Skip to main content
. 2018 Oct 2;12:643. doi: 10.3389/fnins.2018.00643

Figure 7.

Figure 7

Optogenetic control of Drosophila larval motility. (A) Velocity of 3rd instar Drosophila larvae expressing OLF-bP in motoneurons under red and blue light. (B) Box plot of velocity data from OLF-bP expressing larvae and controls under red light and blue light conditions, Ctrl-G = +/OK-Gal4; Ctrl-O = UAS- OLF-T-YFP-bPAC-Ex/+. (C) Velocity of 3rd instar Drosophila larvae expressing SthK-bP in motoneurons under red and blue light. (D) Box plot of velocity data from Sthk-bP expressing larvae and controls under red light and blue light conditions. (E) Velocity of different Drosophila control larvae under red and blue light. For box plot graph, box line represents median, box edges represent 25 and 75 percentiles, whiskers represent 1 and 99 percentiles. (F) Velocity of Drosophila larvae expressing OLF-T-YFP-Ex (OLF) in motoneurons under control conditions (red) followed by 30 s of blue light illumination. (G) Velocity of Drosophila larvae expressing CD8-YFP-bPAC (CD8-bP) in motoneurons under control conditions followed by 30 s of blue light illumination. For A-G, n = 20 for each genotype; error bars = SEM. Red light (620 nm, 0.1 μW/cm2), blue light (470 nm, 1.6 mW/cm2). (H) Light to dark velocity ratios of different genotypes. n = 19, error bars = SD. (I) Light induced cAMP production of larvae expressing CD8-bP in motoneurons, blue light (473 nm, 0.3 mW/mm2). n = 3 experiments, each with six larvae, error bars = SD. To calculate the final cAMP concentration in larvae, we assumed that one larva has a volume of 2 μl.