, for packings made of gel beads consisting of particle 

sizes ranging from 20 up to 300 μm, pore sizes were obtained with a diameter of 

approximately 1 nm, mimicking the capillary fenestrations in the brain, (Lee et al., 2016). 

Another cranial phantom consisted of a high-density polypropylene filter (mimicking brain 

parenchyma) with intra- and extra-filter space (mimicking cerebral artery and vein, 

respectively), and a capacitor space (mimicking the cerebrospinal fluid space). Pulsatile and 

steady flow with different flow rates were applied to the cranial phantom using a 

programmable pump (Ohno et al., 2017).

While these phantoms provide a qualitative description of the IVIM effect, a challenge is to 

characterize and produce them in a controllably manner. Particularly to mimic the vascular 

Fieremans and Lee Page 13

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



network, sacrificial sugar structures (i.e. melt-spun sugar fibers embedded in a block of 

epoxy resin) have been proposed for the evaluation of dynamic contrast-enhanced MRI 

(Gaass et al., 2017) and recently also for IVIM (using water injections with syringes for a 

controlled flow) (Schneider, 2016). Here, structural analysis was performed using light 

microscopy before the MRI to characterize the highly interconnected network of 

microchannels with diameters ranging from 2.5 – 25 μm.

Susceptibility Imaging Phantoms:  Doping water with (super)paramagnetic metal based 

contrast agents such as nickel salt, copper sulfate, manganese chloride (Pan et al., 2011), 

gadolinium chelates (Chan and Wong, 2007), iron oxides, etc., is a frequently employed 

method to alter the T1, T2-values (see Table 3.5 in (Tofts, 2004)), as well as for inducing 

magnetic susceptibility effects (Deistung and Reichenbach, 2011) in phantoms.

Microstructural phantoms used for susceptibility imaging include cross-linked dextran gels 
(sephadex™) consisting of particles with a discrete wet bead size ranging from 20 up to 300 

μm and a diamagnetic susceptibility different from water (Jensen et al., 2006), and gels 

consisting of ferric iron hydroxide dextran complex to mimic iron load (Chu et al., 2004). 

Recently, polystyrene microbeads with diameter discretely ranging between 11.3 and 42.2 

μm suspended in an aqueous solution of sodium chloride doped with holmium(III) chloride 

hexahydrate have been used to investigate the dependence of the precession frequency on the 

medium microstructure, along with numerical simulations (Ruh et al., 2018).

Relevant for the brain WM, the orientation-dependent variation of the apparent magnetic 

susceptibility (Li et al., 2011) may originate from anisotropic magnetic susceptibility 

(described by a 2nd order tensor) of myelinated axons. Very recently, 25 or 70 μm thick 

pyrolytic graphite sheet (PGS) with a known large magnetic susceptibility anisotropy has 

been proposed to create phantoms in different shapes (slabs, spherical and cylindrical shells) 

(Cronin, 2016; Cronin and Bowtell, 2018), allowing to directly validate theoretical 

expressions of the magnetic field variation.

Magnetization Transfer Phantoms:  Most studies to date have used either cross-linked 

bovine serum albumin (BSA) (Koenig et al., 1993), or agar gels (Henkelman et al., 1993; 

Mendelson et al., 1991) as phantoms to model MT effects. Heatdenaturated egg albumin (or 

boiled egg white) is also a straightforward way to manufacture phantoms with a strong MT 

effect (Yeung and Swanson, 1992).

Dedicated efforts early on have focused on lipid membrane systems to more adequately 

represent the MT effect observed in neural tissue (Grossman, 1999; van Zijl et al., 2018). 

Using mixtures of egg phosphatidylcholine (EPC)/cholesterol with pure EPC in the 

chloroform phase, cholesterol was shown to induce MT (Fralix et al., 1991), as well as 

shown to be a determinant of gray-white contrast in MRI of brain (Koenig et al., 1993). The 

MT properties of several other macromolecular solutions are listed in table 1 of (Ceckler et 

al., 1992). Furthermore, multi-lamellar vesicle suspensions of pure phosphatidylcholine with 

varying proportions of cholesterol, sphingomyelin, and galactocerebroside at varying pH 

values were used as synthetic WM lipids to demonstrate the importance of cerebrosides and 

pH on MT (Kucharczyk et al., 1994).
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Recently, lyotropic lamellar liquid crystals (LLCs) have been proposed as surrogate 

biological membranes as they manifest a molecular arrangement common for some 

biological structures such as cell membranes and myelin sheaths, with MT between the 

water and the aliphatic (semisolid) components (Malyarenko et al., 2014). In addition to its 

similarity to biology, other advantages are stability, and simple phantom preparation or 

commercially being available as hair conditioner (Swanson et al., 2012). (Malyarenko et al., 

2014) investigated the MT and relaxation properties of an LLC system composed of 

decanol, sodium dodecyl sulfate and water, and showed a clinically relevant range of 

semisolid fraction proportional to detected MTR. (Lee et al., 2017b) further investigated the 

mechanisms of MT in the same LLC by using deuterated molecules and single- and dual-

frequency RF irradiations, to confirm that the decanol molecules are mainly responsible for 

the MT effects, through proton exchange to water.

3. Numerical phantoms for microstructure modeling

Numerical phantoms provide the flexibility to validate biophysical models and optimize 

NMR sequences under a wide range of acquisition parameters and tissue properties, thanks 

to the total control over phantom properties and the possibility of creating substrates 

mimicking specific biological tissue microstructure. Numerical simulations could be 

performed in several ways, based on (1) matrix formalisms, (2) finite-difference and finite-

element methods, and (3) Monte Carlo (MC) simulations.

The matrix formalism relies on finding solutions for the eigenmodes of the diffusion 

propagator, and is computationally fast due to its implementation using matrix 

multiplications (Callaghan, 1997). Practically, these eigenmodes were only found 

analytically for diffusion within simple shapes, i.e. highly symmetric porous media, such as 

parallel planes, circles, spheres, cylinders (Callaghan, 1995), and their concentric multi-shell 

versions (Grebenkov, 2010; Lebois et al., 2013a, b). Furthermore, for contrast mechanisms 

other than diffusion, surface relaxation (Callaghan, 1995) and water exchange (Grebenkov, 

2010, 2014), corresponding propagators could be very complicated and analytically 

intractable. To extend the applicability of the matrix formalism for a complicated geometry, 

the eigenmodes of corresponding Laplace equations can potentially be estimated 

numerically.

To numerically solve the mesoscopic Bloch-Torrey equations for complex micro-geometries 

with permeable membranes, finite-difference methods were proposed to simulate the 

diffusion either in artificially designed geometries (Harkins et al., 2009; Russell et al., 2012) 

or in realistic microstructure (Chin et al., 2002; Hwang et al., 2003). Also, Bloch-Torrey 

equations can be solved numerically by finiteelement methods for various geometries with 

impermeable (Hagslatt et al., 2003) or permeable membranes (Beltrachini et al., 2015; Li et 

al., 2014b; Moroney et al., 2013; Nguyen et al., 2014).

MC simulations are computationally expensive since they collect the ensemble average of 

numerous particles’ random walks, resulting in statistically meaningful parameter estimates. 

Nonetheless, MC simulations are by far the most popular since they offer great flexibility to 

simulate diffusion along with other contrast mechanisms, e.g., water exchange, MT, surface 
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relaxation, susceptibility and T1, T2 relaxation, in all kinds of micro-geometries. In the 

following sections, we will review MC simulations for various physical phenomena, discuss 

minimum requirements and provide a checklist (Figure 4) for actual implementations, and 

list several examples.

3.1 How to simulate the physical phenomena in microstructure MRI?

Diffusion—The dMRI signal is simulated by initiating many particles in a microscopic 

geometry, propagating them in random directions, and calculating the resulting phase 

changes from random walks and corresponding diffusion gradients. The walkers can 

randomly hop on a pre-defined lattice or in a continuous space with a fixed step size or a 

step size dynamically adapted to local geometrical length scales (Grebenkov, 2011). 

Considering the balance between simplicity of the implementation and computational 

efficiency, we focus here on random-hopping in a continuous space with a fixed step size. 

According to the following statistical law derived by Einstein for Brownian motion 

(Einstein, 1905), the size of each step for each particle is approximated by

δx ≃ 2dD0 ⋅ δt, #(1)

where 7 is the dimensionality, D0 is the intrinsic diffusion coefficient, and δt is the time 

spent for each step.

The single-step diffusion propagator is modeled by a binomial distribution in 1d, a circle or 

a compressed ellipse in 2d (to mimic the multi-layer myelin sheath) (Harkins and Does, 

2016), and a spherical surface in 3d. A potential mistake in 3d simulations is to sample the 

step orientation over θ=πυ and ϕ=2πu of a spherical coordinate, rather than over 

cosθ=1−2υ and ϕ =2πu (Fieremans et al., 2008b), with two uniformly distributed random 

numbers u, v between 0 and 1. The former implementation propagates particles towards the 

z-axis more than other directions, leading to overestimated diffusivities in z-direction and 

underestimated diffusivities in x- and y-directions; in contrast, the latter implementation 

propagates particles homogenously in all directions with the same probabilities. This sphere-

point-picking problem can also be solved by sampling x, y and z of a Cartesian coordinate 

with three normally distributed random numbers.

dMRI signals under different diffusion weightings are simulated by varying the b-value b ≡ 
∫ |q(t)|2dt where q(t)≡r ∫ɡ(t’)dt’, with γ the gyromagnetic ratio of the water proton and ɡ(t) 
the time-varying diffusion gradient. For each particle, the designed N() induces a phase 

change φ= −γ∫ɡ (t)⋅r(t)dt, where r(t) is the simulated diffusion trajectory. The 

corresponding simulated dMRI signal is then calculated by S(ɡ)=⟨eiφ⟩.

Each simulated diffusional trajectory is effectively a sample of the diffusion propagator. 

However, recording all trajectories needed to approach a reliable propagator estimate is very 

burdensome on memory storage. Furthermore, estimating the whole propagator exactly is 

also computationally very intensive, particularly in terms of its higher order moments or 

cumulants. Therefore, for all practical purposes, only physical quantities relevant for 

comparing with experiments are calculated for most MC simulations, which implies that the 
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propagator is sampled in finite order cumulants (e.g., up to 2 (Eq. 2), or up to 4 (Eq. 3)), and 

equivalently, dMRI signals are sampled in a finite range of q-space, naturally represented by 

the cumulant expansion (Kiselev, 2010).

For simulations of a conventional monopolar pulsed-gradient sequence with a very short 

diffusiongradient-pulse width, calculations of the diffusivity and other metrics related to 

higher order moments are straightforward: In this case, the diffusivity can be estimated by 

the second order cumulants of the diffusion displacement, and the non-Gaussianity of the 

diffusion propagator can be evaluated via the (excess) diffusional kurtosis, defined by the 

ratio of the fourth order cumulants to the squared second order cumulants (Jensen et al., 

2005). By simply calculating each particle’s diffusion displacement Δr = r(t) – r(0) at 

diffusion time, the diffusivity and the kurtosis along the direction n are given by (Fieremans 

et al., 2008b; Fieremans et al., 2010; Jensen et al., 2005)

D(t, n) =
(Δr ⋅ n)2

2t , #(2)

and

K(t, n) =
(Δr ⋅ n)4

(Δr ⋅ n)2 2 − 3, #(3)

respectively.

The diffusion tensor Dij(t) is then estimated by solving

D(t, n) = ∑
i j

Di j(t)nin j

via linear least square with D(t,n) along ≥ 6 non-collinear directions n (Basser et al., 1994).

Similarly, the diffusional kurtosis tensor Wijkl(t)( ) is estimated by solving

D(t, n)2 ⋅ K(t, n) = ∑
i jkl

Wi jkl(t)nin jnknl

via linear least square with D(t,n) and K(t,n) along ≥ 15 non-collinear directions (Jensen et 

al., 2005).

Once the diffusion tensor Dij(t) is simulated over a wide range of diffusion times for the 

monopolar pulsed-gradient waveform of a very short gradient pulse width, the apparent 

diffusivity for any other gradient waveform of low b-value can be calculated 

Fieremans and Lee Page 17

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



straightforwardly: Based on the Gaussian phase approximation, the apparent diffusivity 

ADC ≡ −1
b  ln S is then estimated by (Novikov and Kiselev, 2011)

−lnS ≃ ∑
i j

∫ 𝒟i j(ω)qi(ω)q j( − ω)dω
2π , b ⋅ ADC ≪ 1

where dispersive diffusivity 𝒟i j(ω) is the Fourier transform of ∂t
2 tDi j(t) , and qi(ω) is the 

Fourier 11 transform of q(t).

Water exchange—Consider a particle diffusing within a medium of diffusivity D0, the 

transmission probability PEX for the particle to pass through a permeable membrane of 

permeability K is given by (Fieremans et al., 2010; Novikov et al., 2011; Powles et al., 1992; 

Szafer et al., 1995)

PEX ≃ κ
D0

δx ⋅ Cd, #(4)

where Cd = 1 (Powles et al., 1992), π/4 and 2/3 (Landman et al., 2010; Szafer et al., 1995) 

for 2 dimensionality 7 = 1, 2, and 3, respectively (see Appendix A for derivation). Eq. (4) is 

applicable only for PEX ≪1 (Fieremans et al., 2010; Powles et al., 1992), yielding the 

requirement of a small step size:

δx <
D0
κCd

, #(5)

or effectively δt ≪ D0/ 2dκ2Cd
2  by Eq. (1).

The dimensionality factor uv is sometimes ignored in 1d and 3d simulations, leading to a 

discrepancy between the input permeability value and its actual effects in simulations, and 

has not been considered for 7 2d simulations yet. In this case, the input permeability can be 

corrected by dividing its value by the 8 dimensionality factor Cd.

Magnetization Transfer (MT): In MT studies so far, “Monte Carlo” simulations usually 

implied testing the stability of signal models and sampling schemes under different SNR 

levels (Cercignani and Alexander, 2006; Li et al., 2010; Mougin et al., 2010; Zaiss et al., 

2011) by adding Gaussian noise to analytically derived signals, which are effectively 

simulations of noise propagation rather than MC. In order to achieve actual ab initio MC 

simulations of MT, similar to exchange, it can be effectively modeled as an “absorbing” 

membrane, or as a surface relaxation effect. Consider a particle diffusing within a medium 

of diffusivity D0, the “absorbing” probability PMT for the particle losing its magnetization 

by colliding with an absorbing membrane with an effective surface-relaxivity ρeff is given by 

(Banavar and Schwartz, 1987; Fieremans et al., 2008a; Sen et al., 1994)
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PMT ≃
ρeff
D0

δx ⋅ Cd, #(6)

where uv is the same dimensionality factor in Eq. (4) (see Appendix B for the derivation of 

Eq. (6)). A small step size is required:

δx ≪
D0

ρ eff Cd
, #(7)

since Eq. (6) only applies to the weak MT effect, i.e. PMT ≪1 (Banavar and Schwartz, 1987; 

Fieremans et al., 2008a; Sen et al., 1994).

Effective surface relaxation correlates with MT via

ρeff ≡ R
S/V ,

where R is the MT exchange rate between the liquid pool and the macromolecular pool, and 

S/V is the surface-to-volume ratio of the microstructure (Baete et al., 2008; Slijkerman and 

Hofman, 1998), similar to the formula of water exchange (Stanisz, 2003; Stanisz et al., 

1997).

Compared with modeling of water exchange (Eq. (4) and Eq. (5)), the modeling of either 

MT or surface relaxation (Eq. (6) and Eq. (7)) has a very similar functional form since both 

are derived from the same diffusion equation and similar boundary conditions of the 

membrane, being absorbing (MT, surface relaxation) versus permeable (water exchange).

IVIM—For a given non-branching capillary geometry with negligible calibers and a well-

defined blood flow distribution, IVIM signals can be calculated deterministically without 

performing any random walk simulations since the step direction is predetermined by the 

blood flow. A non-branching microvasculature can be created by tracking a random walker 

moving with (Novikov et al., 2012) or without (Kennan et al., 1994) an inertia toward 

capillary tree’s main direction. MC simulations for the IVIM is necessary only if the 

capillary tree has complicated geometries, such as branching or nonnegligible diameters in 

realistic vascular geometries (Gagnon et al., 2015); these cases have not been covered by 

previous studies of the IVIM, and the gap needs to be filled in the future.

Susceptibility—The off-resonance frequency distribution caused by susceptibility effects 

is given by (Salomir et al., 2003; Shmueli et al., 2009)

Δ f (r) = − γ
2π B0 ⋅ FT−1 1

3 −
kz
2

k 2 ⋅ FT(χ(r)) ,
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where B0 is the main magnetic field, FT is the Fourier transform, kz is the k-space vector 

component parallel to B0, |k| is the magnitude of the k-space vector, and χ(r) is the magnetic 

susceptibility distribution, manifesting microstructural properties. By accumulating the 

phase change dφ= 2πf(r(t))dt of each step along each particle’s diffusion trajectory r(t) 
(Weisskoff et al., 1994), the simulated signal of the echo time TE is given by S(TE) = 

e
i∫ 0

TE

dφ

T1 and T2 relaxation—Consider diffusion simulations of a conventional spin-echo 

sequence, the signal weighting of T2 relaxation in each step is e
−δt /T2 during the echo time 

(Szafer et al., 1995), where T2 is the spin-spin relaxation time constant. Similarly, for 

simulations of a stimulated-echo sequence, the signal weighting of T2 relaxation during the 

echo time is the same as for the case of a spin-echo sequence, whereas the signal weighting 

of T1 relaxation in each step is e
−δt /T1 during the mixing time (Woessner, 1961), where 

T1‚ is spin-lattice relaxation time constant. For other sequences, the T1 and T2 relaxation 

effect in each step can be calculated by solving the Bloch-Torrey equation numerically.

3.2 How to set up a Monte Carlo simulation?

Designing the microstructure geometry—To mimic a realistic microstructure 

geometry, we can arrange, pack and combine multiple simple shapes, in either 2d 
(Fieremans et al., 2010; Hall and Alexander, 2009; Harkins and Does, 2016; Liu et al., 2004) 

or 3d (Balls and Frank, 2009; Budde and Frank, 2010; Ginsburger et al., 2018; Landman et 

al., 2010; Lin et al., 2016; Palombo et al., 2017; Stanisz et al., 1997; Szafer et al., 1995; Yeh 

et al., 2013), with a length scale similar to the biological tissue of interest. In gray matter, 

synaptic boutons and dendritic spines have an average interval of 4.5 μm and 3 μm (Glantz 

and Lewis, 2000; Hellwig et al., 1994; Shepherd et al., 2002); in WM, the average axonal 

diameter is ~ 1 μm (Aboitiz et al., 1992; Caminiti et al., 2009; Liewald et al., 2014). For 

simulations within a porous medium, e.g., restricted diffusion in intra-axonal space of the 

WM, the packing of isolated pores has no influence on simulation results (Callaghan, 1993). 

However, for simulations including a non-porous medium, e.g., hindered diffusion in the 

extra-axonal space of the WM, simulation results depend dramatically on the packing 

geometry (Fieremans et al., 2008b; Fieremans et al., 2012a; Novikov et al., 2014).

Parallel cylinders packed in a square or a hexagonal lattice (Ford and Hackney, 1997; Lin et 

al., 2016; Nilsson et al., 2009; Peled, 2007; Sen and Basser, 2005) are common models for 

highly aligned WM axons. However, histological studies (Aboitiz et al., 1992; Caminiti et 

al., 2009; Liewald et al., 2014) indicate a random packing geometry for WM axons, which is 

non-trivial while building a numerical phantom (Burcaw et al., 2015; Fieremans et al., 

2008a; Fieremans et al., 2010). It is time-consuming to create a random packing geometry 

by brute-force methods (Balls and Frank, 2009; Hall and Alexander, 2009), which can be 

accelerated by placing objects sequentially in descending order of size (Hall et al., 2014), 

thereby altering the structural disorder making it less randomly packed. Instead, by applying 

a collision-driven packing generation algorithm (Figure 4, top right) (Donev et al., 2005; 
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Skoge et al., 2006; Torquato and Jiao, 2010), numerical phantoms can be generated 

composed of more than thousands of randomly densely packed circles or spheres in any 

kinds of radius distribution within minutes. Also, an open-source software (AxonPacking) 

(Mingasson et al., 2017) based on molecular dynamic approaches is available for generating 

randomly packed circles in Gamma distributed radii and corresponding g-ratio in accordance 

with histological observations.

The size of a numerical phantom geometry should be much larger than the diffusion length 

(depending on the total simulated diffusion time t and D0). If not, simulation results will 

become sensitive to the specific implementation of the boundary condition.

Particle number—Based on the central limit theorem, MC simulations necessitate 

including as many particles as possible to achieve an accurate parameter estimation of the 

ensemble average, i.e. error ∝1/  particle number . A diffusion simulation without including 

enough particles effectively lowers the SNR, leading to undesired biases, such as eigenvalue 

repulsion and overestimated FA for a conventional DTI model (Pierpaoli and Basser, 1996). 

A clear cut-off for a minimally required number of particles has not been proposed so far, 

but a rule of thumb often used is that ≥ 105-106 particles diffusing from random initial 

positions generally provide reliable simulation results (Balls and Frank, 2009; Hall and 

Alexander, 2009; Landman et al., 2010; Yeh et al., 2013), thereby keeping in mind that 

simulations with a higher degree of freedom (e.g., 3d versus 2d, permeable versus 

impermeable membranes, hindered versus restricted) require more particles to obtain similar 

precision.

In general, the recommended particle number is determined by the shape, length scale, and 

the fieldof-view of the micro-geometry, and is inevitably empirical. As a practical guideline, 

comparing simulation results (signal, diffusivity and kurtosis) of a simple shape or a 

collection of simple shapes in a desired field-of-view with their corresponding exact 

solutions (Section 3.3, Analytical solutions for timedependent diffusion, Figure 4, point 3, 

and Appendix E), allows to determine the required particle number (and step size) for 

simulations in geometries of interest with a length scale similar to the simple shape.

Step size—The step size is limited by the smallest microstructural length scales in a 

numerical phantom, e.g., for simulations in a geometry composed of parallel randomly 

packed cylinders, empirically, the minimally required step size was set to be smaller than a 

tenth of the cylinder radius (Fieremans et al., 2010), or, equivalently, smaller than a tenth of 

the radius of curvature. In general, accuracy and computational speed of numerical 

simulations have to balance each other out. To better approach the continuous process of 

diffusion, simulations with a small step size are required for accurate results, which yet is 

computationally expensive for a given diffusion time. In contrast, simulations with a large 

step size facilitate particles to explore a wide region for a given diffusion time and accelerate 

the computation but also effectively smooth out the contour of the microstructure, i.e. 

gaining numerical precision in simulated metrics (more particles and/or steps within the 

same computational time) by losing accuracy.
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The time for each step δt, as well as the step size 34 (Eq. (1)), can be limited by the diffusion 

gradient waveform spectrum. The most commonly used diffusion sequences employ either a 

pulsed-gradient (PG) or oscillating-gradient (OG) waveform. For MC simulations of PG, δt 
is limited by the gradient pulse width 3 via a loose constraint: δt ≤δ, whereas for OG, δt is 

limited by the gradient frequency f via δt ≪ 1
f . For more complicated diffusion gradient 

waveforms, δt is limited by the highest frequency fmax of the waveform spectrum via

δt ≪ 1
f max

.

The above constraint is an approximation of Eq. (C4) (see Appendix C for derivations).

For the simulation of water exchange, MT and surface relaxation, Eq. (5) and/or Eq. (7) need 

to be satisfied as well. So far, no standard criteria for choosing a step size have been raised. 

Therefore, we will introduce a sanity check in Section 3.3 for choosing an appropriate step 

size.

Step number—The step number Nstep is proportional to the diffusion time t =Nstep δt. 
Empirically, the first few thousand steps provide unreliable results, caused by the 

discretization of a realistic continuous diffusion process into separate steps. This can be 

evaluated by simulating the kurtosis, which due to discretization, results in K(t)∼ −1/Nstep 

(Lee et al., 2017a). In practice, for the case of free diffusion, |K(t)−0| < 0.1 % implies to 

include simulation results of Nstep > 1000, consistent with the suggested step number based 

on simulations in (Hall and Alexander, 2009). Although it is worthwhile to confirm that the 

first step of the random walk corresponds to a diffusivity D (t =δt)≃ D0 and a kurtosis K(t = 

δt)≃−2, −3
2  and −6

5  for 1d, 2d and 3d (see Appendix D for the derivation), parameters 

estimated by the first few thousand steps are often biased and should be discarded in final 

results.

Boundary condition (substrate edge)—A numerical phantom’s finite boundary box, if 

treated inappropriately, may influence the simulation result. While this edge effect can be 

diminished at moderate diffusion times by calculating the simulated metrics solely from 

particles in the central portion of the phantom (Cook et al., 2006), it becomes particularly 

important at very long diffusion times, during which most of the particles have crossed the 

box boundaries at least once. To further expand the finite numerical phantom, periodic (Hall 

and Alexander, 2009) or mirroring (hard wall) boundary conditions are often used.

For a periodic boundary condition, the numerical phantom is repeated by the same copy of 

itself (Hall and Alexander, 2009). When a particle hits a boundary, it goes through the 

boundary box face and comes back from the other side of the boundary box; the number of 

jumps from one side of the box to another is recorded. This approach is particularly well 

suited for packing geometries that have no microstructural objects touching the box 

boundaries, or have a periodicity in the packing that matches the matrix size. However, 

geometrical discontinuities over the boundary, if not treated properly while building the 
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phantom, could introduce additional “restricted” diffusion effect corresponding to the box 

size.

Alternatively, for a mirroring boundary condition, the numerical phantom is repeated by its 

reflective copies. Particle’s initial positions are swapped with respect to the box face the 

particle is crossing to mimic the diffusion out of the boundary box. The effective repetition 

unit of the phantom geometry is 2d larger than the original phantom. Although mirroring 

may result in increased fiber orientation dispersion, e.g., in the case of a straight fiber along 

the diagonal of a box, this replication method prevents microstructural discontinuity over the 

boundary.

Impermeable, permeable and absorbing membranes: If a particle encounters an 

impermeable membrane within a step, the particle is reflected back by the membrane and 

experiences a perfectly elastic collision (Hall and Alexander, 2009; Szafer et al., 1995). The 

displacements before and after the collision are then summed up to the step size given by 

Eq. (1).

While encountering a permeable membrane, the particle has a probability 1− PEX (Eq. (4)) 

to be reflected elastically by the membrane, and a probability PEX to penetrate through. 

Considering a particle in compartment 1 crossing a membrane and entering compartment 2, 

if the particle walks v⋅δx1‚ in compartment 1 (0≤ v ≤1), the particle will walk (1−v)⋅δx2 

along the same direction in compartment 2, where δx1‚ and δx2 are the step size in 

compartments 1 and 2 without hitting any membrane (Szafer et 1995). Also, the total T2-

weighting of the step is e
−ν ⋅ δt /T2

(1)
⋅ e

−(1 − v) ⋅ δt /T2
(2)

, where T2
(1) and T2

(2) are T2 relaxation 

time constants in compartments 1 and 2 (Szafer et al., 1995). Adjustment of the step size is 

crucial for maintaining the particle-density balance between different compartments when 

simulating water exchange.

Similarly, but differently, while encountering an absorbing membrane, the particle has a 

probability 1−PMT (Eq. (6)) to be elastically reflected, and a probability xy to lose its 

magnetization completely, effectively being “absorbed” by the membrane.

Particle-membrane interaction: elastic collision (specular reflection), diffuse 
reflection, and equal-step-length random leap—In the field of diffusional MC 

simulations, the most commonly implemented particle-membrane interaction is elastic 

collision (specular reflection) (Hall and Alexander, 2009), which works quite well not just 

for impermeable membranes but also for permeable and/or absorbing membranes. It is 

worthwhile to notice that having more than one elastic collision within a step is possible, 

especially in a densely packed geometry.

Other kinds of particle-membrane interaction include diffuse reflection (Baete et al., 2008; 

Xing et al., 2013) and equal-step-length random leap (Xing et al., 2013). For diffuse 

reflection (Baete et al., 2008; Xing et al., 2013), the particle reflected by a membrane 

consumes the rest of its step length in a random direction over the same side of the 

membrane. For equal-step-length random leap (Xing et al., 2013), the particle encountering 
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a membrane cancels the original step and randomly chooses another direction to leap until 

the chosen step does not cross any membranes. When the step number is sufficiently large 

and the step size is reasonable small (compared with the length scale in the microstructure), 

the two nonelastic interactions results agree with results from elastic collision with 

impermeable membranes (Xing et al., 2013), though this has not been tested for permeable 

and absorbing membranes.

Relieving the computational bottleneck: For simulations within a medium composed 

of multiple compartments, the most computationally expensive calculation is to identify 

which compartment a particle resides in at a given time. Despite advances in computational 

resources including the use of clusters and GPUs, checking against all compartments at each 

step is inefficient and should be avoided. A way to solve this problem is to build a lookup 

table (Hall et al., 2014; Yeh et al., 2013): By partitioning the numerical phantom into 

multiple cassettes, the lookup table records labels of compartments, partially or completely 

included within each cassette (Figure 4, top right). When a particle diffuses across several 

cassettes in a step, we only need to check compartments labeled by those cassettes. Such 

algorithm reduces the search to a local sub-volume scale and thereby significantly speeds up 

simulation run times.

3.3 How to proof check your Monte Carlo simulation framework?

Before performing a MC simulation to validate a tissue model, it is helpful to verify the 

numerical implementation by comparing against well-known solutions. In particular, 

following criteria can be used to perform quality control. (The detail of suggested simulation 

examples shown in Figure 4 is provided as Supplementary Information.)

Free diffusion—In the case of free diffusion, both diffusivity and kurtosis display no time-

dependence, yielding a simulated diffusivity, D(t) ≃ D0, and kurtosis, |K(t)|≪1. Since, 

theoretically, the kurtosis of the first few steps are negative (Section 3.2 step number), the 

step number corresponding to a near-zero kurtosis serves as a reference to discard simulation 

results of early steps. Furthermore, the diffusivity D(t =δt) and kurtosis K(t =δt) of the first 

step, mentioned in Section 3.2 step number, indicate the randomness of the assigned step 

orientation. Examples of free diffusion include diffusion parallel to planes and along 

cylindrical axes. For a reliable simulation result, the error of diffusivity and kurtosis, defined 

by D(t)
D0

− 1 , should be very small (< 10−2 - 10−3) at diffusion time (Figure 4, point 1).

Diffusion time dependence in short-time limit (S/V limit)—When the diffusion time 

is so short that only particles around restrictions (e.g., cell membrane, myelin sheath) have a 

chance to encounter them, the time-dependent D (Mitra et al., 1993; Novikov et al., 2009; 

Novikov et al., 2011) and K (Jensen and Helpern, 2010; Novikov et al., 2009) are given by

D(t) ≃ D0 1 − S
Vd

4 D0t
3 π

− κt , #(8a)
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K(t) ≃ S
V βd

8 D0t
5 π

− 2κt , #(8b)

where βd =⟨cos4 θ⟩= 1, 3/8 and 1/5 in 1d, 2d and 3d, and S/V is the surface-to-volume ratio 

of the studied geometry. The diffusion time-dependence in short-time limit is universal, and 

valid for systems consisting of permeable/impermeable membranes and applicable to any 

kind of micro-geometries (Figure 4, point 2). Failing to match simulation results with Eq. (8) 

may indicate an error related to the implementation of elastic collisions.

Analytical solutions for time-dependent diffusion—Performing simulations in 

specific simple shapes is a common way to verify simulation implementations and determine 

the required particle number and step size. Callaghan derived exact solutions of dMRI 

signals for parallel planes, cylinders and spheres with impermeable (non-) absorbing 

membranes (Callaghan, 1995). Based on Callaghan’s work, we further derived analytical 

solutions in Appendix E for the time-dependent diffusivity (Burcaw et al., 2015; Callaghan, 

1993) and kurtosis in these shapes. In particular, for periodic parallel planes of permeable 

membranes, Novikov et al. derived the analytical solution of the instantaneous diffusivity 

D inst  ≡ 1
2 ∂tx

2, eq. [S25] in (Novikov et al., 2014).

Particle density balance for the water exchange—For random walk simulations 

across permeable membranes, it is important to ensure that average particle densities in each 

compartment are almost the same, i.e. < 0.1–1 % differences between compartments, when a 

homogeneous particle density is initialized across all compartments. Failing to maintain a 

homogeneous particle density throughout different compartments potentially biases any 

simulated metric. For example, consider a toy model composed of two pools, i.e. a fast pool 

(high diffusivity) and a slow pool (low diffusivity), separated by a permeable membrane. 

This toy model is a simplified model for WM simulations (intra-/extra-axonal water (fast 

pool) and myelin water (slow pool)). If the particle density in slow pool is higher than that in 

fast pool, the simulated ADC as well as the signal change will be overrepresented by the 

slow pool and thus be underestimated; also, the simulated kurtosis will be biased and 

approach to a non-zero constant at long diffusion times.

A particle density imbalance implies an error to implement elastic collisions and membrane 

permeation. Furthermore, to ensure that simulation results are consistent to input membrane 

properties, such as (effective) surface-relaxivity ρ and permeability k, the temporal evolution 

of particle densities a(x) around the membrane can be studied (Figure 4, point 5). For that, 

consider a 1d diffusion simulation on the right side of a single absorbing membrane 

positioned at xM, where the particle density around the membrane (xM
+  on the right side) 

satisfies (Callaghan, 1995)

−D0 ⋅ ∂xn xM
+ + ρ ⋅ n xM

+ = 0, #(9)
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or equivalently ρ = D0 ⋅ ∂xn xM
+ /n xM

+ . Similarly, for a 1d diffusion simulation of a single 

permeable membrane positioned at xM, the particle density around the membrane (xM
+  on the 

right side and xM
−  on the left side) obeys (Powles et al., 1992)

−D0
+ ⋅ ∂xn xM

+ = − D0
− ⋅ ∂xn xM

− = κ ⋅ n xM
− − n xM

+ , #(10)

where D0
+ and D0

− are diffusivities on the right and the left side of the membrane. Also, Eq. 

(9) and Eq. (10) are applicable to 2d (Figure 4, point 5) and 3d cases. Inconsistencies 

between the input and estimated values by Eq. (9) and Eq. (10) indicate errors in 

implementing elastic collisions or a missing dimensionality factor uv in Eq.(4) and Eq. (6). 

Although Eq. (9) and Eq. (10) are theoretically applicable for membranes of all shapes, they 

work particularly well for locally flat membranes in actual implementations since the step 

size needs to be much smaller than the local membrane curvature (Section 3.2, Step size), 

equivalent to the condition of locally flat membranes.

3.4 Examples

Random walk MC simulations have been widely used to validate microstructural modeling 

of neural tissues particular for diffusion, as also reviewed in (Jelescu and Budde, 2017; 

Zhang, 2016), and illustrated in Figure 5. To date, several open source software tools for 

numerical simulations focusing on diffusion exist, including the most widely used Camino 

(Hall and Alexander, 2009), DW-MRI Random Walk Simulator (Landman et al., 2010), 

DIFSIM (Balls and Frank, 2009; Baxter and Frank, 2013), and Diffusion Microscopist 

Simulator (Yeh et al., 2013), some works using those are included in the overview below.

Simulations of water exchange and its effect of diffusion on biophysical modeling were 

attempted first, for regularly packed cuboid cells (Szafer et al., 1995), square tubes (Stanisz 

et al., 1997) and circular cylinders (Ford and Hackney, 1997) of the same size. In particular, 

the applicability of the Kärger model was tested in hexagonally packed (Nilsson et al., 2010) 

and randomly packed cylinders (Fieremans et al., 2010). Besides two compartmental 

systems (mimicking intra- and extra-axonal space), water exchange between multiple 

compartments was also simulated more recently, either by adding an extra component of 

glial cells (Lin et al., 2016) or myelin sheaths of finite thickness with (Lin et al., 2018) or 

without (Harkins and Does, 2016) considering T2 differences between myelin sheaths and 

other compartments.

In WM, MC simulations of diffusion have been shown useful for investigating relevant 

axonal features, and determining length scales in the intra-axonal space, in order to validate 

inner axon diameter mapping (Alexander et al., 2010). Furthermore, the axonal shape was 

modeled and simulated to account for physiological and pathological changes potentially 

detectable by dMRI, e.g., due to neurite beading (Budde and Frank, 2010; Ginsburger et al., 

2018), the presence of nodes of Ranvier (Ginsburger et al., 2018), and axonal undulation 

(Ginsburger et al., 2018; Nilsson et al., 2012). Furthermore, the accuracy and robustness of 
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tractography algorithms in crossing-fiber regions was evaluated using simulations (Poupon 

et al., 2008; Ramirez-Manzanares et al., 2011; Yeh et al., 2013).

Diffusion simulations have been shown particularly useful to assess the effect of the axon 

packing geometry in the long time (tortuosity) limit, for which theory development is an 

active topic of research (Fieremans et al., 2012a). The effect of varying axonal water fraction 

on diffusion metrics was explored by simulating the fractional anisotropy (Stikov et al., 

2011) and tortuosity of the extra-axonal space, in addition to modeling demyelination versus 

axonal loss (Fieremans et al., 2008b; Fieremans et al., 2012a).

Diffusion simulations have also been used to validate models for time-dependent diffusion. 

The applicability of estimating surface-to-volume ratio via oscillating gradients was 

evaluated by simulations of either fibers (Schachter et al., 2000) or synthetic substrates 

mimicking dendritic spines (Palombo et al., 2017). Simulations in densely packed fiber 

geometries were performed to explore frequency-dependence (Lam et al., 2015), as well as 

time-dependence of diffusion in the extra-axonal space (Burcaw et al., 2015; De Santis et al., 

2016; Fieremans et al., 2008b; Novikov and Kiselev, 2010).

While so far mostly done to model diffusion in dedicated microgeometries, MC simulations 

have also been used to evaluate the influence of diffusion on the contrast caused by local 

field inhomogeneities, such as with blood-oxygenation-level-dependent contrast either in 

simplified geometries (Boxerman et al., 1995) or in realistic vascular structures (Gagnon et 

al., 2015) and mesoscopic susceptibility effect (Laun et al., 2009; Ruh et al., 2018; 

Weisskoff et al., 1994; Xu et al., 2018).

4. Discussion

Numerous phantoms have been proposed for the validation of microstructural mapping, both 

physical (hardware) and numerical (software). Physical phantoms, in general, are useful to 

verify both the precision and accuracy of imaging methods (Keenan et al.). Microstructural 

phantoms, i.e. those exhibiting features over micrometer length scales along with the 

requirements described in Section 2.1, are often challenging to manufacture in a 

reproducible way and therefore typically not used to evaluate precision, e.g., in multicenter 

trials. Instead, they are essential for evaluating the accuracy of several microstructural 

contrast mechanisms by providing a ground-truth to compare biophysical models against. 

Similarly, software phantoms (based on MC) are instrumental for evaluating accuracy of 

theoretical models, and gaining better understanding of experimental effects.

When reviewing the literature on physical phantoms for testing and validating 

microstructural MRI phantoms, it became clear that most true microstructural phantoms 

proposed so far are for evaluating dMRI, and to a lesser extent for IVIM. In particular, there 

is an abundancy of phantoms proposed to mimic diffusion in brain WM (Table 2, Figure 2), 

either using capillaries with an I.D. ranging 1 – 50 μm to model diffusion in the intra-axonal 

space, or plain fibers with an O.D. of 10 – 20 μm to model diffusion in the extra-axonal 

space. Most recently, biomimetic phantoms made of hollow fibers (I.D. 12 μm, O.D. 34 μm), 

dubbed as ‘taxons’, have been proposed that could model to some extent both diffusion in 

Fieremans and Lee Page 27

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the intra- and extra-axonal space simultaneously. While these phantoms are quite popular for 

evaluating fiber tracking and performing quality control, they have also been insightful for 

directly validating biophysical models, e.g., for pore size (‘axon diameter’) and 

compartment fraction (‘neurite density’) mapping methods, and time-dependent diffusion in 

the extra-axonal space (see Table 2 for references). On the other hand, no gray matter 

phantoms have been suggested, with the exception of (Komlosh et al., 2007) proposing a 

packing of randomly oriented glass capillaries filled with water and immersed in deuterated 

1,2-di-chloro-benzene, such that the proton signal only comes from inside the tubes. 

Altogether, the need for more realistic physical phantoms for brain microstructure remains, 

e.g., to model gray matter, axonal dispersion and undulations, permeability, as well as 

different types of pathology, e.g., axonal beading, demyelination, etc.

Far less microstructural phantoms have been proposed so far to study other microstructural 

imaging contrasts including MT or susceptibility imaging. One interesting future direction 

would be to develop a universal phantom that has well-characterized properties in terms of 

dimensions, MT effects (including surface relaxation) and magnetic susceptibility values, 

ideally similar to the brain. So far, few examples exist of phantoms that have been 

characterized in term of several microstructural contrasts, including dairy cream for T2 

relaxation and diffusion, or cross-linked dextran gel (sephadex™) for diffusion, 

susceptibility and IVIM, but none have been fully characterized so far. Ultimately, full 

characterization would enable to fully understand the behavior of such multimodal phantom.

While physical phantoms are ultimately attractive because of their well-known specs and 

their potential for standardization, on the other hand, they are somewhat limited for the 

validation of microstructural methods as they fail to capture the microstructural complexity 

of the brain in healthy state, and even more so, in pathological state. Instead, biological 

phantoms, either using unfixed (Schmierer et al., 2007), or fixed brain tissue (Dyrby et al., 

2013; Shepherd et al., 2009a; West et al., 2018) as well as viable tissue (Blackband et al., 

1997; Richardson et al., 2013) have the microstructure that is more similar to the in vivo 
brain, and are discussed in detail elsewhere in this Special Issue. On the downside, 

biological tissue is not widely available, and the preparation requires specialized knowledge 

(Shepherd et al., 2009a; Shepherd et al., 2009b). Their exact structure remains in general 

unclear and they are not suitable for calibration purposes due to their limited storage time 

and lack of stability.

Numerical phantoms offer an appealing alternative, as they are very flexible and can be 

sophisticated to model the brain microstructure very realistically in terms of different 

microstructural effects and substrates. So far, most of the diffusion simulation studies, 

including non-MC studies, are implemented in geometries containing artificial geometrical 

shapes. Benefitting from recent advances in histology analysis techniques (Schindelin et al., 

2012), makes it possible now to perform simulations in realistic microstructure reconstructed 

from microscopy images of neural tissues (Chin et al., 2002; Xu et al., 2018). These 

attempts are hitherto limited to 2d simulations (Figure 5), except for limited 3d simulations 

in foam (Baete et al., 2008) and asparagus (Panagiotaki et al., 2010), and prompt for more 

extensive 3d simulation studies in realistic micro-geometries of neuronal tissues.
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While biophysical models are typically validated by either physical or numerical phantoms, 

few studies so far used both of them (Burcaw et al., 2015; Fieremans et al., 2008a; 

Fieremans et al., 2008b; Gagnon et al., 2015; Laun et al., 2009; Poupon et al., 2008; 

Schachter et al., 2000; Weisskoff et al., 1994)). Indeed, additional insight could be gained by 

combining physical phantoms with numerical simulations. The most comprehensive 

validation of targeted models can be done by building a numerical phantom based on 

characterization of a physical phantom (e.g., by performing micro-CT (Fieremans et al., 

2008b), or SEM (Fan et al., 2018)), and comparing physical phantom experiment with 

numerical simulation. Again here, understanding all factors affecting the microstructural MR 

contrasts both experimentally and in simulations are essential to understand the phantom’s 

behavior, thereby ultimately creating a universal multimodal microstructural (hardware and 

software) phantom.

5. Conclusion

Phantoms, both numerical and physical, offer the perspective of providing a ground-truth 

useful to validate microstructural imaging methods, a critical and necessary step to enable 

microstructural quantification in neuronal development and disorders. Physical 

microstructural phantoms consist of (NMR invisible) materials immersed in an (NMR 

visible) liquid, whereby the characteristics of both components determine the 

microstructural properties measured with MRI. Microfibers, either hollow or plain, along 

with capillaries have been frequently used to mimic brain microstructure. Numerical 

microstructural phantoms are particularly appealing because of their great flexibility in 

microstructural substrates and modeling of different biophysical mechanisms. While many 

phantoms exist already, the current review also aims to stimulate further research in the field, 

to obtain well-characterized physical phantoms closely mimicking brain’s microstructure, 

and optimal numerical simulations that can be performed in realistic microstructures and 

include the multitude of biophysical mechanisms underlying the MR contrast in 

microstructural imaging.
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Appendix A.: Dimensionality factor ¸Cd in Eq. (4)

The original version of Eq. (4) for the transmission probability in (Fieremans et al., 2010; 

Powles et al., 1992) is
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P′EX ≃ 2κ ⋅ δs
D0

, #(A1)

where δs≤ δx is the distance between the particle and the membrane. By approximating δs· 

with δx, which is equivalent to taking the average ⟨δs⟩ over the region around the 

membrane, an unknown constant Cd is introduced in Eq. (4).

Considering a compartment containing Np particles, the particle number change δNp, from 

losing particles due to exchange, is

δNP ≃
NP
V ⋅ (S ⋅ δx) ⋅ pΩ ⋅ PEX, #(A2)

where V is the volume of the compartment, S is the surface area of the membrane covering 

the compartment, an pΩ is the fraction of the hopping orientation along which particles 

encounter the membrane. By substituting Eq. (1) and Eq. (4) into Eq. (A2), the change rate 

of the particle number is

δNP
δt = κ S

V ⋅ NP ⋅ pΩ ⋅ Cd ⋅ 2d . #(A3)

The Bloch-Torrey equation for water exchange is given by

δNP
δt = kEX ⋅ NP, #(A4a)

kEX = κ S
V , #(A4b)

where kEX is the exchange rate (Stanisz, 2003; Stanisz et al., 1997). Comparing Eq. (A3) 

and Eq. (A4), (pΩ, Cd 2d)=1 needs to be satisfied, leading to

Cd = pΩ ⋅ 2d −1 . #(A5)

For 1d case (Figure A1a), the calculation of pΩ = 1
1 + 1 = 1

2  is trivial. For 2d case (Figure 

A1b), averaging ¼½ over the area surrounding the membrane with a thickness 34, we obtain
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pΩ = 1
δx∫0

δx 2cos−1(δs/δx)
2π d(δs) = 1

π .

Similarly, for pΩ case (Figure A1c), averaging pΩ over the volume surrounding the 

membrane with a 2 thickness δx, we have

pΩ = 1
δx∫0

δx 1
2 1 − δs

δx d(δs) = 1
4 .

Substituting pΩ into Eq. (A5), we obtain the dimensionality factor Cd in Eq. (4).

Appendix B.: “Absorbing” probability of MT and surface relaxation in Eq. 

(6)

Here we adopt a similar approach as in (Fieremans et al., 2010; Powles et al., 1992) to derive 

Eq. (A1), referring to fig. 7 in (Fieremans et al., 2010): Considering a 1d case, where an 

“absorbing” membrane is positioned at xm and the substrate diffusivity is 8, the probability 

of a particle showing at position 4& on the right side of the membrane at time t + δt, such 

that xp −xM± < δx, is related to the probabilities of previous steps at time t by

𝒫 xP, t + δt = 1
2𝒫 xP + δx, t + 0 ⋅

PMT
2 𝒫 xP − δx, t +

1 − PMT
2 𝒫 2xM − xP + δx, t ,

#(B1)

where 𝒫( ⋅ ) is the probability density function (PDF) of the particle population at a given 

position and time, and the second term is “absorbed” by the membrane, c.f. eq. [40] in Ref 

(Fieremans et al., 2010).

The PDF 𝒫( ⋅ ) obeys the diffusion equation

∂x
2𝒫 = ∂t𝒫 . #(B2)

The boundary condition of the absorbing membrane with an effective surface-relaxivity ρeff 

is (Callaghan, 1995)

−D0∂x𝒫 + ρeff𝒫 = 0. #(B3)
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Expanding each term in Eq. (B1) by Taylor series around x = xM, substituting Eq. (B2) and 

Eq. (B3) into Eq. (B1), and ignoring higher order terms, we obtain, for weak MT and surface 

relaxation 
δx−ρeff

D0
≪ 1 ,

PMT ≃
2δx−ρeff

D0
, #(B4)

where δx_ = δx + xM – xp is the distance between the particle and the membrane before the 

particle is encountering and being absorbed by the membrane, corresponding to the second 

absorbed term in Eq. (B1).

Eq. (B4) is very similar to Eq. (A1). It is then straightforward to derive Eq. (6) by including 

the dimensionality factor discussed in Appendix A.

Appendix C.: The highest frequency of the diffusion gradient waveform 

spectrum limits the time of each step

Consider a 1d simulation, a time-varying diffusion gradient ɡ(t) within a step can be 

approximated by its Taylor expansion at time t=t0:

g(t) ≃ g0 + ∂tg0 ⋅ t − t0 + 1
2! ∂t

2g0 ⋅ t − t0
2 + 1

3! ∂t
3g0 ⋅ t − t0

3, #(C1)

where ɡ0 =ɡ(t0) is the diffusion gradient at t = t0, and ∂tg0, ∂t
2g0 and ∂t

3g0 are the 

corresponding first, second and third order derivatives with respect to time. Supposing that a 

particle’s position x(t)≃ x(t0)≡x0 is almost the same within a step, the diffusion phase δφ 
induced during the step is given by

δφ = ∫
t0 − 1

2δt

t0 + 1
2δt

γg(t) ⋅ x0dt . #(C2)

Substituting Eq. (C1) into Eq. (C2), we obtain

δφ ≃ γg0x0 ⋅ (δt) + 1
24γ ∂t

2g0 x0 ⋅ (δt)3, #(C3)

where the first term of RHS is the expected diffusion phase, and the second term of RHS is 

the unwanted bias caused by diffusion gradient’s temporal variations; when the bias is 

negligible, i.e. the second term is much smaller than the first term, the following condition is 

satisfied:
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δt ≪
24g0
∂t

2g0
. #(C4)

For a pulsed-gradient waveform, Eq. (C4) provides no constraints as long as 3 is no bigger 

than the gradient pulse width. For an oscillating-gradient waveform ɡ(t) ∝ cos 2πft of the 

frequency f, Eq. (C4) degenerates to δt ≪ 24
2π f

1
f . For the general case, by applying Fourier 

transforms to diffusion gradient waveforms, Eq. (C4) approximates to δt < 24
2π f max

1
f max

.

Appendix D.: Kurtosis at the first step

Given that all particles only make one step with a step size δx in Eq. (1), the kurtosis in 1d, 

based on Eq. (3), is given by

K(t = δt) = δx4

δx2 2 − 3 = − 2

For the 2d case, given that ϴ is the angle between Δr and n in Eq. (3), the kurtosis is 

calculated by

K(t = δt) =

1
2π∫0

2π
cos4θdθ

1
2π∫0

2π
cos2θdθ

2 − 3 = − 3
2 .

Similarly, the kurtosis in 3d is given by

K(t = δt) =

1
2∫0

π
cos4θ ⋅ sinθdθ

1
2∫0

π
cos2θ ⋅ sinθdθ

2 − 3 = − 6
5 .

Appendix E.: Analytical solutions for the diffusion time-dependence in 

specific geometries

Consider the diffusion within a pore bounded by an impermeable membrane with surface-

relaxivity ρ, the analytical form of dMRI signals is known for some specific shapes, such as 

parallel planes, cylinders and spheres (Callaghan, 1995). Expanding solutions of the dMRI 

signals using Taylor series with respect to qa, where q is the Fourier domain of diffusion 

displacements and a is the pore size, we then can derive the time-dependent diffusivity and 

kurtosis as follows.
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For diffusion between parallel planes of impermeable membranes (with given surface-

relaxivity ρ ), with spacing 2a, the diffusivity and kurtosis are given by

D(t) = a2
t

1
3 − ∑

m = 0

∞ 2
ζm
4 e

−ζm
2 t

tc

K(t) = 6
[D(t)]2

⋅ 2
45 + ∑

n = 1

∞ 2
ξn
4e

−ξn
2 ⋅ t

tc + ∑
m = 0

∞ 2
ζm
4 −1 + 2

ζm
2 e

−ζm
2 ⋅ t

tc − 3,

where ξn and ςm are the roots of ξn ⋅tan ξn = ρa/D0 and ζm⋅cot ζ =−ρa/D0 (Callaghan, 1995), 

and tc = a2/D0 is the correlation time, i.e. the average time for particles to diffuse between 

restrictions. For non-absorbing membranes, ρ = 0.

For diffusion within a cylinder of radius ¨, bounded by impermeable membranes (surface-

relaxivity ), the diffusivity (Burcaw et al., 2015) and kurtosis are given by

D(t) = a2
t

1
4 − ∑

k = 1

∞ 2
β1k

2 β1k
2 − 1

e
−β1k

2 ⋅ t
tc ,

K(t) = 6
[D(t)]2

⋅ [ 5
192 + ∑

k = 2

∞ 1
β0k

4 e
−β0k

2 t
tc + ∑

k = 1

∞ 4
β1k

2 β1k
2 − 1

1
β1k

2 − 3
8 e

−β1k
2

t
tc

+ ∑
k = 2

∞ 1
2β2k

2 β2k
2 − 4

e
−β2k

2 t
tc ] − 3,

where βnk is the root of βnk ⋅ Jn′ βnk /Jn βnk = − ρa/D0 (Callaghan, 1995), Jn(⋅) is the Bessel 

function, and tc = a2/D0 is the correlation time.

For diffusion within a sphere of radius ¨, bounded by impermeable membranes (surface-

relaxivity ), the diffusivity and kurtosis are given by

D(t) = a2
t

1
5 − ∑

k = 1

∞ 2
α1k

2 α1k
2 − 2

e
−α1k

2 t
tc ,
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K(t) = 6
[D(t)]2

⋅ [ 3
175 + ∑

k = 2

∞ 2
3α0k

4 ⋅ e
−α0k

2 t
tc + ∑

k = 1

∞ 4
α1k

2 α1k
2 − 2

1
α1k

2 − 3
10 e

−α1k
2 t

tc

+ ∑
k = 2

∞ 8
15α2k

2 α2k
2 − 6

e
−α2k

2 t
tc ] − 3,

where αnk is the root of αnk ⋅ jn′ αnk / jn αnk = − ρa/D0 (Callaghan, 1995), Jn(⋅) is the 

spherical 11 Bessel function, and tc= a2/D0 is the correlation time.
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Figure 1: 
Liquids that are popular test phantoms in dMRI, according to increasing complexity: a) D as 

a function of temperature for water, whereby ice-water is often used in multi-center studies; 

b) Alkanes have a relative low D compared to water (shown for dodecane and n-tridecane in 

right figure), but exhibit chemical shifts and ghosts when used as test liquid with EPI; c) 

Aqueous solutions (listed in Table 1) offer the possibility of creating a range of D-values, 

illustrated here for sucrose and PVP-solutions, as well as for mixtures of H2O/acetone and 

D2O/acetone (adapted from (Wang et al., 2017)); d) dairy cream (after heating) has D and K 
values comparable to white matter, whereby the chemical shift is used here to visualize the 

fat and water separately (adapted from (Fieremans et al., 2012b)); e) Liquid crystals can be 

prepared with microscopic μFA close to 1 (adapted from (Nilsson et al., 2018)). Adapted 

with permission from Wiley.
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Figure 2: 
Microstructural phantoms (right) mimicking brain white matter microstructure (left, SEM 

image of mouse brain genu of corpus callosum): the intra-axonal space (a) is modeled by 

glass capillary arrays (b, left, confocal transmission image adapted from (Komlosh et al., 

2011)), or capillaries (b, right, electron micrograph, adapted from (von dem Hagen Elisabeth 

and Henkelman, 2002)); the extra-axonal space (c) is modeled by plain fiber phantoms (d, 

photograph and SEM image adapted from (Fieremans et al., 2008b)); both intra-, and extra-

axonal space (e) is modeled by hollow fiber phantoms (f, SEM image adapted from (Guise 

et al., 2016)). Scale bars are added to illustrate the sizes of each phantom, as compared to the 

axonal microstructure. Adapted with permission from Elsevier, Wiley, and American 

Chemical Society.
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Figure 3: 
The use of asparagus as a dMRI phantom (Fieremans, 2008): a) a microscopic image of a 

cross-section through the asparagus. The vascular bundles are indicated with ellipses; b) 

Close-up of the vascular bundle. Cells with a larger diameter for the xylem, which are in fact 

long tubular vessels with a thick wall, causing the anisotropy as measured with dMRI. The 

smaller cells form the phloem, which are either tubular and filled with air, or spherical and 

containing water; c) Resulting dMRI parametric maps; and d) fiber tracking using the 

asparagus as a test object for dMRI.
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Figure 4: 
Checklist illustrating the different criteria that can be used to proof check a Monte Carlo 

simulation framework, as explained in more details in Section 3.3. The packing geometry 

shown on the top right consists of 492 non-overlapping circles, and is generated by the 

collision-driven packing algorithm (Donev et al., 2005; Skoge et al., 2006; Torquato and 

Jiao, 2010); the corresponding lookup table is a 500 by 500 matrix with pixels containing no 

circle (black pixels), one circle (colorful pixels) and ≥ 2 circles (white pixels). In point 5 

(right bottom), the left panel is a snapshot of particle densities with respect to cylinder radii 

at = 90 ms, explaining how to calculate the permeability (arrowhead of the right panel) 

based on Eq. (10) (D0
−= 0.2 μm2/ms, K = 0.05 μm/ms) and also verifying the dimensionality 

factor uv (Eq. (4)) in 2d.
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Figure 5: 
Overview of numerical simulations, categorized into four quadrants, based on 

dimensionality (2d vs 3d), and complexity of geometry (simple shapes vs realistic 

microstructure). While simulations in geometries consisting of simple shapes are commonly 

done, our literature search revealed only few simulations in realistic neuronal 

microstructures performed in 2d, and none found so far in 3d. Figure adapted from (Baete et 

al., 2008; Chin et al., 2002; Fieremans et al., 2010; Harkins and Does, 2016; Li et al., 2014b; 
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Lin et al., 2016; Nguyen et al., 2014; Palombo et al., 2017; Panagiotaki et al., 2010; Xu et 

al., 2018) with permission from Elsevier, Wiley, IOP publishing, and Springer.
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Figure A1: 
The solid angle to calculate the fraction of particles (within a distance from the membrane 

δs≤ δx) encountering the membrane in (a) 1d, (b) 2d, and (c) 3d cases.
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Table 1:
Liquid phantoms proposed for diffusion 1 MRI of the brain

Overview of liquid phantoms proposed for diffusion MRI, listing their diffusion properties, potential 

advantages and disadvantages, and corresponding references. Diffusion coefficients D are given at room 

temperature unless temperature is stated. Corresponding examples are also shown in Figure 2

Phantom Diffusion properties Advantages Disadvantages References

Water
Ice Water

D=2.0 μm2/ms (20°C)
D=1.1 μm2/ms (0°C)

Inert, readily available
Temperature-controlled Long 
T1 and T2, hence often used 
to combine with hollow/plain 
fibers in phantoms (Table 2)

D higher than brain; 
Low viscosity Ice 
water: Preparation 
needed for every use

(Chenevert et al., 
2011;
Malyarenko et al., 
2016;
Mulkern et al., 
2015)

decamethylcyclopentasiloxane
(C10H30O5Si5)

D=0.16 μm2/ms Stable, single peak in proton 
NMR spectrum, suitable for 
gradient calibration
Used in glass capillary array 
phantoms (Table 2)

Different chemical 
shift than water 
protons

(Komlosh et al., 
2017; Wagner et al., 
2017)

Alkanes (N- and cyclic) D=0.5 – 1.4 μm2/ms Range of D-values Flammable, multiple 
spectral lines
(linear)

(Dowell and Tofts, 
2010;
Tofts, 2004;
Tofts et al.,2000)

Ethylene glycol D=0.071 μm2/ms Used as thermometer, suitable 
for gradient calibration

Toxic, should be 
handled with care

(Spees et al., 2012)

Sucrose solutions D= 0.5 – 1.4 μm2/ms Range of D-values Multiple
spectral lines Not 
Gaussian diffusion

(Delakis et al., 
2004; Hara et al., 
2014; Laubach et 
al., 1998; Lavdas et 
al., 2013; Wang et 
al., 2017)

PVP solutions D= 0.3 – 1.6 μm2/ms Range of D-values Challenging to 
prepare high 
concentration 
solutions

(Pierpaoli et al., 
2008; Wagner et al., 
2017; Wang et al., 
2017)

Acetone/ deuterium oxide 
mixture

D= 0.5 – 3 μm2/ms (0°C) Range of D-values Limited shelflife, 
costly, flammable

(Wang et al., 2017)

Cream (after heating) D=1.1 μm2/ms K=1.1 Fat-water shift enables 
independent prediction of D 
and K

Preparation needed 
for every use

(Fieremans et al., 
2012b)

Liquid crystals D= 0.37
μm2/ms
μFA ≈ 1

Well-characterized
microscopic anisotropy

Preparation needed 
Temperature 
sensitive

(Nilsson et al., 
2018)
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