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Abstract

Transverse NMR relaxation is a fundamental physical phenomenon underpinning a wide range of 

MRI-based techniques, essential for non-invasive studies in biology, physiology and neuroscience, 

as well as in diagnostic imaging. Biophysically, transverse relaxation originates from a number of 

distinct scales — molecular (nanometers), cellular (micrometers), and macroscopic 

(millimeterlevel MRI resolution). Here we review the contributions to the observed relaxation 

from each of these scales, with the main focus on the cellular level of tissue organization, 

commensurate with the diffusion length of spin-carrying olecules. We discuss how the interplay 

between diffusion and spin dephasing in a spatially heterogeneous tissue environment leads to a 

non-monoexponential time-dependent transverse relaxation signal that contains important 

biophysical information about tissue microstructure.
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1. Introduction

1.1. Homogeneous and inhomogeneous broadening

Transverse relaxation of nuclear magnetization is present in all NMR and MRI 

measurements. At the most basic level, it is observed as a gradual reduction in the signal 

magnitude after an initial excitation of spin precession, which is commonly referred to as the 

free induction decay (FID). In terms of NMR spectroscopy, the faster the signal attenuates, 

the broader is the corresponding spectral line. The term line broadening is thus synonymous 

to signal attenuation during the FID. Less straightforwardly, transverse relaxation affects 

measurements that involve spin echo, for which the signal attenuation can differ from that 

for the FID, with the difference carrying essential information about the medium in question.
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The physical origin of transverse relaxation is always a variable magnetic field. The field can 

vary in time or in space and results in different precession phases acquired by individual 18 

spins, the process commonly referred to as dephasing. Since the measured signal is the 

vector sum of individual spins’ contributions, dephasing results in the overall signal 

attenuation.

Typically, the mechanism of dephasing interpolates between the two idealized limiting 

cases. In the case when the magnetic field experienced by individual spins is random and has 

equal statistical characteristics for all spins, one speaks about the homogeneous broadening. 

This term originates from NMR spectroscopy implying that any (large) sub-population of 

spins has the same line width as the whole sample. This is the case when all spins have the 

same statistical distribution of their phases, e.g., when each of them samples sufficiently 

large portions of a medium due to fast thermal motion (the so-called motional narrowing 
phenomenon). The other limiting case is when spatially variable magnetic field causes the 

relative dephasing between remote, non-communicating spins. In this case one speaks about 

inhomogeneous broadening, which implies that a broad spectral line is a superposition of 

many narrow lines resulting from different regions of the sample. In contrast to the motional 

narrowing, one sometimes refers to this limit as that of static dephasing, emphasizing that 

the motional averaging over different sample regions does not occur.

1.2. Scales

While some amount of dephasing inherently takes place due to random molecular motion in 

a completely uniform fluid (Bloembergen et al., 1948; Abragam, 1961), NMR and MRI 

signal in biological tissues is additionally affected by the dephasing due to the magnetic 

tissue heterogeneity on the scale of biological cells, Fig. 1. The interest in such dephasing 

mechanism spurred in the early 1990s due to applications of the BOLD effect (Ogawa et al., 

1990; Belliveau et al., 1991; Ogawa et al., 1992) and susceptibility contrast (Edelman et al., 

1990; Rosen et al., 1991; Weisskoff et al., 1994; Yablonskiy and Haacke, 1994), and further 

developed over the past couple of decades motivated by the native magnetic contrast of 

different cell types. Understanding and systematizing the physics of dephasing on this scale 

is the main goal of this review article.

As we discuss below, dephasing on the cellular scale brings in qualitatively new features as 

compared with the traditional NMR measurements in structureless solutions. Likewise, the 

cellular-scale structural complexity also affects NMR-measured diffusion (Tanner, 1979; Le 

Bihan et al., 1986; Basser et al., 1994; Callaghan, 1993; Jones, 2010), with the physics of 

diffusion and of transverse relaxation intimately intertwined, as the Brownian motion is the 

origin of the motional narrowing relevant at the MRI timescales.

From the methodological perspective, studying the cellular level tissue “microstructure” 

(Fig. 1) falls into the realm of meso-scopic physics, which is concerned with how the 

averaging over the structure at the mesoscopic, or intermediate scale (in between the atomic/

molecular scale, and the macroscopic sample/voxel size) affects a macroscopic 

measurement, as reviewed recently (Novikov et al., 2016). The term “mesoscopic” is by 

definition relative. In our context, at the mesoscale, the molecular-level relaxation effects 
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have already fully played out, yielding the local effective relaxation rates R1
mol (r) and R2

mol

(r), which may further vary on the micrometer scale commensurate with cell dimensions. 

Signal acquisition over a macroscopic sample or an imaging voxel, much exceeding cellular 

dimensions, yields an extra averaging over the contributions having local relaxation rates 

and the locally varying Larmor frequency offset Ω(r) due to magnetic structure at the 

cellular level. In the absolute terms the cellular complexity at this micrometer scale gives 

rise to the term “tissue microstrucutre” (Jones, 2010); here we are concerned with the effects 

of magnetic tissue microstructure.

1.3. Outline and scope

The outline of this article is as follows. First, we consider a toy model of transverse 

relaxation (Sec. 2), in the spirit of Anderson and Weiss (1953). Although simple, it catches 

essential features of real processes and will serve as a reference point for further 

considerations. When presenting this model, we also introduce qualitative order-of-

magnitude estimates for gaining insight in the physics of relaxation, which are used 

throughout this paper. We then qualitatively outline the essential signatures of transverse 

relaxation from the molecular, microscopic and macroscopic scales (Sec. 3), and present the 

phase diagram for the mesoscopic transverse relaxation, Fig. 6. In Sec. 4, introduce the 

mesoscopic Bloch-Torrey equation describing both diffusion and relaxation effects, and 

identify scaling relations based on the dimensionless variables. In Sec. 5, we consider 

technical details of the diffusion-narrowing and static dephasing regimes. Section 6 is 

devoted to the practically important case of relaxation in dilute suspensions of magnetic 

objects, where an additional small parameter, the low volume fraction of the suspension, 

enables further analytical treatment and the derivation of useful scaling laws. Section 7 

introduces a more formal yet general treatment of mesoscopic relaxation, via the effective 

medium theory. In Sec. 8, we consider non-perturbative approaches aimed at exploring the 

crossover between the diffusion-narrowing and static dephasing regimes. Section 9 is 

devoted to applications of the discussed biophysical phenomena. Finally, in Sec. 10 we 

discuss common misconceptions, and in Sec. 11 we formulate the unresolved problems.

From the outset, we would like to mention the limits of the scope of this review article. 

When discussing the physics of transverse relaxation, we focus on the simplest possible 

measurement scheme, which is the free induction decay. We do not analyze in detail various 

kinds of spin echoes. The spin echo is only discussed when it brings about a new physical 

essence, or when it helps us to draw contrast with the FID (cf. Sec. 3.4). Even less attention 

is paid to the contribution of multiple tissue compartments with different relaxation times. 

On top of the non-trivial relaxation physics (our main subject), this partial-contribution 

effect further complicates the interpretation of experimental data and, therefore, it deserves a 

dedicated approach, see the review article (Does, 2018) in the same journal issue.

Kiselev and Novikov Page 3

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2. A toy model of transverse NMR relaxation

2.1. Average over spins

Consider an ensemble of spins, each one exposed to a randomly varying magnetic field, B(t), 
of yet unspecified origin. We describe the transverse spin magnetization as a complex 

number, e−iφ(t), where the phase1

φ(t) = ∫
0

t
dt′ Ω(t′), Ω(t) = γ(Β(t) − B0) , (1)

integrates the history of the magnetic field experienced by a given spin since the moment of 

excitation. Here Ω(t) is the instantaneous Larmor frequency relative to the nominal main 

field B0 — i.e., it is the precession frequency in the rotating frame associated with an 

average spin, with γ the gyromagnetic ratio. The normalized signal from the whole spin 

ensemble is the average value of phase factors of individual spins:

S(t) = 〈e−iφ(t)〉 ≡ p(λ) λ = 1 ⋅ (2)

The second identity in Eq. (2) tells that the signal is the Fourier transform, or the 

characteristic function

p(λ) = 〈e−iλφ〉 ≡ ∫ dφ𝒫(φ)e−iλφ (3)

of the probability density function (PDF) (φ) of all precession phases (1) accumulated by 

the time t, where 〈…〉 is the average with respect to (φ). All of the richness of transverse 

relaxation effects originates from this averaging.

If different spins experience different yet static Larmor frequencies Ω, such that φ = Ωt, then 

the PDF (φ) becomes equivalent (up to a trivial rescaling) to the PDF (Ω) of the Larmor 

frequencies; the signal

S(t) = ∫ dΩ𝒫(Ω) e−iΩt S(ω) ≡ 𝒫(ω), (4)

i.e. the spectral lineshape in the case of pure inhomogeneous broadening coincides with the 

PDF of Larmor frequencies in a sample (voxel).2

1The minus sign in front of the magnetization phase follows the sign convention S(t) = ∫ dω
2π S(ω)e−iωt for the inverse temporal 

Fourier transform accepted in the physics literature. This convention will not be crucial, as we study the signal’s magnitude.
2We use the same letters for the pairs of Fourier-transformed quantities; giving the argument explicitly is sufficient for specifying the 
representation.
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A less trivial situation occurs for the case of homogeneous broadening, where we assume 

that the random frequency Ω(t) for all spins has the same physical origin (i.e., is sampled 

from the same probability distribution [Ω(t)] of functions). To average over the ensemble 

of these stochastic functions, e.g., Fig. 2, we Taylor-expand S(t), and average it term-by-

term.

2.2. Cumulant expansion

Consider the case in which the typical spin phase is small, φ ≪ 1. We can then expand the 

signal in the Taylor series in φ and find its logarithm as

lnS(t) = − i〈φ〉 − 1
2 〈φ2〉 − 〈φ〉2 + …. (5)

The first term on the right-hand side is the mean phase over the ensemble of spins. The 

second term is proportional to the phase variance. Since the variance is always positive, this 

whole term is negative for any distribution of spin phases. The minus sign in front of this 

terms originates from i2, which guarantees that this term describes signal attenuation. One 

can see that the expansion (5) is just the cumulant series (van Kampen, 1981; Kiselev, 2010) 

in the powers of λ for the characteristic function (3), taken at λ = 1. The cumulants 

generalize the relation between the variance and the second moment, 〈φ2〉: The nth-order 

cumulant is the nth-order moment with the subtracted reducible contributions from all the 

lower orders. While averaging the expanded exponential gives all moments as coefficients, 

the logarithm of this series has the same form, but with the moments replaced by the 

cumulants, cf. (Kiselev, 2010) for a detailed discussion.

Let us express the phase via the instantaneous Larmor frequency using Eq. (1). For 

stationary systems, that do not change their properties during the measurements, the first 

term in Eq. (5) takes the form

〈φ〉 = 〈Ω〉t . (6)

This term describes the signal phase accumulation with the constant rate 〈Ω〉. While this rate 

can be the goal of a measurement (e.g., in the quantitative susceptibility mapping), it is 

effectively removed by working with the signal magnitude or, if constant across an MR 

image, can be set to zero by tuning the resonance frequency of the scanner. In what follows, 

we focus on the signal relaxation described by the second term in Eq. (5), from now on 

assuming 〈Ω〉 ≡ 0 without the loss of generality:

lnS(t) = − 1
2∫0

t
dt1dt2〈Ω(t1)Ω(t2)〉 + …, (7)

where the integration over both time variables is performed from 0 to t as in Eq. (1). To 

obtain this expression, we substituted the phase in Eq. (5) from Eq. (1), represented the 
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square of the resulted time integral as a double integral over independent variables t1 and t2, 

and subsequently applied the averaging with account for 〈Ω〉 = 0.

2.3. Cumulants as correlation functions

Let us now focus on the leading ∼ Ω2 term, Eq. (7), to develop physical intuition, which will 

then help us consider qualitatively the role of the higher-order terms. The averaged quantity 

in the integral in Eq. (7) is the correlation function of the instantaneous Larmor frequency, 

Fig. 2.3 For stationary systems, this function is time translation-invariant, i.e., it depends 

only on the time interval, Fig. 3:

J(t2 − t1) = 〈Ω(t1)Ω(t2)〉 (8)

and is an even function of this interval, J(‒τ) = J(τ). This correlation function can be 

roughly characterized by two parameters, which are the variance of Ω(t),

J(τ) τ = 0 = 〈Ω2〉 (9)

and the correlation time τc, which shows at which interval τ the value Ω(t + τ) becomes 

statistically independent from Ω(t), see the left panel of Fig. 2 for an illustration. In other 

words, τc is the scale over which J(t) is non-negligible, i.e. it shows the extent of memory 

about the temporal evolution of Ω(t).

In general, the double integral in Eq. (7) depends on the precise shape of the function (8). 

However, it simplifies in the two important limiting cases, of short and long times.

For short times, t ≪ τc, the correlation function does not change significantly within the 

integration area, being well approximated by its value at t = 0. This constant can be 

factorized out of the integral leaving the remaining integration trivial,

lnS ≃ − 1
2〈Ω2〉t2, t ≪ τc . (10)

Note that this result is simple and completely general: irrespective of the distribution of Ω(t), 
the short-time limit reduces the problem to that of the inhomogeneous broadening, Eq. (4), 

since for each spin its frequency can be considered constant — as long as the accumulated 

phases remain small. To the leading order in t, the signal is determined by the second 

cumulant of (Ω) — the PDF of all values of Ω in the time series (i.e., involving a function 

(Ω), not a functional [Ω(t)]).

3Correlation functions occur naturally when dealing with stochastic time series or any other stochastic functions. In the hierarchy of 

mathematical objects, they generalize the moments 〈Ωn) of the PDF (Ω); here, the PDF is a functional [Ω(t)], and its moments are 
all the possible correlation functions 〈Ω(t1)…Ω(tn)〉.

Kiselev and Novikov Page 6

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For long times, t ≫ τc, the integral in Eq. (7) is mainly contributed by the diagonal, t1 ≈ t2, 

since the correlation function tends to zero for large time separations (Fig. 3). Time 

translation invariance suggests a natural change of variables: t1, t2 → t ≡ t1, τ ≡ t2 − t1. 

When J(τ) decays faster than 1/τ, we can integrate the correlation function over its cross-

section first (Fig. 3), extending the integration to all τ, to obtain the signal in the form

lnSt ≫ τc
≃ − R2 t, R2 = 1

2∫−∞

∞
dτJ(τ), (11)

where we used the common notation for the transverse relaxation rate R2. Its magnitude can 

be estimated as the product of the height of the integrand, Eq. (9), with the width, τc; this 

gives R2 ∼ 〈Ω2〉 τc. Note, again, a drastic reduction in the number of relevant parameters that 

determine R2 in the limit t → ∞: While the precise shape of the correlation function is 

defined in principle by an infinite number of parameters, it is a single number, the integral of 

this function, that defines R2. This is an example illustrating the notion of relevant degrees 

of freedom in physics: The details of fast dynamics on a fine scale (for times of the order of 

τc in the present example) are coarse-grained, and most of them become irrelevant on a 

coarser scale (time t ≫ τc) — with an exception of just a few parameters (a single relevant 
one, R2, in the present example).

The integral in Eq. (7) is often considered in terms of the Fourier transformed correlation 

function, J(ω),

lnS(t) = − 2∫ dω
2π

sin2(ωt /2)
ω2 J(ω) . (12)

Here the sinc function appears as the Fourier transform of the measurement interval 0 < t1,2 

< t when performing a continuous Fourier transformation on the whole time axis. It is 

straight forward to recover the short-time asymptotic form, Eq. (10), by taking the limit ωt 
≪ 1 in this integral. The long-time asymptotic form, Eq. (11) is obtained by noticing that the 

factor sin(ωt/2)/ω approaches πδ(ω) for long times, which gives R2 = J(ω)|ω=0/2 in 

agreement with Eq. (11).

Since the above consideration was based on the expansion for small phases, Eq. (5), it might 

appear that the result, Eq. (11), can be questioned for strongly attenuated signals for which 

R2t ≫ 1. We now find the validity criterion for Eq. (11) by considering the correction terms 

to Eq. (5). The third-order terms include 〈φ3〉, 〈φ2〉〈φ〉, 〈φ〉3; the higher-order terms include 

all possible ways of averaging the higher powers of φ forming the cumulant expansion as 

already mentioned above. Substitution of Eq. (1) results in the cumulant expansion for ln S 
with the first nonvanishing term written in Eq. (7) and with the nth-order term

( − i)n

n! ∫
0

t
dt1…dtn〈Ω(t1)… Ω(tn)〉

c
, (13)
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where the subscript ‘c’ stands for “cumulant”. The cumulants are called also the reduced 
correlation functions because they turn to zero when any of averaged quantities, Ω(tm) is 

uncor related with another (van Kampen, 1981). This means that the cumulants turn to zero 

when the separation between any of two time points exceeds the correlation time, τc. 

Another important property follows from the time translation invariance, which means that 

no property of the considered system changes if our experiment is repeated at a different 

time. Equivalently, shift ing all time variables by the same amount, tm → tm + ∆t, does not 

change any cumulant. Summarizing these properties, the general term, Eq. (13), can be 

estimated as ∼ δΩn τc
n−1t, where δΩ denotes the typical value of Ω, which is of the order of 

its standard deviation 〈Ω2〉 (as Ω(t) has zero mean). This yields that the relaxation in the t 
≫ τc limit will become asymptotically monoexponential: S ∼ e−R2t, where the rate R2 

acquires contributions from all higher-order cumulants. This means that the first equality in 

Eq. (11) remains valid, while the value of R2 changes.

To control the cumulant series convergence, it is convenient to introduce the dimensionless 

parameter

α = δΩ ⋅ τc, δΩ = 〈Ω2〉, (14)

which is a typical value of the precession phase accumulated over the correlation time τc. In 

terms of this parameter, the nth order term (13) is ∼ αn · t/τc. Hence, each subsequent term 

becomes less important, and truncating Eq. (5) already at the second-order term is justified, 

when

α ≪ 1. (15)

Under this “perturbation theory” condition, Eq. (11) is valid irrespective of long t.

Note that the time translation invariance and the separation of scales t ≫ τc (i.e., having a 

finite correlation time) allows us to effectively factor out the overall (long) time t from each 

term (13), and yields a substantially improved condition, δΩ·τc ≪ 1, for the convergence of 

the cumulant expansion (5). Naively, in that series, each power of φ should contribute φ ∼ 
δΩ · t, and hence, one would think that the series should converge only when δΩ ⋅ t ≪ 1, — 

a condition that becomes invalid for sufficiently long t.

The observation that the overall t can be factored out from each term of the cumulant series, 

such that the overall relaxation becomes monoexponential in the limit t ≫ τc can be 

understood from a different angle.

2.4. Relaxation at long times as the Central limit theorem

Consider the random phase in Eq. (1). There, the integrand Ω(t) is correlated over the time 

intervals of typical duration τc. This means that an individual spin phase in the long-time 

limit can be approximated by a sum of N ∼ t/τc ≫ 1 statistically independent contributions, 
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φ ∑n = 1
N φn, where each φn ∼ α can be treated as an independent random variable. When 

the number N of independent contributions to the random variable φ becomes large, the 

Central limit theorem (CLT) tells that its characteristic function (3) approaches that of the 

Gaussian distribution, p(λ) ≃ e
−iλ〈φ〉 − λ2〈φ2〉c/2

, with the higher-order cumulants being less 

relevant. Moreover, according to the CLT, the mean values and variances from the 

independent contributions add up, i.e. φ ≡ 0, and φ2
c ∼ Nσc

2, where σc
2 ≡ φn

2  is the 

variance for each independent contribution. We again obtain the monoexponential relaxation 

with the rate R2 σc
2/τc.

In general, the rate σc
2τc is an unknown function of α, and depends on the form of all the 

cumulants. However, for weak dephasing (15), dropping all the higher-order terms leads to 

σc
2 α2 and

R2 ∼ α2/τc = 〈Ω2〉 τc, (16)

as it was already found after Eq. (11)

To sum up, monoexponential signal relaxation for long times, t ≫ τc, follows from the 

Central limit theorem, describing the random walk of the precession phase (1). The 

phenomenon of lineshape narrowing is reflected in the τc-dependence of the rate (16): the 

shorter τc, at a fixed variance 〈Ω2〉 of the random Ω(t), the more effective is the averaging, 

and the smaller the rate. Such narrowing due to dipolar couplings has been first considered 

by Bloembergen et al. (1948) and by Anderson and Weiss (1953). In the biophysical context, 

as we will describe below, this effect occurs due to the motion of spins sampling Ω(r(t)) on a 

trajectory, e.g., on a Brownian path. A similar effect of the dephasing of an electron spin 

phase due to scattering off multiple impurities in the presence of spin-orbit interaction is 

known as the Dyakonov-Perel relaxation (Dyakonov and Perel, 1971).

3. Relaxation from the three scales

In this Section, we go over main qualitative features of the contributions to the overall 

relaxation from the three distinct scales of Fig. 1, from the smallest to the largest.

3.1. Molecular scale

Signal relaxation on the molecular scale is always present as a background for all other 

relaxation processes. We briefly address both the transverse and the longitudinal relaxations, 

since the latter will serve for comparison in a few examples discussed below. While the 

existence of spin is a pure quantum effect, we do not need quantum mechanics for the 

present simplified consideration that follows the discussion by Goldman (2000). It is 

sufficient to know that a spin flip in the quantum language or, equivalently, tilting a spin in 

the classical language, is a resonant process, giving name to NMR.
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Consider first the transverse relaxation. The above toy model instantiated via a very fast 

molecular motion, where the stochastic magnetic field appears, for example, as the dipole-

dipole interaction of two proton spins in water molecules. The magnetic field is changing 

due to random molecular rotation, since the dipole field is direction-dependent. The 

molecular motion is very fast, with the typical time τc ∼ 1 ps = 10−12 s. This means that our 

measurements performed on the millisecond MRI time scale always fall in the regime of 

very long times, t ⋙ τc. In this regime, transverse relaxation rate is determined by J(ω)|ω=0 

[recall the discussion after Eq. (12)], which can be understood also from the quantum-

mechanical point of view: Transverse relaxation is a process of dephasing; changing the spin 

precession phase does not change its energy, thus the quantum transition is sensitive to the 

perturbation components at ħω = 0.

In contrast, the longitudinal relaxation is associated with changing the energy of spins in the 

external magnetic field. The corresponding frequency is the Larmor frequency ΩL. As NMR 

is a resonant process, a fluctuating magnetic field causes longitudinal relaxation most 

efficiently when its characteristic frequency 1/τc ∼ ΩL. Proper calculations support this 

qualitative conclusion by revealing the proportionality R1 ∼ J(ω)|ω=ΩL (in this discussion, 

we refer to frequency in the laboratory frame).

At this stage we can recover the well-known result about different dependence of both 

relaxation rates on the rate of molecular motion (Bloembergen et al., 1948; Goldman, 2000). 

Consider for example a water molecule in which the magnitude of spin-spin interaction of 

two protons is constant, but the correlation time τc depends on the environment, for example 

if the molecule is free, or if it sticks to a slowly moving protein. In terms of the above 

model, this constant interaction amplitude squared ∼ J(t)|t=0 is translated into a constant 

variance of the random field, Eq. (9). In the spectral domain, this constant maps on the 

constant integral of J(ω),

〈Ω2〉 = ∫ dω
2π J(ω) = const. (17)

This means that the area under J(ω) is conserved, while the width of J(ω) changes as 1/τc. 

This result in different patterns for the dependence of R1 and R2 on the “tumbling rate” 1/τc, 

as illustrated in Fig. 4. The simplest single time-scale form for J(ω) convenient to have in 

mind is a Lorentzian

J(ω) =
2〈Ω2〉τc

1 + (ωτc)
2 J(t) = 〈Ω2〉e

− t /τc , (18)

which is correctly normalized in the view of Eq. (17). Realistic J(ω) from the Bloembergen-

Purcell-Pound theory (BPP) is more complicated (Bloembergen et al., 1948), but not 

qualitatively different from Eq. (18), cf. right panel of Fig. 4. The exponentially-decaying 

correlations in the time domain, of the kind in Eq. (18), is a natural assumption when having 

a single well-defined time scale for the underlying stochastic process.
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Under the normal conditions, water molecules move very fast in comparison with the proton 

Larmor frequency ΩL/2π ∼ 108 Hz at the typical field strength of a few Tesla. It is well 

known that both relaxation rates increase in solutions of large molecules such as proteins. 

Further slowing down of water motion results in the decoupling of relaxation rates: R1 ∼ 
J(ΩL) starts decreasing, while R2 keeps increasing (Fig. 4), such that, for the simplest model 

J(ω) from Eq. (18), R1 ∼ R2/[1+(ΩLτc)2]. This results in a principal difference in the R1 and 

R2 effects of contrast agents.

In particular, the R1 effect is local for all practical purposes of biological MRI. To 

understand this, let us estimate how far its effect on R1 and R2 can reach from a strongly 

magnetized particle of a contrast agent. Consider water molecules a distance ℓ from this 

particle. In time t, these molecules move over the distance of the order of Dt due to a 

diffusive motion with diffusion constant D. In order to experience an essential change in the 

dipole field, this motion should result in an angle Dt /ℓ ∼ 1 at which the molecules are seen 

from the particle. In other words, the characteristic frequency ω ∼ 1/t of magnetic field 

variations experienced by a moving molecule should scale as D/ℓ2. Longitudinal relaxation 

is the most efficient when this rate is comparable with the Larmor frequency, D/ℓ2 ∼ ΩL. 

Using the typical values D ∼ 1 µm2/ms and ΩL ∼ 109 s−1, we obtain an estimate ℓ ∼ 1 nm for 

the optimal “interaction distance” with the contrast agent. This distance is negligible 

compared to the scale of cells in biological tissues, which are of the order of a micrometer or 

greater.

Conversely, the transverse relaxation is most efficient as ω 0, i.e., when the rate D/ℓ2 tends 

to zero, which implies ℓ → ∞. This means that the R2 effect can spread far outside the 
physical location of a contrast agent, which will be considered in detail below. As a side 

note, the selective effectiveness of longitudinal relaxation results in a complicated 

dependence of the contrast agent relaxivity on the main magnetic field (Gillis and Koenig, 

1987).

3.2. Microstructural (cellular) scale

We now proceed with the main subject of this review, which is transverse relaxation in 

biological tissues. We focus on relaxation of water protons due to its abundance in tissues 

and its role in MRI, rather than due to any special physical properties.

3.2.1. Chemical and susceptibility effects—There are two sources of enhanced 

transverse relaxation in biological tissues as compared with that in the pure water. They can 

be classified according to the spatiotemporal scale on which dephasing takes place.

The first one is the presence of diverse solutes with large molecules that can bind water and 

thus accelerate relaxation as discussed above in Sec. 3.1. This effect depends on the local 

chemical composition inside a biological compartment such as as specific cell species. The 

effect is strong: The relaxation time is reduced from about 2s in pure water (R2 ≈ 0.5s−1) to 

values below 100 ms (R2 ∼ 10s−1). This is essentially a molecular effect, falling under the 

realm of the previous Sec. 3.1.
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The second one is a mesoscopic effect due to a higher concentration of a paramagnetic 

substance in a specific tissue compartment (for example, in the blood pool or in iron-loaded 

cells). Such local magnetic susceptibility, spatially varying on the scale of tissue 

microstructure, induces an additional magnetic field when exposed to the strong main field 

B0 of an MRI scanner. The induced field dephases spins not only within the compartment, 

but also in the adjacent regions, thus extending the effect of paramagnetic substance outside 

the volume where it is physically present. Typically, the induced magnetic field spans over 

distances ℓc commensurate with the dimensions of paramagnetic compartment, i.e., 

micrometers or tens of micrometers. The corresponding correlation time of magnetic field 

fluctuations experiences by water protons, due to the diffusive motion of the spin-carrying 

molecules, is in the range of τc ∼ ℓc2/D ∼ 1−100 ms, which is comparable to the typical time 

available for MR measurements after a spin excitation (more details Sec. 5 below). This 

results in a particular richness of the mesoscopic relaxation physics, and its nontrivial 

relation to the magnetic tissue microstructure. Understanding the mechanisms of the 

transverse relaxation on the micrometer scale is desirable as an instrument for probing the 

microstructure and function of biological tissues in vivo.

3.2.2. The time-dependent relaxation rate—All the essential signatures of the 

mesoscopic relaxation originate from the physics of averaging in Eq. (2). The above 

estimates suggest that the relaxation is not expected to be monoexponential — in fact, the 

most important qualitative feature of the mesoscopic transverse relaxation is being in the 

transient regime, Fig. 5, with the monoexponential relaxation approached only 

asymptotically, at t → ∞ (which practically may mean never, depending on the length 

scales associated with tissue heterogeneities). The signal is characterized by a time-
dependent relaxation rate R2(t), both for the FID, and, generally, for any sequence with finite 

refocussing intervals. A natural definition for the “instantaneous” time-dependent relaxation 

rate is

R2(t) ≡ − d
dt ln S = ∫

0

t
dt′J(t′) + …, (19)

where the first term follows from Eq. (7), while “…” corresponds to contributions from the 

higher-order cumulants.

Here, we give an overall qualitative picture for the behavior of S (t) and R2(t), and consider 

inhomogeneous and homogeneous broadening cases separately. We will discuss the FID 

signal only, with more precise calculations and other measurement sequences considered in 

the subsequent sections.

3.2.3. Inhomogeneous broadening: SDR—The inhomogeneous broadening, or the 

static dephasing regime (SDR), can be viewed via the lineshape (4) as a distribution of 

frequencies (Ω) specifically originating from the susceptibility-induced field (Yablonskiy 

and Haacke, 1994; Kiselev and Posse, 1999; Jensen and Chandra, 2000c). We consider this 

situation in detail below in Sec. 5.4 in general, and in Sec. 6.2 for a well15 studied case of 

dilute suspensions of magnetic inclusions.
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The SDR contribution behaves as ln S ∼ −t2 and R2 ∼ t at short times, in agreement with the 

general result (10). Here, the distinction between short and long times is made by δΩ · t ≪ 1 

and δΩ · t ≫ 1 correspondingly, as there is no other time scale in the problem (such as the 

correlation time τc to give the effect of “forgetting” the memory about the phase history).

Absent τc, the relaxation at long times can take different functional forms. When 

monoexponential, it is not the consequence of the CLT, Sec. 2.4, and it can be considered 

accidental — actually, having to do with the 1/rd scaling of the dipole field in d dimensions, 

that is being convolved with the susceptibility sources, cf. Sec. 6.2 below.

In the pure SDR (no diffusion), spin echo experiment eliminates the inhomogeneous line 

broadening, and yields the molecular R2 relaxation. The nontrivial mesoscopic correction to 

spin echo emerges due to diffusion, cf. Sec. 5.4 and 6.2.

3.2.4. Homogeneous broadening: DNR—The homogeneous broadening regime, or the 

diffusion narrowing regime (DNR), and any intermediate regime where the diffusion cannot 

be discarded, is nontrivial in the following sense: The averaging 〈…〉 in Eq. (2) should be 

effectively performed over the Brownian paths r(t), giving rise to the stochastic contributions 

Ω(t) ≡ Ω(r(t)) for the phase of each spin. Ultimately, this means that the signal becomes 

sensitive to the spatial correlations of magnetic structure (embodied by the correlation 

functions of Ω(r), or of the underlying susceptibility χ(r)), probed by the diffusing spins. 

Establishing the relation between the spatial structure correlation functions and the temporal 

ones (that can be measured) is the fundamental problem in this regime.

To the lowest (i.e., second) order in Ω(r), this relation was obtained by Jensen and Chandra 

(2000b) who showed that the temporal correlation function

J(t1 − t2) = 〈Ω(r(t1))Ω(r(t2))〉medium; paths = 〈 ΓΩ (r(t1) − r(t2))〉paths (20)

is given by the average over the Brownian paths r(t) of the twopoint spatial correlation 

function

ΓΩ (r) = 1
V ∫ dr0Ω(r0 + r)Ω(r0) (21)

of the local Larmor frequency variation Ω(r). The details about averaging over the paths will 

be explained below, in Sections 4 and 5 — see, in particular, Eq. (50) in Sec. 5.3. The 

correlation function (20) can be measured using asymmetric spin echo (Jensen et al., 2006).

To give an idea of the qualitative features of the mesoscopic signal, Fig. 5, it is convenient to 

have a tractable yet sufficiently general model. According to the relation (20), a model for 

the signal described within the Gaussian phase approximation (GPA) (i.e., to the order 〈φ2〉), 
is set by the corresponding model for the random medium to the second order in Ω(r), via a 
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single correlation function (21). A convenient ansatz for Eq. (21) was suggested by Jensen 

and Chandra (2000b):

ΓΩ (r) = 〈Ω2〉e
−(r /2ℓc)2

ΓΩ (q) = (4π)3/2〈Ω2〉ℓc
3e

−q2ℓc
2

(22)

where ℓc is the correlation length. Average over the Brownian paths, Eq. (50), leads to the 

temporal correlation function (20) of the form

J(t) = 〈Ω2〉
(1 + t /τc)

3/2 , τc =
ℓc

2

D (23)

where τc is the diffusion time over the correlation length of the medium (tissue). Neglecting 

the higher-order terms in Eq. (19), this function completely determines the signal (7). 

Performing the two subsequent integrations, one obtains the relaxation rate

R2(t) = R2
mol + R2

meso, R2
meso = 2α2

τc
1 − 1

1 + t /τc
, (24)

and the FID signal

lnS = − R2
molt − 2α2 t

τc
− 2 1 + t

τc
+ 2 . (25)

Here, we added the constant molecular rate R2
mol inherent to all the NMR measurements, 

Sec. 3.1, providing a “background” on which the mesoscopic relaxation evolves. The signal 

(25) describes the FID measurement in a random bead suspension quite well, Fig. 5. For the 

corresponding spin echo expression, see (Storey et al., 2015).

We note that averaging over the Brownian paths in Eq. (20) results in a qualitatively distinct 

functional form of the correlation function (8), making it decay algebraically, Eq. (23), 

rather than exponentially, as in BPP molecular model or in the theory of Anderson and 

Weiss (1953), cf. Eq. (18). The same qualitative changes should occur for all higher-order 

correlation functions entering Eq. (13), although no one dared to show that consistently and 

rigorously yet. In Sec. 8, we review selfconsistent attempts to go beyond the second order of 

the perturbation theory, to extend the DNR results onto the parameter domain α ∼ 1, 

effectively interpolating between the DNR and SDR.

Historically, DNR was first developed (Gillis and Koenig, 1987; Kiselev and Posse, 1998; 

Jensen and Chandra, 2000b; Kiselev and Novikov, 2002; Sukstanskii and Yablonskiy, 

2003,2004) for dilute suspensions of magnetic objects of particular shape to the second 

order in Ω(r), as reviewed in detail Sec. 6 below, and by Dickson et al. (2011). All these 
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results can be reexpressed via the general relation (20) with a suitable cor relation function; 

for the dilute suspensions, such a function scales in proportion to the volume fraction ζ of 

the objects, cf. Sec. 6.1 below.

3.2.5. Transient character of the mesoscopic signal—Figure 5 shows a qualitatively 

general behavior of the FID signal in the DNR. We can see that the numerical differences 

between the simple model (25), and more involved models of Jensen and Chandra (2000b); 

Kiselev and Novikov (2002); Sukstanskii and Yablonskiy (2003), and Sukstanskii and 

Yablonskiy (2004) for the dilute suspension of permeable and of impermeable spheres, 

respectively, are relatively minor, and relate to the presence of sharp boundaries for the field 

and for the diffusion. (These differences become more pronounced for the spin echo.) 

However, here we specifically plot all three models for the same set of parameters, to 

emphasize their qualitative and quantitative similarities, which are as follows:

1. The slope (19) is always increasing with t, from the initial

R2
mol ≡ R2(t) t 0 (26)

to its long-time limit

R2(∞) = R2
mol + R2

meso(∞), (27)

where R2
meso(∞) = 2α2/τc for the model (24), having the expected scaling with α 

and τc, cf. Sec. 2.4.

2. The time scale on which the switching between the rates (26) and (27) occurs is t 
∼ τc. Using biophysical modeling (Kiselev and Posse, 1998; Jensen and 

Chandra, 2000b; Kiselev and Novikov, 2002; Sukstanskii and Yablonskiy, 2003, 

2004; Jensen et al., 2006; Novikov and Kiselev, 2008), one can determine the 

characteristic length scale of the spatial distribution of the magnetic 

microstructure and its variance 〈Ω2〉 characterizing magnetic heterogeneity (e.g., 

the amount of paramagnetic ions at the mesoscale).

3. The approach of the rate (24) to its long-time limit (27) is very slow, in this case 

as ∼ t−1/2, which is a consequence of the slow power-law decay (23) of the 

corresponding correlation function — a consequence of the gradual coarse-
graining (Novikov et al., 2016) of the random medium via the increasing 

diffusion length. Very similar power-law tails occur in the instantaneous 

diffusion coefficient (Novikov et al., 2014), emphasizing the similarities between 

the mesoscopic description of diffusion and relaxation. Note that the correlation 

function of the form (18) decays qualitatively faster (Kennan et al., 1994; 

Novikov and Kiselev, 2008; Ruh et al., 2015), which is a good description for a 

more ordered (e.g., periodic or hyperuiniform) medium, but turns out to be less 
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applicable for the more realistic short-range spatial correlations in the random 

magnetic structure.

3.3. Macroscopic scale

Relaxation on the macroscopic scale is caused by the inhomogeneities of the main magnetic 

field that are of the order or larger than sample size or an imaging voxel. As an example, 

they can be created by overall non-spherical sample shape in NMR experiments, or poor 

shimming in MRI, e.g., near the sinuses in the brain. Molecular motion can be fully 

neglected on this scale. According to the above considerations, it is only the transverse 

relaxation that is affected by such inhomogeneities; it is always in the short-time, SDR limit, 

with the expansion in t starting from ln S macro ∼ −t2, cf. Eq. (10), such that the 

corresponding R2
macro ∼ t as t → 0. The explicit shape of the signal can be obtained knowing 

the slice profile, e.g. a sinc-function for a rectangular slice (Yablonskiy, 1998). Since the 

molecular motion is negligible on the macroscopic scale, any kind of spin echo completely 

removes the macroscopic dephasing.

3.4. The net relaxation from all scales

The above consideration demonstrates that the classic NMR equation for the FID relaxation 

rate,

R2* = R2 + R2′ , (28)

becomes misleading in the context of biological tissues that have mesoscopic signal 

contributions. The original meaning of the two terms in Eq. (28) are as follows: the 

molecular R2 = R2
mol, and the macroscopic part R2′ = R2

macro that is completely refocussed by 

using any kind of spin echo.

Brownian motion of spin-carrying molecules fundamentally prevents full refocussing of the 

mesoscopic effects at any finite echo time. In fact, when the echo time exceeds τc, the 

relaxation rate for the spin echo, CPMG, and any other sequence with refocusing will 

approach that for the FID, while for short echo times a larger portion of signal can be 

refocused (Kennan et al., 1994; Kiselev and Posse, 1998; Jensen and Chandra, 2000b; 

Kiselev and Novikov, 2002; Sukstanskii and Yablonskiy, 2003, 2004).

In the framework of MRI in biological tissues, Eq. (28) should be replaced with the 

contribution of all three involved spatiotemporal scales shown in Fig. 1:

R2GE(t) = R2
mol + R2

meso(t) + R2
macro(t), (29)

R2SE(t) = R2
mol + R2SE

meso(t), (30)
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for the gradient echo (FID) and spin echo, correspondingly. Note that the mesoscopic effects 

contribute differently in the GE and SE rates, so that, generally, R2SE
meso(t) ≤ R2

meso(t), and their 

equality occurs only at t → ∞. The addition of the rates is a general consequence of kinetic 

theory (Lifshitz and Pitaevskii, 1981), where the contributions from different sources in the 

collision integral do not interfere to the lowest order; in our case, the cross-correlation terms 

〈Ωmol(t1)Ωmeso(t2)… Ωmacro(tn)〉 vanish because of significantly distinct and independent 

spatio-temporal statistics of these contributions.

3.5. How to separate molecular and mesoscopic effects?

Let us address a practically important question: how can we ensure that we measure only the 

genuine molecular rate, R2
mol, without the mesoscopic effects? This could be useful for 

separating distinct biophysical contributions to the signal — e.g., magnetic ions distributed 

uniformly and affecting R2
mol, versus the cellular-scale susceptibility variations affecting 

R2
meso(t). A model-free way to separate between these contributions would help understand 

which one is a better marker of a given pathology. Besides, this would ensure reproducibility 

between different sites and vendors, where currently different degrees of admixture of the 

mesoscopic contribution occur due to different echo timings in a variety of spin-echo 

measurement sequences.

Using the shortest possible echo times is an obvious possibility, with a number of sequences 

available. However, even the shortest realistic SE or CPMG echo times, of a few ms on 

clinical systems, generally still yield an admixture of the mesoscopic contributions. Can one 

obtain pure R2
mol without applying refocussing pulses, thereby also avoiding hardware issues 

with B1 inhomogeneities and specific absorption rate?.

The simple and universal answer that we are advocating in this article is rooted in the 

fundamental quadratic-in-time SDR limit (10) of any mesoscopic or macroscopic 

contribution to the signal at short times, or, equivalently, linearly vanishing R2
meso(t) and 

R2
macro(t) as t → 0. It is only R2

mol that does not vanish (here we of course realize that t → 0 

is not taken literally; t ∼ 1 ps, at which R2
mol may vanish as well, is unattainable.) Therefore, 

R2
mol should be determined from a simple FID/GE measurement by taking the slope of ln S 

at t → 0,

R2
mol ≡ − d ln S

dt t 0
⋅ (31)

This slope can be practically calculated, e.g., by a poloynomial approximation of the FID 

signal near t = 0, cf. black dashed line in Fig. 5. The operational definition (31) is in 

complete analogy with the way the diffusion coefficient is determined as the slope of lnS 

with respect to the b-value in the b → 0 limit.4 Defined in this way, the genuine R2
mol can in 
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principle be made reproducible, and the mesoscopic and molecular effects can be studied 

separately from each other.

3.6. Phase diagram for the mesoscopic relaxation

Figure 6 qualitatively summarizes the regimes of the mesoscopic transverse relaxation, with 

characteristic examples of moving in between different regimes described in caption. The 

phase diagram is two-dimensional, because there exist two independent dimensionless 

combinations of three essential parameters: FID time t, correlation time τc giving the time 

scale to the DNR, and the characteristic Larmor of the crossover frequency heterogeneity 

scale δΩ. Here, we choose the simplest and most natural combinations: α, defined as in Eq. 

(14), and the dimensionless time t/τc

4. The mesoscopic Bloch-Torrey equation

Diffusion and phase accumulation of proton spins is described by the Bloch-Torrey equation 
(Torrey, 1956). This equation is written for the time- and position-dependent transverse spin 

magnetization, ψ(t,r). In the case of spatially varying parameters, the local detailed balance 

for ψ(t,r) is described by

∂
∂t ψ = − ∇ ⋅ j − R2

mol(r) + iΩ(t, r) ψ , (32)

which expresses the fact that the local change in the spin magnetization in a physically small 

volume is due to the outgoing term, the flux j(t,r) (the divergence same as in the diffusion 

equation), and to the inherent change from the transverse relaxation and phase accumulation. 

The local relaxation rate R2
mol (r) is the result of molecular motion, Sec. 3.1, and is a 

function of the locally varying chemical composition of tissue. Without the loss of 

generality, the mean component R2
mol = 〈R2

mol(r)〉 of the rate R2
mol (r) can be subtracted, 

keeping in mind that it gives the factor e
−R2

molt
 in the overall signal (much like the sample 

average 〈Ω(r)〉). Although we consider stationary tissues, the local Larmor frequency, Ω(t, r) 

can be made time-dependent by application of magnetic field gradients and refocusing 

pulses.

Equation (32) is complemented with an expression for the flux, the Fick’s law

j(r) = − D(r)∇ψ , (33)

where D is the local value of the diffusion coefficient (or tensor in anisotropic media). 

Substitution in Eq. (32) yields the mesoscopic Bloch-Torrey equation

4In multicompartment samples this procedure yields a weighted mean of all R2
mol, much like the diffusion coefficient is a weighted 

mean of compartmental diffusion coefficients.
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∂
∂t ψ = ∇D(r)∇ − R2

mol(r) − iΩ(t, r) ψ . (34)

Equation (34) is an example of an effective theory: it emerges after the coarse-graining over 

all scales finer than thescale for which we write the equation. Therefore, the effective 

parameters R2
mol , D(r) and Ω(t, r) vary on the mesoscopic scale only, i.e., they already 

incorporate the molecular-level details. See the recent review (Novikov et al., 2016) for the 

detailed discussion of coarse-graining and effective theories.

The solution to this equation, ψ(t, r), yields the FID signal,

S(t) = ∫ dr ψ(t, r), (35)

where the integration over r reflects the fact that the receiving coils have a homogeneous 

sensitivity on the scale of considered sample (or voxel) volume, V.

The central quantity for solving the Bloch-Torrey equation is its fundamental solution or the 

propagator, 𝓖(t;r,r0), which is the solution to Eq. (34) that is selected by the initial 

condition ψ(t, r)|t=0+ = δ(r−r0) (all spins excited at the point r0). Solution to the arbitrary 

initial condition, ψ(0+,r) = f(r) is given by the superposition of the effects of excitations at 

all points with the weight f(r),

ψ(t, r) = ∫ dr0𝓖(t; r,r0) f (r0) . (36)

Using this formula for the homogeneous initial excitation with f(r) = 1/V results in the well-

known expression for the signal,

S(t) = 1
V ∫ dr0dr 𝓖(t; r, r0) . (37)

The normalization on the sample (or voxel) volume is convenient in view of the conservation 

of the number of diffusing molecules that defines ψ for the case R2 =Ω= 0. In this case, 𝓖 
solves the diffusion equation for which ∫ dr1𝓖(t; r1, r0) ≡ 1 for any positive time, and the 

signal thus turns to unity.

Note that Eq. (34) describes the spin magnetization in the absence of any radio frequency 

pulses. In general, accounting for such pulses requires inclusion of all three magnetization 

components in the Bloch–Torrey equation. However, the effect of short refocusing pulses 

can be described using Eq. (34). Consider a pulse that inverts the y-component of nuclear 

magnetization. This action is described as a complex conjugation, ψ → ψ∗ at the moment 
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of the refocusing (other pulse phases can be described in a similar way). For the following 

evolution, the transformed magnetization is taken as a new initial condition, which is treated 

according to Eq. (36). The procedure is repeated for each refocusing pulse.

While the parameters in Eq. (34), D(r),R2
mol (r) and Ω(r), result from the averaging over the 

finer scales, this equation describes the transverse magnetization at the cellular scale and 

upwards — i.e., typically, it bridges between the microscopic and macroscopic scales (Fig.

1). The major problem is the extreme complexity of biological tissues, which rules out any 

possibility to solve the equation exactly — or to even define it precisely for any realistic 

tissue. Instead, the logic of statistical physics is applicable, which includes the averaging 

over statistical ensembles as the main step towards obtaining macroscopic characteristics of 

the whole medium, generally formulated within the effective medium theory framework, that 

operates with the correlation functions of the mesoscopic parameters.

Throughout this article, we focus on effects of variable local Larmor frequency, Ω(t, r). In 

the absence of spin echoes, thus obtained results can be extended to include the variable 

local relaxation rate, R2
mol(r), by analytical continuation of Ω to acquire a negative imaginary 

part, Ω → Ω −iR2
mol.

The Bloch-Torrey equation with R2
mol = 0 and a constant D can be cast in a dimensionless 

form in terms of the variables τ = t/τc and ξ = r/ℓc,

∂
∂τ ψ = ∇ξ

2ψ − iαΩ(r)
δΩ ψ , (38)

where α is given by Eq. (14) with τc = ℓc2/D. The magnitude of the normalized field Ω(r)/δΩ 
does not depend on the magnitude of Ω(r). This normalized field embodies the statistics of 

the original medium scaled in such a way that the spatial field variations have the 

characteristic length scale ξ = 1. It is thus the parameter ℓc that sets the length scale for the 

whole medium (changing ℓc results in zooming the whole medium preserving all 

proportions). For the standard initial condition, ψ|τ=0 = 1, three medium parameters enter 

the solution via the single dimensionless combination α = δΩℓ/c2/D, a typical phase acquired 

by a spin diffusing past a single susceptibility inclusion, that determines the nature of the 

motion-mediated field averaging. This fact gives rise to similarity relations useful for 

reducing the dimensionality of the parameter space, in particular when performing 

numerical simulations (cf. (Weisskoff et al., 1994; Jensen and Chandra, 2000c; Ruh et al., 

2017)).

5. Mesoscopic transverse relaxation: Technical considerations

In this Section, we consider in more detail the major dephasing regimes, the static dephasing 

and the diffusion-narrowing, described qualitatively in Sec. 3.2.3 and 3.2.4 above. We focus 

on two basic measurement techniques, the FID, which is measurable using the gradient echo 

pulse sequences, and the spin echo (SE). The consideration is preceded by a brief discussion 
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of the source of the microscopically heterogeneous magnetic filed (Sec. 5.1 below) and of 

the definition and properties of the structure correlation functions such as introduced above 

in Eq. (20) (Sec. 5.2).

5.1. Susceptibility-induced Larmor frequency

Typically, the source of the mesoscopic Ω(r) is the spatially inhomogeneous magnetic 

susceptibility, χ(r), which represents the microscopic magnetic structure. In the external 

strong magnetic field B0ẑ, the variable χ(r) induces an inhomogeneous magnetic field, 

which can be calculated for non-ferromagnetic material, for which χ ≪ 1, as a convolution

Ω(r) = γ∫ dr0Y(r − r0)χ(r0)B0, (39)

where Y is the elementary dipole field,

Y(r) = 3(z/r)2 − 1
r3 . (40)

A convolution (39) becomes a product in the Fourier domain (which enables efficient 

calculation of the induced field (Kiselev and Novikov, 2002; Marques and Bowtell, 2008)),

Ω(q) = δΩ ⋅ 1
3 −

qz
2

q2
χ(q)
χ0

, δΩ = 4πγ χ0B0, (41)

where δΩ is given in the cgs system. The quantity χ0 is introduced to define the typical 

value of magnetic susceptibility; in particular for grains of enhanced susceptibility (Fig.7), 

the ratio χ(r)/χ0 coincides with the indicator function of the grains, ν(r) = 1 inside the 

grains, and zero otherwise.

5.2. Structural correlation functions

The correlation function of a position-dependent quantity ν(r) is defined as5

Γν(r) = 〈ν(r0 + r)ν(r0)〉, (42)

where the averaging is performed over the statistical ensemble of all medium realizations. 

The quantity ν(r) can be the indicator function of magnetized objects, the magnetic 

susceptibility, Ω(r) etc. For a sufficiently large sample, the ensemble averaging can be 

replaced with the averaging over the sample, 〈…〉 ∫ dr0…/Vas in Eq. (21). Note that Eqs.

5The definition is often made for the quantity ν(r) − 〈ν(r)〉 in which case the correlation function is zero for large separations. For 
simplicity, we do not use this definition, since the difference is not essential for the present consideration.
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(20) and (21) take into account that the mean frequency offset is set to zero, 〈Ω(r)〉 = 0. 

Performing the Fourier transformation of Eq. (42) with respect to r, by writing 

e−iqr ≡ e−iq(r0 + r)
eiqr0 and integrating over r′ =  r0 +  r and r0, yields

Γν(q) = 1
V ν( − q)ν(q) . (43)

Examples of correlation functions of χ(r) and ν(r) are given in Fig. 7.

The correlation function has a few convenient properties. First, its q-integral equals the 

second moment of the correlated quantity (or the variance for the definition sketched in 

footnote 5),

∫ ddq
(2π)d Γν(q) = Γν(r)

r = 0
= 〈ν2(r)〉 . (44)

Second, there is a special property of correlation functions for media consisting of individual 

objects such as shown in Fig. 7. Γν for additive quantities ν such as, for instance, the 

magnetic field, is mainly determined by the single-object contribution when the volume 

fraction of the randomly placed objects is low. This can be shown using the Fourier 

representation, Eq. (43) (cf. Appendix B in (Burcaw et al., 2015)). Applying it to identical 

objects, ν(q) = ∑nν1(q)e
−iqrn,

Γ(q) =
ν1(q)ν1( − q)

V ∑
nm

eiq(rn − rm)
, (45)

where ν1(q) is the contribution of a single object placed at r = 0 and the indices n and m 
count all objects. The sum is dominated by the diagonal terms with n = m, while the rest is 

zero in the limit of totally uncorrelated positions of different objects, which is a good 

approximation for low volume fractions. The diagonal terms give

Γ(q) = N
V ν1(q)ν1( − q) = ζΓ

ν
(1)(q), Γ

ν
(1)(q) =

ν1(q)ν1( − q)
ν0

, (46)

for N objects, where ν0 is the volume of a single object and ζ = Nν0/V is the total volume 

fraction of objects.

In general, the correlation function gives an overview on the medium structure on all scales. 

Its value at short distances and, correspondingly, large q, reveals the fine structure of the 

medium, in particular, the shape |ν1(q)|2 of individual objects shown in Fig. 7. In the 

opposite limit of long separations and, correspondingly, small q, it is dominated by the 
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double sum in Eq. (45), which is sensitive to the large-scale statistics of the overall medium 

organization. In particular, the nearly constant value of Γ(q) for q → 0 (a plateau for 

k ≪   1/ρ in Fig. 7(c), right panel) signifies the absence of long-distance correlations in the 

medium. Indeed, when an examination of a medium is performed with a low resolution, that 

is only small values of q are sampled (below 1/ℓc), the correlation function Γ(q) appears 

constant, which corresponds to a delta-functional form of Γ(r) on the scales exceeding the 

correlation length ℓc.

This simple reasoning has implications for the long-time form of the relaxation rate, which 

turns out to be sensitive to the form of Γ(q) for q → 0 as discussed below in Sec. 5.3. 

Deviations from the constant value of Γ(q) in this limit are possible, which reflects essential 

features of the medium structure, an example is discussed in Sec. 5.3.6 below. A general 

classification of structurally disordered media is given in (Novikov et al., 2014) in the 

related context of diffusion physics.

5.3. Diffusion-narrowing regime

Here we identify DNR with the perturbative regime (15), where motional narrowing results 

in

R2
meso

t ≫ τc
∼ δΩ2 ⋅ τc ∼

δΩ2ℓc
2

D . (47)

The condition α   ≪ 1 enables finding the signal perturbatively in α. Technically, there are 

two major analytical approaches to this problem: the cumulant expansion and the Born 

series. Below we discuss them in general, then consider the second order of the perturbation 

theory equivalent to the GPA, and its properties given sufficiently short-range character of 

the magnetic dipole field, and the sensitivity to the short-scale and long-range details of the 

medium.

5.3.1. Cumulant expansion versus Born series—The cumulant expansion approach 

is based on the series (5), where each term, consisting of the corresponding correlation 

functions 〈Ω(r(t1)… Ω(r(tn))〉
c
, can be subsequently averaged over the Brownian paths r(t), in 

analogy to Eq. (20) above. The lowest nontrivial order (the second order) corresponds to the 

Gaussian phase distribution S ∼ e−〈φ2〉/2, from which the term Gaussian phase 

approximation originates. The advantage of the cumulant approach is its relative simplicity 

for obtaining the GPA expressions; the disadvantage is that it does not embed the relaxation 

physics in a more general context.

The Born series approach involves finding the voxel-averaged Green’s function

G(t, q) ≡ ∫ dr0dr
V 𝓖(t; r, r0)e

−iq(r − r0)
(48)
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of the mesoscopic Bloch-Torrey equation (34) perturbatively in the term −iΩψ, starting from 

the pure diffusion propagator, Ω ≡ 0 (analogously to the Born series for the corresponding 

scattering solution of the Schrӧdinger equation (Landau and Lifshitz, 1981)). The 

propagator (48) is more complex than the FID signal, as it formally corresponds to the 

diffusion-weighted signal (with diffusion weighting q created by ideal narrow pulses), cf. the 

notation and detailed derivations by Novikov and Kiselev (2008, 2010); Kiselev (2017); 

Novikov et al. (2016). The FID signal is then obtained as S = G(t,q)|q=0, cf. Eq. (37).

It is obvious at this point that the GPA is equivalent to the second-order perturbation term in 

the Born series, as both involve terms up to Ω2. While applying the Born series for deriving 

the GPA may seem an overkill, it enables generalizations for α ∼ 1, based on the summation 

of infinite subsets of contributions to the Born series via the self-consistent treatment of the 

nonperturbative problem (Novikov and Kiselev, 2008), Sec. 8, as well as establishing the 

confounding effects of mesoscopic Ω(r) on the apparent diffusion metrics.

5.3.2. The second-order solution—In this Section, we will remain within the GPA, 

with beyondGPA results briefly reviewed Sec. 8 below. This perturbative treatment enables a 

lowest-order solution of the central problem of expressing the frequency correlation function 

J(t), Eq. (8), in terms of the microstructural properties of the considered tissue. The general 

solution to this problem is obtained by averaging over the random paths with the exact 

diffusion propagator, 𝓖(t, r, r0), giving the probability of a particle to move from point r0 to 

r in the time interval t:

J(t) ≡ ∫ dr0dr
V Ω(r)𝓖0(t, r, r0)Ω(r0) . (49)

Note that 𝓖0 in the present context is the solution to the pure diffusion equation (Eq. (34) 

with R2
mol(r) ≡ 0 and Ω(r) ≡ 0), see the comment after Eq. (37).

Using the approximation of the free diffusion propagator in the q-space, 𝓖0  θ t e−Dq2t, 

where θ(t) is a unit step function, yields6

J(t) = θ(t)∫ d3q
(2π)3 ΓΩ q e−Dq2t, (50)

where the two-point correlation function is defined according to Eqs. (21) and (43). 

Equivalently, in the spectral domain

6Here, we slightly modified our definition of J, with Eq. (51) yielding the retarded J(t) which vanishes for t < 0 and coincides with the 
earlier definition, Eq. (8), for t > 0. To get back to the even J(t), one can remove θ(t) and substitute t → |t| in Eqs. (23) and (50).
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J(ω) = ∫ d3q
(2π)3

ΓΩ (q)
−iω + Dq2 (51)

(Jensen and Chandra, 2000b; Novikov and Kiselev, 2008).

The instantaneous relaxation rate Eq. (19) is given by the time integration of Eq. (50), 

obtaining

R2
meso(t) = ∫ d3q

(2π)3 ΓΩ (q)1 − e−Dq2t

Dq2 . (52)

We can immediately see, by Taylor-expanding 1 − e−Dq2t ≃ Dq2t, that at short t → 0, the 

rate (52) vanishes as R2(t) ≃ 〈Ω2〉 ⋅ t, in agreement with the universal short-time behavior of 

the signal (10), where 〈Ω2〉 ≡ ΓΩ (r) r = 0 corresponding to inte13 grating Eq. (43) over all q.

The FID signal, following Eq. (19), can be obtained via integrating Eq. (57) one more time:

lnS(t) = − R2
molt − ∫ d3q

(2π)3 ΓΩ (q)e−Dq2t − 1 + Dq2t

(Dq2)2 . (53)

Here, we added the molecular contribution (the first term). Fea15 tures of the DNR 

relaxation rate that follow from the above re sults are discussed in the next three subsections.

The generalizations onto SE and CPMG sequences are done according to the recipe given in 

Sec. 4: The diffusion propagator in Eq. (49) is approximated with a convolution chain of 

Gaussian propagators with the complex conjugation of the accumulated factors to the 

moment of each refocusing pulse. This results in the substitution of the numerator under the 

integral in Eq. (53) with functions gSE and gCPMG from Eqs. (11) and (12) of (Kiselev and 

Novikov, 2002).

5.3.3. Locality in the DNR—Consider now a practically important case of statistically 
isotropic magnetic media, characterized by the isotropic susceptibility correlation functions

Γχ(r) = 1
χ0

2〈χ(r0 + r)χ(r0)〉r0
(54)

that depend only on the absolute value r = |r| (meaning that the magnetic inclusions are 

packed without any preferred direction). The link to their structure, embodied in the 

dimensionless function Γχ(r), can be made more direct by substituting Ω(q) from Eq. (41) in 

Kiselev and Novikov Page 25

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Eq. (43), and in all successive d3q integrations of this object, yielding R2
meso(t) and the 

signal. Since the rest of the integrand in the above equations does not depend on the 

direction of q, the angular integration the factor (1/3 − qz
2/q2)2 can be performed 

independently of the rest of the integrand, giving a constant factor

c3 = ∫ sinθdθdϕ
4π

1
3 − cos2θ

2
= 4

45 . (55)

In other words, in a statistically isotropic sample, averaging over the positions and 

orientations of the susceptibility inclusions becomes decoupled from averaging over the 

inclusions becomes decoupled from averaging over the Xdirections of the induced dipole 

field. Practically, this means that we can think in terms of an angular-averaged frequency 

correlation function

ΓΩ(q) = c3 · δΩ2 · Γχ(q) (56)

that is directly proportional to that of the susceptibility, Γχ(q).

The reduction of the susceptibility-induced Larmor frequency correlation function to that of 

the source of the induced field, the magnetic susceptibility χ(r), was called locality 
(Novikov and Kiselev, 2008).

The precise statement is that in the second order of the perturbation theory, the diffusion-

mediated interaction with the in duced field looks like a completely local interaction with the 

magnetic structure χ(r) itself (as if it were the term −i c3(δΩ/ χ0) ⋅ χ(r) entering the 

mesoscopic Bloch-Torrey equation (34), instead of −iΩ(r), which is non-local according to 

Eq. (39)). This enables the sensitivity to the magnetic microstructure In the DNR, rather than 

to merely the net amount of magnetization.

The physical origin of the locality property is the (almost) local character of the dipole field 

(40) — namely, it decays as 1/r3, i.e., as the inverse power of the distance that precisely 

equals the spatial dimensionality — and therefore its Fourier transform Y(q) does not add 

any powers of q to χ(q), Eq. (41), and subsequently correlation function to its Γχ(q), Eq. 

(43).

5.3.4. Non-universal long-time relaxation rate—The rate (52) in the t → ∞ limit 

approaches a constant value, cf. Sec. 2.4:

R2
meso(∞) = 1

V ∫ d3q
(2π)3

Ω(q)Ω( − q)
Dq2 , (57)
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where we represented the correlation function using Eq. (43). This expression formally maps 

onto a Coulomb energy

R2
meso(∞) = 1

V ∫ drdr′ Ω(r)Ω(r′)
4πD r − r′

of interaction between charges distributed as Ω(r), since 1/q2 corresponds to the Coulomb 

interaction potential 1/4π r − r′  in the real space. As discussed by Kiselev and Novikov 

(2002); in the real space. As discussed by Kiselev and Novikov (2002); Sukstans and 

Yablonskiykii (2003); Novikov and Kiselev (2008) this mapping can be viewed as a long-

range “interaction” be7 tween different susceptibility regions mediated by the spins dif8 

fusing over a diverging diffusion length in the t → ∞ limit, where the Coulomb potential is 

the time-averaged diffusion propagator. This analogy helps us appreciate that the rate (57) is 

nonuniversal, i.e., it depends on the details of how Ω(r) is distributed in space, rather than, 

say, merely on its sample variance 〈Ω2〉. The reason for this dependence is the same as the 

capacitance of a charge distribution depends on the geometry of the conductors. The larger 

the spatial scale on which Ω(r) is distributed, the larger is the “Coulomb energy” (as it is 

determined by the large-scale charge inhomogeneities), and the stronger the relaxation rate 

(the less effective the diffusion narrowing).

5.3.5. Long-time relaxation rate—For the model Gaussian-shaped ΓΩ(q), Eq. (22), the 

integration (50) yields the temporal correlation function (23) characterized by the algebraic t
−3/2 decay at long times. This is a direct consequence of the the shortrange nature of Larmor 

frequency correlations as expressed by the constant limit of the model correlation function 

function for q → 0. Indeed, for t → ∞, the integral in Eq. (50) converges for small q due to 

the factor e−Dq2t thus rendering the specific form of the correlation function for larger q 
irrelevant. Therefore, the t−3/2 decay at long times is a common feature for all media with the 

shortrange disorder (Ruh et al., 2015). An example of a qualitatively different disorder class 

is given below.

5.3.6. CLT breakdown: A diverging R2
meso(∞)—As discussed in Sec. 5.2, Γχ(q) tends 

to a constant for small q (Fig. 7(c)) in media with with short-range disorder. The behavior of 

Γχ(q), and the corresponding convergence in Eq. (57), are qualitatively different in media 

built with long elements such as blood vessels or fibrous tissues (“sticks” or cylinders longer 

than the achievable diffusion length). In such media, a point with a given χ has a 

corresponding point with the same value on a surface of a large enclosing sphere. The 

statistical weight of such a perfect correlation is proportional to the solid angle of the 

correlation spot as seen from the sphere’s origin. This angle scales with an increasing sphere 

radius r as 1/r2, and so does the correlation function decay for large separations. The Fourier 

transform of 1/r2 is proportional to 1/q, which dominates the form of Γχ(q) ∼ 1/q, q → 0, 

for such media, cf. the extended disorder classification by Novikov et al. (2014) for the 

analogous problem in diffusion. Substitution of such a correlation function in Eq. (57) 

results in a divergence at q → 0. To analyse this case, we have to step back to Eq. (50) and 

estimate the integral, which gives the long-time tail J(t) ∼ 1/t in the Larmor frequency 
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correlation function as a result of coarse-graining of the medium. This slow approach to zero 

results in the logarithmically diverging mesoscopic relaxation rate R2(t) ∼ ln t, i.e., formally 

R2
meso (∞) = ∞, and, correspondingly, ln S(t) ∼ −t ln t (Kiselev and Posse, 1998; Jensen and 

Chandra, 2000b). Hence, the CLT argument of Sec. 2.4, that guaranteed the finite relaxation 

rate at t → ∞, breaks down in media with diverging spatial correlations, due to a long-time 

memory in J(t).

Since this effect is caused by the q → 0 divergence of the correlation function, it may 

manifest itself in different set tings in particular, it is completely analogous to how the in 

stantaneous diffusion coefficient approaches its long-time limit, Dinst(t) ≃ D∞ + A/t, when 

diffusion is restricted by long ran- dom obstacles such as in extra-axonal space in brain 

white mat ter (Burcaw et al., 2015; Novikov et al., 2014; Fieremans et al., 2016). This results 

in the behavior D(t) ≃ D∞ + A(ln t)/t for the conventionally used cumulative diffusion 

coefficient. While of the similar origin, the effect for the diffusion coefficient is less 

dramatic, as it approaches the constant value D∞ corresponding to Gaussian diffusion, albeit 

slowly.

Consider now the spin echo attenuation. According to the meaning of correlation time, 

dephasing can be refocused for short times, t ≪ τc, while the effectiveness of dephasing 

decreases for t ≳ τc. According to the estimate for the FID, ln S ∼ −(δΩτc)2t/τc in the DNR, 

the signal attenuation is still minor for t ∼ τc due to small α, so that the refocusing in a SE 

sequence cannot result in a large effect relative to FID. A significant FID attenuation occurs 

for long times, t ≫ τc, for which the phase history is already forgotten; for these t, the re 

focusing also has a little effect because phase history cannot be recovered, making the spin-

echo signal to the moment of the echo time, tE, only slightly larger than that for the FID. 

Explicit examples can be found in (Kiselev and Posse, 1998; Kiselev and Novikov, 2002; 

Sukstanskii and Yablonskiy, 2003, 2004). In particular, the ln tE divergence occurs in the 

corresponding SE rate (Kiselev and Posse, 1998).

5.4. Static dephasing regime

Consider now the regime opposite to the DNR, which is the case of α ≫ 1. According to the 

Central limit theorem, the relaxation becomes monoexponential for long times, t ≫ τc, Sec. 

2.4. This is, however, of little practical interest, since the signal is strongly attenuated for 

such long times. The measurable signal attenuation occurs already for the relatively short 

times, t 1/δΩ ≪ τc, and hence one might expect that the resulted attenuation does not depend 

on τc. The “short” time can be practically long, for example in a medium with, e.g., large 

cells, ℓc = 20 µm, it is ℓc2/D ≈ 400 ms for the typical diffusivity D ≈ 1 µm2/ms. When τc 

becomes very large, the time scale of transverse relaxation 1/R2
meso is parametrically given 

solely by δΩ−1 ≪ τc (no lineshape narrowing).

To make further estimates, it is useful to realize that the smallness of relevant times as 

compared to τc means that the spins experience nearly constant local field, Ω(r), as they do 

not move appreciably relative to the distance ℓc on which it changes. For a transparent 

definition of “local”, it is convenient to consider the spin packets. A spin packet excited at a 
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point r0 includes all spins that experienced the initial spin flip at this point, wherever they 

move afterwards. The whole signal is the sum of magnetizations of all spin packets:

S(t) = 1
V ∫ dr0dr𝓖(t; r, r0) = 1

V ∫ dr0Ψ(r0), (58)

where 𝓖(t; r, r0) is the exact propagator of the Bloch-Torrey equation, Eq. (34), as 

introduced Sec. 4 and Ψ(r0) = ∫ dr 𝓖(t; r, r0) the magnetization of a single spin packet.

In the considered case, the spin packets are narrow as compared with ℓc, which justifies the 

Taylor expansion of the magnetic field near the point r0:

Ω r   ≈  Ω r0   + ∇Ω r0   ⋅ r − r0 · (59)

Signal evaluation for different pulse sequences goes now essentially different ways. 

Consider first the FID. Taking into account just the lowest-order term in Eq. (59), the 

magnetization of a given spin packet takes the form Ψ(χ0) = e
−iΩ(r0)t

. Integration over the 

whole sample gives

S(t) = 1
V ∫ dr0e

−iΩ(r0)t
≡ ∫ dΩ𝒫(Ω)e−iΩt, (60)

cf. Eq. (4), where

𝒫(Ω) ≡ ∫ dr0δ(Ω − Ω(r0)) (61)

is the properly normalized PDF of the Larmor frequency in the sample (or an MRI voxel). 

The next-to-leading term in Eq. (59) results in additional attenuation within the spin packets. 

This slightly increases the relaxation rate; to the best of our knowledge, the only explicit 

calculation of this FID correction was done for a model of blood vessels (Kiselev and Posse, 

1999).

Consider now the signal to be the magnitude of a spin echo, or of a multi-echo sequence 

such as CPMG. The signal attenuation in the SDR occurs in the regime of short echo times 

as compared with the correlation time, t ≪ τc. This means that this attenuation can be 

effectively refocused. In more detail, the overall phase of spin packets is zero at the moment 

of echo, which means that the first term on the right-hand side of Eq. (59) does not 

contribute to the relaxation and the second term becomes dominant. Physics of relaxation 

within each spin packet is now the dephasing of spins in a nearly constant gradient ∇Ω(r0) of 

Larmor frequency. This is well known in diffusion MRI. The spin packet magnetization can 

be expressed via the so-called bfactor, Ψ(r0) = e−b(r0)D, with b(r0) being a local quantity in 
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the current context. Beyond the location, the value of b depends on the applied pulse 

sequence. For example, for a CPMG sequence with N instant refocusing pulses, the applied 

pulse sequence. For example, for a CPMG sequence with N instant refocusing pulses,

b = 1
12N2 (∇Ω)2t3, t = NtE · (62)

The b-factor is thus proportional to N, much like in the oscil- lating gradients diffusion 

measurement. It is clear from this example that the echo attenuation strongly depends on tE, 

as opposed to SE or CPMG measurements in a sample without the mesoscopic structure.

Another issue is that there is no guarantee for the monoex ponential relaxation for practically 

long times, t ≫ δΩ−1, an example is given in Sec. 6.2 below. The dependence of the signal 

attenuation on time and δΩ for generic heterogeneous media was studied by Jensen and 

Chandra (2000c).

Neglecting spin motion for the FID justifies the term “static dephasing regime” for the 

considered case (Yablonskiy and Haacke, 1994). Although the spin echo attenuation is fully 

due to the motion, the same term is also conventionally applied for the SE case.

6. Low-density suspensions of paramagnetic inclusions

Sparse inclusions that induce a microscopically heteroge neous field is the most studied case 

in the theory of mesoscopic transverse relaxation. The major advantage is the possibility to 

perform the averaging over the medium for a rather general case (Yablonskiy and Haacke, 

1994). The most prominent application is a quantitative theory of relaxation caused by para 

magnetic blood in the brain microvasculature (Yablonskiy and Haacke, 1994; Kiselev and 

Posse, 1998, 1999; Marques and Bowtell, 2008), and of relaxation in the trabecular network 

in the bone marrow (Yablonskiy and Haacke, 1994; Hwang and Wehrli, 1995; Ma and 

Wehrli, 1996).

Consider a medium in the volume V that contains N distinct paramagnetic objects randomly 

placed in space, each of the volume ν0. The overall volume fraction is ζ = Nv0/V ≪ 1. Each 

object induces a Larmor frequency shift, we denote the field induced by the n-th object at a 

point r as Ωn(r). This field depends on the position of the object and may include further 

magnetic field experienced by a given spin is the sum of individual object contributions,

Ω(r) = ∑
n

Ωn(r) · (63)

Consider first the FID. The magnetization of a given spin packet located at a point r takes 

the form of a product,
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Ψ(r) = ∏
n

Ψn(r − rn), (64)

where Ψn = e−iΩnt is the effect of a single object. This expression is to be averaged over the 

positions of all objects. Since all space points become equivalent after the averaging, the 

signal does not depend on the position r of the considered spin packet. The averaging gives 

the signal in the form

S(t) = ∫ dr1… drNP(r1… rN)∏
n

Ψn(r − rn), (65)

where P(r1…rN) is the probability of a given configuration of all objects. This expression is 

exact, but extremely difficult to work with. The low volume fraction ζ ≪ 1 justifies a 

simplification to treat the objects as statistically independent, in particular, each of them 

having a uniform probability to be at any position inside the volume, V. In this way, we 

incorrectly account for configurations with overlapping objects, but the statistical weight of 

such configurations is negligible, ∼ ζ2, while we are going to evaluate effects of the order of 

ζ. With this accuracy, P(r1…rN) = 1/VN and the signal can be fully factorized in the product 

of individual objects (Yablonskiy and Haacke, 1994):

S(t) = ∏
n

∫ drn
V Ψn(r − rn) = ∫ dr1

V Ψ1(r − r1)
N

≡ S1
N · (66)

The second equality is written for identical objects, a straight2 forward generalization for 

non-identical ones is described be3 low. Finding the signal is thus reduced to the considering 

the effect of a single paramagnetic object.

The spin packed magnetization Ψ1(t,r) under the influence of a single object is a function of 

the object’s position, r1. This function is unity everywhere except for an area close to the 

spin packet. To single out the non-trivial effect, we use an identity Ψ1 = 1 − (1 − Ψ1), which 

results in

S1(t) = 1 −
ν0
V ∫ dr1

ν0
1 − Ψ1(r1) ≡ 1 −

ν0
V f (t), (67)

where we introduce a dephasing function,

f (t) = ∫ dr1
ν0

1 − Ψ1(r1) (68)

Kiselev and Novikov Page 31

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and used the symmetry of Ψ(r − r1) with respect to interchanging r and r1. The total signal 

in the limit N → ∞ is then (Yablonskiy and Haacke, 1994)

S(t) = 1 −
ν0
V f (t)

N
≃ e−ζ f t · (69)

Considering non-identical objects (for example, those with different size or orientations in 

space), we can subject the groups of identical objects to the above consideration, which 

gives a product of factors e−ζf(t) for each group. This is equivalent to the summation 

(integration) in the exponential. We thus conclude that the dephasing function includes the 

integration over all inherent properties of paramagnetic object (other than their location in 

space).

Two more remarks are in order. First, note that the integration in Eq. (68) spans the whole 

space. This is incorrect for objects that are impermeable for spins; their own volume should 

be excluded from integration, which can be formally done by setting Ψ = 1 (no relaxation) 

inside the objects. Second, the applied method is known in statistical physics as the virial 

expansion, which is a way to find corrections to the properties of a nearly ideal gas due to 

the interaction between its molecules (see, e.g., (Feynman, 1998)). The first correction takes 

into account the pairwise interaction between the molecules neglecting the multi-particle 

interactions, which is mapped in our case ing the multi-particle interactions, which is 

mapped in our case paramagnetic object separately, neglecting interactions between them 

(such as, in particular, the non-overlapping condition).

While Eq. (69) is justified by the only condition ζ ≪ 1, the spin packet magnetization, Ψ1, 

can be evaluated using further approximations. In what follows, we consider the application 

of diffusion narrowing and static dephasing regimes for this purpose.

6.1. Diffusion narrowing regime

In the DNR, the perturbation theory can be used to calculate the dephasing function, Eq. 

(68). The result can be expressed in the form similar to Eq. (53), but with the correlation 

function of the field induced by a single object, Eq. (46) (Kiselev and Novikov, 2002).

In this way, the relaxation effect of suspensions of magnetized objects with regular shapes 

has been calculated.In particular, Gillis and Koenig (1987) calculated the mesoscopic 

contribution to R2(∞) for impermeable spheres; Kiselev and Posse (1998) calculated signal 

attenuation for permeable cylinders for all t; and Jensen and Chandra (2000b) calculated the 

mesoscopic contribution to R2(t) for permeable spheres for all t. Kiselev and Novikov (2002) 

demonstrated the sensitivity of the FID, spin echo and CPMG signals to the objects’ shape, 

via calculating the corresponding signals for permeable cylin ders of arbitrary aspect ratio 

and for permeable spheres for all echo times. The fact that objects’ shape matters can be intu 

itively understood by invoking the discussed earlier similarity of the low-frequency 

expression, Eq. (57), with the electrostatic energy (Kiselev and Novikov, 2002; Sukstanskii 

and Yablon skiy, 2003; Novikov and Kiselev, 2008). Finally, Sukstanskii and Yablonskiy 

(2003) re-expressed the solution of (Kiselev and Posse, 1998) in terms of a hypergeometric 

Kiselev and Novikov Page 32

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



function, and found explicit expressions for the FID and spin echo signals in the permeable-

sphere model of Jensen and Chandra (2000b). Sukstanskii and Yablonskiy (2004) found the 

FID and spin echo signals for the dilute suspension of impermeable spheres and cylinders in 

the GPA. Note that the results for permeable and impermeable cylinders are numerically 

very close to each other, as are the results for the spheres (Fig. 5).

The DNR relaxation rate can be obtained directly from Eq. (50) or any equivalent 

formulation. To see that, use the reduction of the correlation function to that of single 

objects, Eq. (46).

6.2. Static dephasing regime

For the following, we need the parametric form of the scaling with the distance r

Ω(r) ∼ ρd

rd ⋅ δΩ (70)

of magnetic field induced by spheres of radius ρ in d dimensions (d = 2 refers to a cylinder 

in the orthogonal cross-section; d = 1 is a slab of thickness 2ρ, inifinite in both directions); 

here δΩ is the typical field on the sphere’s surface. The spin dephasing develops as the time 

goes on. Since the field is stronger closer to the sphere, the volume adjacent to the sphere 

will be dephased first. The relaxation can thus be qualitatively considered as the increase in 

the dephased volume.

Let us estimate how this dephased volume grows with time t. For the estimate, we replace 

the smooth transition from Ψ ≪ 1 close to the sphere surface to Ψ = 1 far from it with a 

sharp boundary between the fully dephased and non-dephased volumes. The size of the 

dephased volume is determined by the requirement Ω(r) ⋅ t ≳ 1, which gives rd ∼ ρdδΩt for its 

radius r(t). Using Eq. (68) with ν0 ∼ ρd, we obtain for the long-time asymptotic regime

f = rd

ρd = cFID δΩt, (71)

where cFID is a numerical constant. This simple result proves that the FID signal in the SDR 

decays exponentially with t at long t with the rate R2
meso( ∞ ) ∼ ζδ Ω, and also reveals the 

meaning of the dephasing function as the ratio of the dephased volume to the object’s 

volume. Accurate calculations are available for spheres, randomly placed parallel cylinders 

and randomly placed and oriented cylinders (Yablonskiy and Haacke, 1994).

It is instructive to justify the applicability of the SDR to the problem at hand. It would be 

straightforward to estimate the field correlation length as the object size, ρ and require it to 

be shorter than the diffusion length, (Dt)1/2. This condition would however break for some 

time of the order of τc ∼ ρ2/D. This estimate is too strict because the precise form of the low 

magnetization inside the dephased volume is not essential. It is important that the diffusion 
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length is comparably short at the boundary of the dephased volume whose increase with 

time determines the relaxation rate. This results in the requirement Dt ≪ r2 ∼ ρ2(δΩt)2/d. In 

two dimensions, time cancels, and the SDR applicability condition becomes δΩτc ≫ 1. In 

three dimensions, the diffusion length increases faster than the size of dephased volume and 

overtakes it at t ∼ τc(δΩτc)2. Since the dephasing function is large for such times, 

f ∼ (δΩτc)3, this regime can be observed for extremely low volume fractions, such that the 

signal e−ζ f  is not too small.

Consider now the spin echoes. Dephasing occurs within each spin packet rather than 

between them. The above estimate is modified so that the radius of the dephased volume is 

estimated as bD ∼ 1, where b ∼ (∇Ω)2t3 for the Hahn spin echo. With account for Eq. (70), 

r2d + 2 ∼ (δΩt)2ρ2dDt. This gives

f (t) = cSE
(2d) δΩt

(δΩτc)
1/3 , δΩτc ≫ 1, d = 2, (72)

f (t) = cSE
(3d) (δΩt)9/8

(δΩτc)
3/8 ,

(δΩτc)
3

δΩt ≫ 1, d = 3 · (73)

Similar to the FID, the SDR for the SE in three dimensions breaks down for very long times, 

t ∼ τc(δΩτc)2, for which f ≫ 1. Note that the non-monoexponential relaxation in three 

dimensions, f ∼ t9/8, agrees with the general estimation based on the scaling analysis (Jensen 

and Chandra, 2000c).

The above picture of dephased volumes around paramagnetic objects implies not much 

dependence of relaxation on details of the object’s shape for long times. This is based on the 

multipole expansion according to which the field from any object at large distances from the 

object is approximated by the dipole field; corrections due to deviation from this form are 

cur rently unknown.

7. Effective medium theory

In physics, effective medium theory (EMT) is an approach to describing properties of 

heterogeneous media in terms similar to those used for homogeneous media. In this way, the 

quantities describing medium properties become dispersive (frequency dependent). As an 

example, consider light propagation in a medium. While the interaction of light with 

medium’s molecules may be very complicated to describe, light propagation on the 

macroscopic scale is fully determined by the complex-valued dispersive refraction index. 

The problem of light propagation thus decouples into two problems: (i) To find the 

refraction index given the atomic medium composition and (ii) to find the light propagation 

given a refraction index. While the former poses a fundamental challenge, the latter is 
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practically relevant for development of optical devices. The refraction index can be 

measured as a characteristic of a given medium without reference to its structure on the 

molecular level.

In the current context, EMT is a framework for representing the transverse relaxation and 

diffusion for arbitrary disordered magnetic media (Novikov and Kiselev, 2008, 2010). 

Consider the conventional (molecular) monoexponential FID in the form

S(t) = θ(t)e
−R2

molt
S(ω) = 1

−iω + R2
mol · (74)

The contribution of mesoscopic scale can be summarized as additional dispersive relaxation 

rate, which is the most straightforward to find in the spectral domain,

S(ω) = 1
−iω + R2

mol + ℛ2 (ω)
, (75)

where ℛ2(ω) collects all effects of mesoscopic dephasing; it peaks at the characteristic 

frequency 1/τc (Novikov and Kiselev, 2008). The inverse Fourier transformation of ℛ2(ω) 

equals dR2
meso/dt, the time derivative of the instantaneous relaxation rate (19); equivalently, 

at the order α2 , ℛ2(ω) coincides with J(ω), Eq. (51), as it can be seen directly by Taylor-

expanding the geometric series (75) in the powers of ℛ2(ω)/(−iω) (neglecting R2
mol for the 

purely mesoscopic contribution).

An advantage of the EMT signal representation (75) is the existence of a well-defined 

perturbative expansion in the powers of α, Eq. (14), with the first term similar to Eq. (51). It 

is clear that such a central quantity cannot be found in general. Practically useful is the 

perturbative approach in which the series in α is approximated by a few first terms, or self-

consistently.

8. Self-consistent approximations

The flip side of well-controlled approximations such as the perturbative approach is a 

limited parametric range such as α ≪ 1. Extending the validity range beyond such limits can 

be done with the so-called self-consistent approximations. Developing such approximations 

implies catching essential features of the signal by using intuition rather than strict 

mathematical apparatus. We sketch here two examples of such approaches.

8.1. Strong collision approximation

In the strong collision approximation (Dattagupta and Blume, 1974), modified for 

calculating the relaxation effect of parallel paramagnetic blood vessels (Bauer et al., 

1999b,a), the tissue is parcellated to the cylindrical volumes affected by individual 

capillaries, the Krogh’s cylinders (cf. Sec. 10.3 below). The frequency correlation function 
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(8) is assumed to be exponential, e−t/τc with the time constant, τc estimated by considering 

diffusion motion in the cross-section of the paramagnetic cylinder with no further 

simplification. On the other hand, the diffusion propagator is replaced by the function 

describing the exponential decrease in the probability to stay at the initial point with an 

equal probability to move anywhere within the Krogh’s cylinder,

𝓖(t; r, r0) = e−λtδ(r − r0) + 1 − e−λt

V , (76)

where V is proportional to the cross-sectional area of the cylin11 der. The self-consistency is 

imposed by the requirement that this propagator reproduces the correlation time, τc, of the 

field fluctuations experienced by moving spins, which results in λ = 1/τc with the signal 

form found from Eq. (76). In other words, this approximation substitutes diffusion-limited 

sampling of magnetic microstructure by the exchange between different Larmor frequencies 

occurring everywhere in the sample with the same rate 1/τc; this can be realized as an 

extension of the Kärger model to an infinite number of exchanging sites.

The strong collision approximation involves a number of uncontrolled assumptions, in 

particular, the form of the correlation function J(t) in reality is not exponential, but a power-

law, Eq. (23), due to a finite density of diffusive eigenstates (unless the objects, such as the 

blood vessels, are arranged in a regular lattice). On the other hand, this approach 

demonstrates a good accuracy in comparison with theMonte Carlo simulations (Dickson et 

al., 2011), with the main advantage of covering the transition between the SDR and the 

DNR. Perhaps, this ability is due to the form of the propagator, Eq. (76), that combines the 

SDR feature of staying at the initial point with the DNR feature of moving far from it during 

the signal decay. A detailed investigation of the approximation accuracy is yet to be done.

8.2. Self-consistent Born approximation

The formalism of effective medium theory can be used to extend the validity range to α <∼ 1
using the so-called self-consistent Born approximation, developed within condensed matter 

physics (Novikov and Kiselev, 2008). To give an idea, in view of the tight connection 

between the signal and the propagator of the Bloch-Torrey equation discussed in Sec. 5.3.1, 

the signal form, Eq.(75), implies a similar form of the propagator with the mesoscopic 

contribution in the denominator (Novikov and Kiselev, 2010). With a simplifying (not 

strictly justified) ansatz for the mesoscopic contribution, the self-consistency requirement 

takes the form

ℛ2(ω) = ∫ d3k
(2π)3

ΓΩ (k)
−iω + Dk2 + ℛ2(ω)

· (77)

Calculating the integral with a specific form of the frequency correlation function results in 

an equation from which ℛ2(ω) can be found. In particular, the presence of a pronounced 

length scale in bulk blood was taken into account as a sharp peak in angular-averaged ΓΩ k

Kiselev and Novikov Page 36

Neuroimage. Author manuscript; available in PMC 2019 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for a given radius k (Novikov and Kiselev, 2008), which resulted in an extension of the 

perturbative results towards α <∼ 1; the resulting ℛ2(ω) interpolates between the DNR 

scaling ℛ2(ω) ∼ α2 for α ≪ 1, and the SDR scaling ℛ2(ω) ∼ α for larger α. This solution 

described the line shape of bulk blood reasonably well with two adjustable parameters, ℓc 

and δΩ, corresponding to the erythrocyte size and its magnetic susceptibility.

9. Applications

9.1. Blood in vitro

Transverse relaxation rate in deoxygenated blood quadratically depends on the magnetic 

field in the range 0.05–1.5T(Brooks et al., 1995), which agrees with the above estimate, Eq. 

(47). A noticeable quadratic component was also observed in the dependence on the blood 

oxygen saturation (Spees and Yablonskiy, 2001) and the concentration of a paramagnetic 

contrast agent (van Osch et al., 2003) in the field 1.5T .

The relaxation rate in whole blood essentially depends on the echo time (the interecho 

interval) of a CPMG pulse se- quence (Gomori et al., 1987; Ye and Allen, 1995; Gillis et al., 

1995). This agrees with the non-negligible correlation time, τc, for water diffusion in the 

dense medium formed by red blood cells. A lower bound on this time can be estimated using 

the shortest erythrocyte dimension of 2 µm and the plasma diffusivity of 2.20µm2/ms (Li et 

al., 1998), which gives 2 ms; us ing larger dimensions and averaged diffusivity increases this 

estimate to a few tens of milliseconds, which explains the pronounced dependence on the 

echo time.

The above-discussed dependence on the shape of paramagnetic objects was observed 

experimentally by manipulating the osmotic pressure in blood (Ye and Allen, 1995; Gillis et 

al., 1995). The effect is strong; the relaxation rate changes about five-fold when the 

erythrocyte shape varies from compressed discs to spheres keeping the same overall excess 

of the cell magnetic moment (Gillis et al., 1995).

The spectral shape of water in blood doped with a paramagnetic contrast agent significantly 

deviates from Lorentzian (Bjørnerud et al., 2000). This line shape can be reproduced the 

oretically using the self-consistent Born approximation, Sec. 8.2, with two adjustable 

parameters, which yields realistic red blood cell size and magnetization (Novikov and 

Kiselev, 2008).

Summarizing, theoretical prediction based on perturbation theory are in a good agreement 

with experimental data for α ≪ 1 (Jensen and Chandra, 2000b; Kiselev and Novikov, 2002); 

this was also shown by Jensen et al. (2006) for a Sephadex spheres’ phantom. A good 

quantitative agreement, even for larger α, can be reached using α and τc as fitting 

parameters (Jensen and Chandra, 2000b; Kiselev and Novikov, 2002; Novikov and Kiselev, 

2008). However, fitting has a limited predictive power for the involved parameters, which 

often can be defined only as order-of-magnitude estimates. In particular, the sensitivity to the 

cell shape introduces an additional hard-to-control degree of freedom, which can be re-

attributed to other parameters when fitting models with fixed object shapes.
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9.2. Perfusion measurement

A good understanding of relaxation mechanisms is crucial for measurements of brain 

perfusion using dynamic susceptibil ity contrast (DSC) MRI (Østergaard et al., 1996b,a). 

While the While the tracer kinetic theory, which is central for this technique, is formulated 

in terms of the tracer concentration in blood, the MRI measured quantity is the signal 

attenuation due to the param21 agnetic tracer, Fig. 8. In the brain with the intact blood-brain 

barrier (BBB), the tracer stays in the blood vessels that become sources of induced magnetic 

field thus causing dephasing of proton spins in the surrounding tissue. The magnitude of this 

effect can be estimated using the data shown in Fig. 8. In the bolus peak, both signals drop 

down to 57% of their respective pre-bolus baselines. This corresponds to the increase in the 

relaxation rate by 27 s−1 (tE
GE = 21 ms) and 7s−1 (tE

SE = 80 ms) for the gradient echo and spin 

echo, respectively. In view of the compartmentalization of contrast to blood vessels, the 

maximal effect of the relaxation on the molecular level, R2
mol, would be a complete 

suppression of signal from blood in which the contrast agent is compartmentalized. This 

follows from the short (molecular) range of interaction of paramagnetic ions with water 

molecules and from the fast water exchange between the plasma and erythrocytes. Taking 

into account the almost homogeneous proton density in the brain, this leads to the 

conclusion that the molecular relaxation effect of contrast agent results in a relative signal 

change of the order of the cerebral blood volume fraction, ζ , which is about 6%. The 

residual 51% signal change is due to the mesoscopic effect of contrast agent; the contrast 

agent effect spreads far outside the intravascular compartment via the induced magnetic 

field. We thus come to the conclusion that the mesoscopic contribution is responsible for a 

major part (almost 90%) of the signal variation observed in DSC MRI.

The complex dependence of mesoscopic relaxation on the tissue structure might be a curse 

or a blessing. On the one hand, it essentially complicates interpretation of investigations with 

exogenous contrast agent, in particular, evaluation of cerebral perfusion using the dynamic 

susceptibility contrast (data shown in Fig. 8 were obtained in such an investigation; the noise 

level is strongly reduced by the performed volume averaging). The main problem is the 

irrelevance of the relaxivity of contrast agent obtained in-vitro in blood for such a 

measurement due to completely different spatial distribution of contrast agent when confined 

in the microvascular system (Kiselev, 2001, 2005). The relaxation rate dependence on the 

contrast concentration in bulk blood is non-linear (van Osch et al., 2003), which further 

complicates data interpretation. As mentioned above, the spin-echo relaxation depends in a 

complicated way on several relevant parameters.

On the other hand, understanding the mechanism of transverse relaxation opens a way to 

access cellular properties in vivo, a kind of “superresolution”, two – three orders of 

magnitude below the nominal image resolution. This is completely analogous to 

considerable current efforts of quantifying tissue microstructure with diffusion MRI using 

biophysical modeling (Jones, 2010; Novikov et al., 2016). As an example, we discuss below 

the vessel size imaging, a method for evaluating the mean capillary caliber of the order of 10 

μm using imaging with about 2 mm resolution. Further applications encompasses evaluation 
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of the oxygen extraction fraction in the brain microvasculature using a detailed approach to 

the transverse relaxation induced by oxygenated blood (Sec 9.4 below)

We briefly mention dynamic contrast enhanced (DCE) MRI, which a technique based on T1 

contrast for evaluating the integrity of the BBB and the blood – tissue exchange in other 

organs. The local longitudinal relaxation effect of contrast agent helps quantifying such 

measurements. However, it is currently unknown what is the microstructural information 

available via the transverse relaxation in the presence of a contrast agent in the interstitium.

9.3. Vessel size imaging

The shape dependence of transverse relaxation, in particular, the dependence on the 

correlation time results in distinct dependences of the FID (measurable with gradient-echo 

techniques) and the spin-echo transverse relaxation rates on the size of paramagnetic blood 

vessels, Fig. 9. Simultaneous measurement of both signals enables evaluation of specifically 

averaged caliber of microvessels (Dennie et al., 1998; Jensen and Chandra, 2000a; Troprès 

et al., 2001; Kiselev et al., 2005) called vessel size imaging (VSI), see also recent reviews 

(Troprès et al., 2015; Kiselev and Schmiedeskamp, 2016) and references there in.

To summarize the VSI outcomes, the evaluated vessel size appreciably increases in tumors 

and responds to anti-angiogenic treatment (the majority of observations are pre-clinical). 

Note that while the vessel size typically correlates with the blood volume in the major part 

of the brain, these two biomarkers decouple when responding to such treatment. The vessel 

size often, ple when responding to such treatment. The vessel size often, but not always 

increases, which is consistent with the preva lent loss of small vessels. In the post-acute 

ischemic stroke, the vessel size changes, possibly reflecting the microvascular plasticity. For 

applications in healthy subjects, the method was extended for the use of native 

paramagnetism of blood under physiological challenges such as inhaling carbon dioxide.

Motivated by different contrast distribution between arteries and veins in the incoming and 

outgoing bolus (Kiselev et al.,2005), Xu et al. (2012) obtained information about the 

arterio18 venous composition of microvasculature by comparing the two parts of the bolus. 

Emblem et al. (2013) reproduced the findings of (Xu et al., 2012) and found a correlation 

between the therapy response of this composition with the prolonged survival of 

glioblastoma patients (in this publication, the method was re-coined as “vessel architecture 

imaging”).

9.4. Mapping oxygen extraction fraction

Understanding transverse relaxation mechanism enables non-invasive evaluation of averaged 

oxygen extraction fraction using the native paramagnetism of deoxyhemoglobin, the so-

called qBOLD method (He and Yablonskiy, 2007; Dickson et al., 2011), see also a recent 

review (Yablonskiy et al., 2013). Oxygen sat uration obtained in this way correlates well 

with the direct gas analysis of blood drown from the sagittal sinus of experimental animals 

(He et al., 2008; Christen et al., 2011). The method was adapted to clinical requirements in a 

study conducted in human subjects (Domsch et al., 2014).
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10. Common misconceptions

10.1. R2′

It is common to describe the relation between the transverse relaxation rates of the gradient 

echo (FID) using Eq. (27). This formula originates from NMR in chemical solutions that 

lack the mesoscopic contribution. While this formula applies for such uniform media, it 

breaks down in the presence of micrometer- level magnetic structure, in particular, for 

biological tissues. In such media, Eq. (28) should be replaced with Eqs. (29) and (30) to 

account for the contribution of all three involved spatiotemporal scales shown in Fig. 1.

The relaxation rate contributions R2GE
meso(t) and R2SE

meso(t) depend on the magnetic 

microstructure in a distinct way, as in the relevant example for the vasculature in Fig. 9. As 

discussed above, these relaxation rates also depend on the details of the applied pulse 

sequence, in particular the echo time. The presence of these terms, with a complex 

dependence on all involved parameters, invalidates the simplistic decomposition of Eq. (28), 

in which R2′  is assigned the role of accounting for all reversible processes, without the 

realization that the “reversibility” depends on the ratio of the diffusion length to the object 

size, and therefore, on the echo time. The adequate picture should be that of Fig. 9 in which 

the so-called R2* has the complex composition shown in Fig. 3, with ln S (t) having a 

constantly increasing slope as function of the echo time, and the truly irreversible 

(molecular) R2
mol given by the initial slope, cf. Eq. (31). The so-called R2, that is the spin-

echo relaxation shows even more complex behavior due to the presence of additional 

parameters, the timing of the refocusing pulses, cf. discussion below.

Using the inadequate relation (28) yields the estimated R2′  values that depend on the 

homogeneity of the main magnetic field, but simultaneously on the tissue morphology and 

on the details of the applied pulse sequence. Note that these mesoscopic contributions do not 

need to be small, and can often be dominant, e.g., as discussed in Sec. 9.2.

Hence, the commonly used definitions “R2*-weighted or R2-weighted image” can only be 

accepted as a description of the measurement sequence, according to its unambiguous 

contrast in homogeneous samples, for which Eq. (28) is valid. This description is, however, 

incomplete in the context of in vivo MRI.

10.2. SE versus CPMG

Kennan et al. (1994) warned about the need to augment Eq. (28) as early as in 1994. 

However, the ethos of this equation seems to be still present today. This may be one of the 

contributing factors to a poor reproducibility of in vivo SE measurements across different 

sites: At finite echo time, some mesoscopic contributions are unavoidable, and comparing 

the results across sites and vendors must occur for the same echo time.

Moreover, it is a common rookie error, when, e.g., performing vessel size imaging, to 

replace the spin echo with the fast spin echo, turbo spin echo or RARE (depending on the 

scanner manufacturer). While convenient for shortening the measurement protocol, these 
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CPMG-based pulse sequences result in a different relaxation in biological tissues as 

compared with the Hahn spin echo for which the underlying theory is developed (Eq. (72) 

and Fig. 9). Since the difference is absent in homogeneous fluids for which Eq. (28) with its 

inherent interpretation is valid, testing the sequences in commonly used water phantoms 

cannot reveal the problem.

A good practice would be to introduce reproducible magnetic microstructure phantoms, such 

as those made of packed synthetic beads (Jensen et al., 2006; Ruh et al., 2015, 2017; Storey 

et al., 2015), — a practice that is becoming much more common in the area of quantitative 

diffusion MRI, cf. the review article of Fieremans and Lee in the same journal issue.

10.3. Reduction to single objects

The reduction of the relaxation rate in dilute suspensions to the effect of a single 

paramagnetic object is often interpreted in the geometric sense that each spin experiences 

solely the field of the nearest object. In particular, the construction of the Krogh cylinders is 

recalled when dealing with the relaxation caused by microvasculature. The Krogh cylinder is 

the result of parcellation the whole tissue in volumes supplied by a single capillary. It is 

modeled as a cylindrical volume coaxial with a straight cylindrical capillary. This model is 

justified for the supply with metabolites because this process is mediated by diffusion, which 

results in an exponential decrease in the metabolite concentration far from the source. In 

contrast, the magnetic field induced by a paramagnetic object is long-ranged, decreasing as 

the separation r−d, where d is the effective number of spatial dimensions (e.g., d = 2 for the 

long cylindrical blood vessels). Since the number of remote objects increases in proportion 

to rd, the integration over the whole medium cannot be simply limited to the vicinity of a 

single object. This is reflected in considering the sum over all objects in Eq. (63) and 

working with the product in the subsequent expressions. Using one cell of the parcellated 

medium (e.g., the Krogh cylinder) as the representative for the transverse relaxation in the 

whole medium is justified only for weak signal dephasing, ζ f(t) ≪ 1.

For generalmagneticmicrostructure arrangements, one should directly model the overall 

correlation functions of the Larmor frequency, which generally do not reduce to a sum of 

those for the individual objects.

11. Unresolved problems

As illustrated in Fig. 6, transverse relaxation in a few practically relevant cases falls in the 

intermediate regime between the diffusion narrowing and the static dephasing. Development 

of adequate theory for this intermediate regime remains a major challenge today. The self-

consistent approximations (Sec. 8) may help address this problem, but their development has 

not yet been given enough time and attention, and their validity range is not well understood 

yet.

One can also question the reduction of the whole parameter plane in Fig. 6 to only two 

domains. A hint on a non-trivial relaxation behavior is given by Eq. (73). The signal 

behavior lnS(t) ∼ − t9/8 for long times up to t ∼ τc(δΩτc)2 ≫ τc appears contradicting the 
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conclusion about the monoexponential decay for t ≫ τc as a consequence of the CLT. In the 

considered case, the monoexponential decay takes place in the strongly dephased region 

close to the paramagnetic object, which does not contribute to f (t). The relevant contribution 

comes from the size of the dephased region, which renders the relevant correlation time 

larger than the straightforwardly defined τc.

Further nontrivial reasons for the CLT breakdown (and, as a result, non-monoexponential 

relaxation) could originate from collective dephasing effects by rare optimal arrangement of 

many magnetized objects, and/or the anomalously long-range correlation functions Γχ (r). 

Likewise, parsimonious parametrizations of such correlation functions, that could 

incorporate both the individual object size/shape and their long-range spatial correlations in 

real biological tissues (such as for the ferritin), are also still generally missing.

Finally, comprehensively including non-Gaussian diffusion in the cellular environment, and 

the diffusion anisotropy, e.g., in the white matter, has still yet to be performed.

The above problems map on the current challenge to quantify at least the strongest sources 

of the mesoscopic dephasing, such as iron depositions or the contrast agent leakage in the 

interstitium, in terms of the cellular structure. The list of applications of the mesoscopic 

transverse relaxation modeling can be continued, and we hope that this review article will 

contribute to their solution and clinical translation.
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Figure 1: 
The three fundamental scales involved in MRI of biological samples. The molecular scale is 

of the order of 10−10 – 10−9 m. The characteristic correlation time of molecular motion is 

about 10−11 – 10−12 s. The cellular scale, or the scale of tissue microstructure, is of the order 

of 10−6–10−5m. The characteristic time scale of water diffusion over such distances is 10−3 – 

10−1 s. The macroscopic scale refers to structures that can be resolved using MRI, about 

10−3 m for clinical or neuroscience applications. Apart from physiological motion, the 

intrinsic motion of water molecules is negligible on the macroscale.
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Figure 2: 
Left: Two random time series made from the same white Gaussian noise. The time courses 

have equal standard deviations and a four-fold difference in the correlation times, τc (black 

bars). Middle: The corresponding phases, Eq. (1). Right: The correlation function in the time 

(top) and frequency (bottom) domains. These functions are the same for both time courses 

up to the difference in the correlation times.
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Figure 3: 
An example of a correlation function, Eq. (8), shown as a surface with contour lines 

projected on the integration plane (t1, t2) in the integral in Eq. (7).
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Figure 4: Molecular relaxation.
Left: The function J(ω) for three different correlation times, illustrated via Eq. (18). The 

width of J(ω) is estimated as 1/τc. From the conservation of area under the curve J(ω), it 

follows that the height J(ω) ω = 0 of the function scales as τc, which explains the increase in 

R2 with τc. Since the value of R1 is defined by J(ΩL) (which is shown with the dashed 

vertical lines), it has a maximum at τc ∼ 1/ΩL. Inset: The value J(ΩL) is small when the 

spectral power is spread too much (too small τc) and when it is concentrated near zero (too 

long τc). Right: The corresponding behavior of R1 and R2 as function of τc, i.e. for the 

increasingly slow molecular motion at fixed ΩL. The actual relaxation rates for water protons 

in the BPP calculation (Bloembergen et al., 1948) are slightly different due to the presence 

of two spins (pale colors).
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Figure 5: Mesoscopic relaxation.
Normalized gradient echo (FID) signal (red dots) in a semilog scale from a suspension of 

paramagnetic beads of about 20 μm in diameter, in water with added gelatin, from (Storey et 

al., 2015), exhibits a characteristically slow crossover behavior, interpolating between the 

initial “molecular” relaxation and the t ∞ monoexponential decay. Red line shows a fit by 

Eq. (25) based on the correlation function proposed by Jensen and Chandra (2000b) (JC 

2000). The two dashed lines correspond to e
−R2

molt
 and e

−R2(∞)t
 , with R2(∞) given by Eq. 

(27). The slope R2(t) of the signal barely reaches the long-time limit R2(∞) even at fairly 

long echo trains. Also shown are the two more realistic models, for permeable spheres 

(Jensen and Chandra, 2000b; Kiselev and Novikov, 2002; Sukstanskii and Yablonskiy, 2003) 

(SY 2003), and for impermeable spheres (Sukstanskii and Yablonskiy, 2004) (SY 2004), 

green/blue, for the same fit parameters as estimated from JC 2000, Eq. (25). It is quite easy 

to make these models fit the experimental points equally well; studying the relative accuracy 

and precision of these models is a subject of on-going investigation. Here, we plot these 

three theoretical curves to emphasize their qualitative and quantitative similarity (see 

discussion in text).
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Figure 6: 
Phase diagram of the mesoscopic transverse relaxation in the plane (α, t/τc). “SDR short 

times” refers to the condition δΩ ⋅ t ≪ 1. In the DNR, it is replaced by the less restrictive 

condition t /τc ≪ 1. Blue line shows the evolution of dephasing regime for a venous capillary 

orthogonal to the main field of 3 T with the typical parameters (dot) during the passage of a 

bolus of Gd-based contrast agent with the maximal concentration 10mM and the post-

contrast concentration 1mM. The effect of increase in the vessel size is shown with light 

blue. Red circle shows a slightly smaller rodent capillary after an injection of 10 mgFe/kg. 

Small purple dot shows a hypothetical situation in which droplets with radius R = 1 μ m 

contain a Gd solution with the concentration 25mM (a 20-fold dilution of a typical 

manufactured solution). The purple dashed line shows the change in the relaxation regime, 

for a fixed measurement time t, when the droplet swells, keeping the same amount of 

contrast agent, diluting its concentration such that δΩ ∼ 1/R3 ∼ τc
−3/2, yielding 

δΩ ⋅ τc ∼ (t /τc)1/2.
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Figure 7: 
Example of a synthetic two-dimensional medium. (a) The susceptibility profile χ(r) 

generated by the random self-avoiding addition of disks of radius ρ with a volume fraction ζ 
= 0.461 and the corresponding Larmor frequency offset Ω(r) induced by a vertically applied 

field. (b) Correlation functions Γχ(r) and ΓΩ (r) of the susceptibility and Larmor frequency, 

respectively. The images are zoomed 4-fold as compared with (a). (c) Illustration of the 

locality property in d = 2 dimensions. Left panel: Coinciding angular-averaged correlation 

functions of the susceptibility Γχ(r) (red) rescaled by the factor c2 = 1/8 (which is the analog 

of c3 for two dimensions) and of the Larmor frequency (blue). Dashed horizontal line 

corresponds to sample variance ζ = (1 − ζ)/8, which is the value of the correlation function at 

r = 0. Right panel shows the angularaveraged Fourier transform, ΓΩ(k), with the pronounced 

peak at kc ≈ 2.3/ρ. Noise increases for small k due to finite sample effects. Reproduced from 

(Novikov and Kiselev, 2008).
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Figure 8: 
Gradient echo (FID) and spin echo signals averaged over the brain parenchyma in a patient 

receiving clinical perfusion measurement with a contrast bolus injection. The bolus passage 

through the brain results in a significant transient signal reduction.
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Figure 9: 
Mesoscopic gradient echo and spin echo relaxation rates as functions of vessel radius in a 

synthetic medium consisting of straight long monosized cylinders with account for 

intravascular blood. Symbols show the result of Monte Carlo simulations (Boxerman et al., 

1995) for permeable (crosses) and impermeable (circles) vessels. The lines show an 

interpolation between the known limiting cases (Yablonskiy and Haacke, 1994; Kiselev and 

Posse, 1998, 1999). The blood volume fraction is kept fixed, ζ = 0.02 for all ρ, the blood 

magnetic susceptibility, χ = 10−7(cgs), B0 = 1.5T and the water diffusivity D = 1 μm2/ms.
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