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Abstract. At present there is no consensus on the treatment 
of classical Hodgkin's lymphoma (CHL) following relapse. 
The aim of the present study was to access the class I‑selective 
histone deacetylase (HDAC) inhibitor (HDACI) MGCD0103 
on the expression levels of Bcl‑2, nuclear factor (NF)‑κB and 
programmed death‑ligand 1 (PD‑L1) in CHL, to explore the 
possible therapeutic value of MGCD0103 in combined relative 
target drugs for patients with CHL. In L1236 and L428 cell 
lines, apoptosis and cell cycle stage were identified using flow 
cytometry, and the effects of HDACI on CHL were assessed 
in terms of Bcl‑2, NF‑κB and PD‑L1 expression levels, 
which were detected by western blotting and co‑focusing 
experiments. The results demonstrated that MGCD0103 could 
induce cell apoptosis and cell cycle arrest, down‑regulate Bcl‑2 
and increase NF‑κB and PD‑L1 expression levels in L1236 
and L428 cell lines. MGCD0103 decreases Bcl‑2 levels and 
upregulates PD‑L1, which indicates that the combined use of 
HDACIs and a PD‑L1 inhibitor in theory may improve treat-
ment outcomes in patients with CHL. MGCD0103 may also 
up‑regulate NF‑κB, which seems to induce resistance towards 
anti‑apoptotic drugs. Clinical trials combining HDACIs with 
NF‑κB and/or PD‑L1 inhibitors should be designed to further 
improve treatment outcomes for patients with CHL.

Introduction

Hodgkin's lymphoma (HL), a B cell‑derived lymphoma, is a 
potentially curable lymphoid malignancy (1). Classical HL 
(CHL), which accounts for 95% of all HL, is a lymphatic 
hematopoietic systemic disease characterized by the occur-
rence of Hodgkin‑Reed‑Sternberg (HRS) cells in affected 
reactive lymphadenopathy (2). CHL is classified into 4 types, 
including nodular sclerosis HL, lymphocyte‑depleted clas-
sical HL, lymphocyte‑rich HL and mixed cellularity HL (3). 
At present, the most popular therapeutic regimen consists 
of adriamycin, bleomycin, vinblastine and dacarbazine, and 
remains the first‑line therapy for patients with CHL (4). CHL 
is curable in the majority of cases (70‑80% all stages) treated 
by conventional chemotherapy and/or combined radiotherapy; 
peripheral stem‑cell transplantation can improve the outcome 
of patients with relapse following first‑line chemotherapy, but 
with an increased rate of inevitable risks of lung and heart 
disease, or even other secondary cancers (5). Therefore, novel 
therapeutics are required for patients with CHL.

Histone deacetylase (HDAC) is a protein deacetylase 
that causes genetic changes, altering chromatin structure and 
modulating transcriptional and translational processes (6,7). 
HDACs are expressed in various malignant tumors, down-
regulating relevant tumor suppressor genes (8). HDACs serve 
an important role in regulating carcinogenesis in various 
tumors, including CHL (9,10). HDAC inhibitors (HDACIs), 
a class of therapeutic anticancer drugs, have been widely 
investigated  (7,11). HDACIs induce a series of changes, 
including chromatin remodeling, regulation of transcription 
factors, cell cycle arrest and apoptosis induction  (12‑14). 
The class I HDAC‑selective inhibitor MGCD0103, a specific 
benzamide histone deacetylase inhibitor, has been effective in 
controlling a number of cancers such as follicular lymphoma, 
myelogenous leukemia and Hodgkin's lymphoma in clinical 
trials (15‑17). Previous studies suggested that HDACIs are a 
target for specific epigenetic changes associated with cancer 
and other diseases, and many HDACIs have entered clinical 
studies (18). A better understanding of gene expression and 
phenotype, homeostasis and neoplastic development that is 
altered by HDACs would help gain more knowledge about 
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CHL, and may represent efficient tools for enhancing treat-
ment in patients with CHL.

Nuclear factor (NF)‑κB has been recently investigated 
and demonstrated to have an important role in CHL (19,20). 
Programmed death‑ligand 1 (PD‑L1) inhibitors are used 
in treating patients with relapsed CHL  (21,22). Academic 
researches indicated that PD‑L1 inhibitors, including 
nivolumab and pembrolizumab demonstrate remarkable 
activity in relapsed CHL  (23,24). MGCD0103 effects on 
B cell lymphoma‑2 (Bcl‑2), NF‑κB and PD‑L1 levels require 
further study. In the present study, the expression levels of 
HDAC1, 2, 3 and 11 in CHL tissues were examined, and the 
effects of MGCD0103 on NF‑κB and PD‑L1 levels in CHL 
were assessed, to explore the potential therapeutic value of 
the class‑I HDAC inhibitor MGCD0103 in combined relative 
target drugs for patients with CHL.

Materials and methods

Reagents. The anchorage‑dependent cell line L1236 and 
the suspension‑cultured cell line L428 used in the present 
study were obtained from Chinese Academy of Sciences 
(Shanghai, China). The HDACI MGCD0103 was supplied 
from MethylGene, Inc. (Toronto, Canada). Antibodies 
against Bcl‑2 (cat. no.  ab32124) were provided by the 
Department of Pathology, Shanghai Cancer Center, Fudan 
University (Shanghai, China). Antibody against α‑tubulin 
(cat. no. ab52866) was obtained from Abcam (Cambridge, 
MA, USA). Antibodies against NF‑κB (cat. no. 8242) and 
PD‑L1 (cat. nos. 13684 and 25048) were purchased from Cell 
Signaling Technology, Inc. (Danvers, MA, USA). Horseradish 
peroxidase‑labeled goat anti‑rabbit immunoglobulin G (IgG) 
antibody (cat. no. 10285‑1‑AP) was acquired from ProteinTech 
Group, Inc. (Chicago, IL, USA). Annexin V FITC Apoptosis 
Detection kit was acquired from BD Biosciences (Franklin 
Lakes, NJ, USA). Fluorescent‑dye conjugated secondary anti-
bodies (Alexa Fluor® 488‑conjugated; cat. no. ab150077) were 
obtained from Abcam (Cambridge, UK).

Cell culture and group design. The L1236 and L428 cell 
lines, maintained at an atmosphere of 5% CO2 and 37˚C, 
were cultured in RPMI 1640 medium (Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplied with 10% fetal 
bovine serum (Gibco; Thermo Fisher Scientific, Inc.). Cells in 
the exponential phase were harvested and used in subsequent 
experiments. Cells in the MGCD0103 0.5, 1 and 2 µM groups 
were treated for 24 h with HDACI MGCD0103 at 0.5, 1 and 
2 µM, respectively. An equal volume of dimethyl sulfoxide 
(DMSO) was added in the control group.

Protein ex t ract ion and wes tern blo t  ana lys is. 
Radioimmunoprecipitation assay extraction reagents with 1% 
phenylmethanesulfonyl fluoride and 1% DL‑dithiothreitol were 
applied to extract the total protein of the L236 cells. L428 cells 
were harvested and dissolved in 9.8 M urea (S1961; Beyotime 
Institute of Biotechnology, Haimen, China), 15 mM EDTA 
(P1045; Beyotime Institute of Biotechnology) and 30 mM Tris 
medium (ST774; Beyotime Institute of Biotechnology), and 
treated with a cell disruption step using the ultrasonic technique. 
Disrupted cells were then centrifuged (1,000 x g; 5 min; 4˚C), 

insoluble compounds were removed and the supernatant was 
collected. A bicinchoninic protein assay (Pierce; Thermo Fisher 
Scientific, Inc.) was employed to measure the concentrations of 
the lysate protein of the two cell types. Equal amounts of protein 
(20 µg) in each group were separated by 12% SDS‑PAGE, and 
then the proteins were transferred onto polyvinylidene difluo-
ride membranes (PVDF). Subsequently, 5% non‑fat dry milk 
dissolved in TBST (20 mM Tris‑HCl, 150 mM NaCl, 0.1% 
Tween 20; pH 7.40) was used to block non‑specific antigens on 
the PVDF membranes at room temperature for 1 h. Subsequently, 
the membranes were incubated with primary antibodies at 4˚C 
overnight (anti‑Bcl‑2, 1:1,000; anti‑NF‑κB, 1:1,000; anti‑PD‑L1, 
1:1,000). Subsequently, the membranes were washed with TBST 
three times for 5 min and incubated with goat anti‑rabbit IgG 
secondary antibody (1:1,000) at room temperature for 1 h. 
α‑tubulin was used as a loading control (α‑tubulin antibody, 
1:1,000). The images of western blotting were captured using 
an Omega Lum G imaging system (Gel Company, Inc., San 
Francisco, CA, USA) and the intensity of bands was deter-
mined using AlphaEase FC software 4.1.0 (Alpha Innotech 
Corporation; ProteinSimple, San Jose, CA, USA).

Cell apoptosis and cycle analyzed by flow cytometry. 
According to the manufacturer's protocol, cell apoptosis 
and cycle analysis were measured using propidium iodide 
and Annexin‑V staining. Initially, L1236 and L428 cells 
were treated with MGCD0103 or DMSO for 24 h at 37˚C as 
described above. L1236 cells were seeded onto a 6‑well plate 
with RPMI 1640 medium at a density of 1x106 cells/ml and 
L428 cells were seeded onto a 6‑well plate and suspended at 
a density of 1x106 cells/ml in RPMI‑1640 medium per well 
4˚C, following treatment. Subsequently, L1236 and L428 cells 
were harvested and washed with PBS twice. For the analysis 
of the cell cycle, cells were treated with RNase (Invitrogen; 
Thermo Fisher Scientific, Inc.) at a final concentration of 
0.2 mg/ml, and stained with propidium iodide (FITC Annexin 
V Apoptosis Detection kit I; BD Biosciences, Franklin Lakes, 
NJ, USA) at a final concentration of 10 µg/ml in the dark at 
4˚C for 20 min, subsequently. Finally, cells were detected by 
Immunocytometer Systems (FACSCalibur; BD Biosciences) 
and data was analyzed using Flowing software (version 2.5.1; 
http://flowingsoftware.btk.fi/). For the analysis of cell apop-
tosis, both types of cells were suspended in binding buffer from 
the kit at a density of 1x105/well, respectively. Subsequently, 
the cells were stained with 5 µl propidium iodide and 5 µl 
Annexin V‑fluorescein isothiocyanate for 30 min in darkness 
at 4˚C, and then detected using Immunocytometer Systems.

Fluorescence staining and confocal laser scanning 
techniques. Coverslips were kept flat on the bottom of a 6‑well 
plate following cleaning, disinfection and 24‑h ultraviolet 
irradiation. Subsequently, the L1236 cells were seeded on 
coverslips at a density of 1x106/well and cultured in an incu-
bator at 37˚C for 12 h. Cells were treated with MGCD0103 
(0.5, 1 and 2 µm) or with DMSO in the control cells for 24 h 
at 37˚C. L1236 and L428 cells were rinsed with PBS three 
times for 5 min and fixed with 4% paraformaldehyde at 25˚C 
for 15 min, followed by permeabilization of the cells in 0.2% 
Triton X‑100 at 25˚C for a further 20 min. Subsequently, the 
coverslips were rinsed with PBS again three times for 5 min 
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and blocked by incubating the L1236‑attached cells in 5% 
bovine serum albumin (BSA; A8010; Beijing Solarbio Science 
& Technology Co., Ltd., Beijing, China) at 25˚C for 60 min. 
L428 cells were suspended and blocked in 5% BSA at 25˚C 
for 60 min. Cells were then incubated with rabbit anti‑human 
Bcl‑2 (1:100), NF‑κB (1:400) and PD‑L1 (1:50) antibodies 
for 12 h at 4˚C. Following washing with PBS three times for 
5 min, the cells were incubated with Alexa 488‑coupled goat 
anti‑rabbit IgG secondary antibodies (1:1,000) for 1 h at 4˚C in 
the dark. Finally, DAPI was used as a counterstain to label the 
nuclei at 25˚C for 15 min. The stained L1236‑attached cells 
and L428‑suspension cells were the acquired and images were 
captured under fluorescent and laser confocal microscopy 
(magnification, x600; Lexel Laser, Fremont, CA, USA).

Statistical analysis. Data are presented as the mean + standard 
error of the mean, and experiments were performed and 
repeated three times independently. Statistical analysis data 
of the total Annexin‑V positive cells (% DMSO), data of the 
cell cycle distribution (% of DMSO), and the data of expres-
sions of Bcl‑2, NF‑κB and PD‑L1 (integrated optical density at 
the wavelength of 520 nm/area; compared with DMSO) were 
analyzed for significant differences using Student's t‑test. Bcl‑2, 
NF‑κB and PD‑L1 protein expression (relevant to DMSO) were 
analyzed for significant differences using one‑way analysis of 
variance and post hoc Turkey's tests. SPSS 20.0 (IBM Corp., 
Armonk, NY, USA) was used for statistical analysis. P<0.05 
was considered to indicate a statistically significant difference.

Results

MGCD0103 downregulates Bcl‑2, and increases NF‑κB and 
PD‑L1 expression levels. Two HL L1236 and L428 cell lines 

were treated with varying concentrations of MGCD0103 (0, 
0.5, 1 or 2 µM) for 24 h, and protein levels of Bcl‑2, NF‑κB 
and PD‑L1 were measured by western blotting (Fig. 1A). No 
statistically significant differences were identified in protein 
expression levels following treatment of the 2 cell lines with 
MGCD0103 at a concentration of 0.5 µM (Fig. 1B‑G). In the 
L1236 cell line, MGCD0103 significantly inhibited Bcl‑2 
expression at a concentration of 1 (P<0.01) and 2 µM (P<0.001; 
Fig. 1B), and upregulated NF‑κB at 2 µM (P<0.05, Fig. 1D) and 
PD‑L1 at 1 (P<0.05) and 2 µM (P<0.001; Fig. 1F). Similarly, 
in the L428 cell line, MGCD0103 inhibited Bcl‑2 expression 
at 1 (P<0.001) and 2 µM (P<0.001; Fig. 1C), and upregulated 
NF‑κB at 2 µM (P<0.01; Fig. 1E) and PD‑L1 at 1 (P<0.05) and 
2 µM (P<0.001; Fig. 1G).

Laser confocal microscopy was also applied to examine 
the protein expression levels following treatment with 
MGCD0103 at 2 µM (Figs. 2 and 3). The expression levels 
of various proteins were assessed using the IOD/area 
ratio. These findings suggested that Bcl‑2 expression was 
decreased whereas NF‑κB and PD‑L1 were upregulated in the 
MGCD0103 2 µM group compared with the DMSO group in 
the L1236 cell line; all differences were statistically signifi-
cant (P<0.05; Fig. 3A, C and E). In the L428 cell line, Bcl‑2 
was also downregulated and NF‑κB upregulated following 
treatment with 2 µM MGCD0103 (P<0.05; Fig. 3B and D); 
and although there was no significant difference, PD‑L1 was 
markedly increased in the MGCD0103 2 µM group compared 
with the DMSO group (Fig. 3F).

MGCD0103 induces cell apoptosis and cell cycle arrest in 
L1236 and L428 cells. To explore the role of MGCD0103 on 
cell apoptosis, flow cytometry was applied (Fig. 4). Following 
treatment with MGCD0103 at a final concentration of 2 µM 

Figure 1. (A) Western blotting was employed to assess Bcl‑2, NF‑κB and PD‑L1 protein levels, with α‑tubulin as a loading control. In MGCD0103 groups, 
cells were treated for 24 h with MGCD0103 at 0.5, 1 and 2 µM, with the DMSO group considered as control cells. (B and C) Bcl‑2 levels decreased in a 
dose‑dependent manner in the MGCD0103 groups compared with the control group. (D and E) NF‑κB expression was higher in the MGCD0103 groups than 
in controls. (F and G) Similarly, PD‑L1 expression was higher in the MGCD0103 group compared with control cells. Data are presented as the mean + the 
standard error of the mean. *P<0.05, **P<0.01, and ***P<0.001. Bcl‑2, B cell lymphoma‑2; NF, nuclear factor; PD‑L1, programmed death‑ligand 1; DMSO, 
dimethyl sulfoxide.
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for 24 h, the apoptosis rate was significantly increased in 
the MGCD0103 group compared with the DMSO group, as 
revealed by the increased proportion of total Annexin‑V 
positive‑stained cells (Fig. 4A and C). Quantitative analysis 
of total Annexin‑V positive‑stained cells was performed, 
and total rates of Annexin‑V positive cells were significantly 
increased following treatment with MGCD0103 in the L1236 
(P<0.01; Fig.  4B) and L428 (P<0.05; Fig.  4D) cell lines. 
Furthermore, flow cytometry was employed to assess the 
effects of MGCD0103 on cell cycle in L1234 and L428 cells 
(Fig. 5). The results demonstrated that MGCD0103 treatment 
resulted in significantly decreased numbers of cells in the G1 
phase in L1236 (P<0.05; Fig. 5A and B) and L428 (P<0.001; 
Fig. 5C and D) cells, with significantly increased cells in 
the G2 phase in L1236 (P<0.05; Fig. 5B) and L428 (P<0.01; 
Fig. 5D) cells compared with control groups. These findings 
demonstrated that MGCD0103 could induce cell apoptosis 
and cell cycle arrest.

Discussion

No consensus is currently available regarding the treatment of 
CHL following relapse. Immune checkpoint inhibitors are a poten-
tial avenue for such patients; however, the complete remission rate 

is ~17‑21% (25). A previous study demonstrated that expression 
levels of certain HDACs are associated with clinicopathological 
characteristics in CHL (26). The results suggested that HDAC1, 3 
and 11 are expressed at increased levels in CHL, whereas HDAC2 
is decreased (26). In addition, increased expression of HDAC1 
predicts shorter progression‑free and overall survival (OS), while 
an increased expression of HDAC11 predicts lower OS (26). 
The current findings provided insights into the effects on Bcl‑2, 
NF‑κB and PD‑L1 levels by the treatment of the class I HDACI 
MGCD0103 in an experimental system; namely, that MGCD0103 
enhanced the expression levels of PD‑L1 and NF‑κB, and reduced 
the expression of Bcl‑2 in CHL.

Bcl‑2, a regulatory protein of the Bcl‑2 family, serves an impor-
tant role in promoting cell survival and inhibiting pro‑apoptotic 
proteins (27). It has been demonstrated that Bcl‑2 overstimulation 
and overexpression, and upregulation of the oncogene myc may 
induce aggressive B‑cell malignancies (28). The present findings 
demonstrated that MGCD0103 had a direct dose‑dependent 
effect in inducing Bcl‑2 expression, an apoptosis‑related protein, 
and arresting cell cycle in CHL cell lines.

NF‑κB is a protein complex associated with DNA tran-
scription, cytokine regulation and cell survival in multiple cell 
types (29). As a nuclear transcription factor, NF‑κB promotes 
cell proliferation in acute myelogenous leukemia cells (30). 

Figure 2. Bcl‑2, NF‑κB and PD‑L1 protein levels were measured by representative confocal microscopic images (magnification, x600). In the MGCD0103 
2 µM group, cells were treated for 24 h with MGCD0103 at 2 µM, with DMSO considered as a control. Bcl‑2, B cell lymphoma‑2; NF, nuclear factor; PD‑L1, 
programmed death‑ligand 1; DMSO, dimethyl sulfoxide; GFP, green fluorescent protein.
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Figure 4. Apoptotic rates were determined by flow cytometry with Annexin‑V/PI double‑staining. In the MGCD0103 2 µM group, cells were treated with 
MGCD0103 at a concentration of 2 µM, with the DMSO group considered the control group; cells were treated for 24 h. Total percentages of Annexin‑V‑positive 
cells in DMSO and MGCD0103 groups were measured in (A and B) L1236 and (C and D) L428 cells. The percentage of Annexin‑V‑positive cells in the DMSO 
groups was lower than that of the MGCD0103 group, in both cell lines. Data are presented as the mean + the standard error of the mean. *P<0.05 and **P<0.01. 
PI, propidium iodide; DMSO, dimethyl sulfoxide; FITC, fluorescein isothiocyanate.

Figure 3. Representative confocal microscopic data for IOD/area detection. (A and B) The IOD/area ratio for Bcl‑2 was lower in the MGCD0103 group than in 
control cells, in both cell lines. IOD/area ratios for (C and D) NF‑κB and (E and F) PD‑L1 were higher in the MGCD0103 group than in controls, in both cell 
lines. Data are presented as the mean + the standard error of the mean. *P<0.05. IOD, integrated optical density; Bcl‑2, B cell lymphoma‑2; NF, nuclear factor; 
PD‑L1, programmed death‑ligand 1; DMSO, dimethyl sulfoxide.
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VvpE, an elastase mediated by NF‑κB, is associated with 
cell death and the inflammatory response in human intestinal 
epithelial cells (31). It was demonstrated that NF‑κB is widely 
expressed in malignant lymphoma, and activation of NF‑κB 
subunits may be associated with the biological functions of 
HL (32). Buglio et al (33) identified that MGCD0103 is able 
to induce tumor necrosis factor‑α expression and secretion, 
in association with NF‑κB activation. They demonstrated 
that MGCD0103 may synergize with proteasome inhibitors 
by HDAC6‑independent mechanisms, providing mechanistic 
rationale for exploring this potentially less‑toxic combination 
for the treatment of lymphoma. Thus, HDACIs combined with 
NF‑κB inhibitor may yield synergistic anti‑tumor effects, in 
accordance with the present findings.

PD‑L1, also known as B7 homolog 1 or cluster of differ-
entiation 274 (CD274), is a transmembrane protein encoded 
by the CD274 gene. PD‑L1 has been demonstrated to serve an 
important role in suppressing the immune system in multiple 
processes, including pregnancy, inflammation and autoimmune 
diseases  (34‑36). Notably, antibodies specifically targeting 
PD‑L1 ligands have provided novel treatments of multiple 
types of cancer  (37). In metastatic renal cell carcinoma, 
McDermott et al  (38) demonstrated that immune‑oncology 
monotherapy can be regarded as ideal second‑in‑line treatment 
option. Increased expression of PD‑L1 predicts a poor prognosis 
in colon carcinoma and PD‑L1 may describe a future treatment 
target (39). Previous studies further demonstrated the efficacy 

of PD‑1‑targeted therapy in patients with metastatic gastric 
cancer (40). Previous studies have indicated that PD‑1 is associ-
ated with inducing T cell tolerance, and can limit T cell responses 
that may prevent immune‑medicated tissue damage (41‑43). 
PD‑L1 is correlated with antitumor immunity  (44). PD‑L1 
expressed on the cell surface may help identify immune 
checkpoint blockade therapies for patients with non‑Hodgkin's 
lymphoma (45). It has been suggested that MGCD0103 may 
directly inhibit CHL cell growth and survival (46). The present 
study demonstrated that MGCD0103 may enhance the protein 
expression levels of NF‑κB and PD‑L1; these findings indicated 
that MGCD0103 may regulate cell‑mediated immunity of CHL. 
To a certain extent, this effect of MCD0103 is detrimental to 
anti‑tumor immune function in the microenvironment in which 
HRS cells reside. Therefore, whether MGCD0103 and PD‑1 
inhibitors have synergistic effects in the treatment of CHL 
requires further investigation.

Previous studies have indicated that HDACIs may regulate 
PD‑L1 expression; however these findings have been incon-
sistent. Booth et al (47) recently demonstrated that HDACIs 
are capable of reducing HDAC protein expression levels 
as well as PD‑L1 amounts in melanoma cells; meanwhile, 
Woods et al (48) revealed that class I HDACIs upregulate PD‑L1 
in melanoma. Therefore, these studies indicated that HDACs 
have dual‑regulation functions and mechanisms in regulating 
multiple physiological and biochemical processes. The present 
findings indicated that HDACIs may upregulate PD‑L1. This 

Figure 5. Cell cycle distribution was detected by flow cytometry, and quantitative analysis of the different cell cycle phases was performed in (A and B) L1236 
and (C and D) L428 cells. In the MGCD0103 2 µM group, cells were treated with MGCD0103 at a concentration of 2 µM for 24 h, with DMSO as control. Fewer 
cells in the G1 phase were found in the MGCD0103 group compared with the DMSO group, both in L1236 and L428 cells; whereas more cells in the G2 phase 
were detected in the MGCD0103 group compared with DMSO treated cells, both in L1236 and L428 cells. Cells in the S phase were significantly increased in the 
MGCD0103 group of L1236 cells. Data are presented as the mean + the standard error of the mean. *P<0.05, **P<0.01, and ***P<0.001. DMSO, dimethyl sulfoxide.
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may depend on tumor type and specific molecular biological 
characteristics in the specific tumor microenvironment.

Briere et al (49) demonstrated that MGCD0103 upregu-
lated PD‑L1 and antigen presentation genes including class I 
and II human leukocyte antigen family members in a panel of 
non‑small cell lung cancer cell lines in vitro. It was concluded 
that the combination of MGCD0103 and PD‑L1 inhibitor 
demonstrated increased anti‑tumor activity compared with 
either therapy alone in two syngeneic tumor models. In addi-
tion, MGCD0103 decreased T‑regulatory cell numbers in the 
tumor microenvironment.

The present results demonstrate that the type I HDACI 
MGCD0103 decreases Bcl‑2 levels and upregulates PD‑L1, 
which indicates the decreased immune ability of CD4+ in the 
microenvironment of CHL. The combined use of HDACIs 
and a PD‑L1 inhibitor theoretically may improve treatment 
outcome in patients with CHL. Furthermore, the type I HDACI 
MGCD0103 may also upregulate NF‑κB, which seems to 
induce resistance towards anti‑apoptotic drugs. It seems, 
therefore, necessary to use anti‑NF‑κB drugs in combination 
with HDACIs. Clinical trials combining HDACIs with NF‑κB 
and/or PD‑L1 inhibitors should be designed to further improve 
treatment outcomes for patients with CHL.

The present study had some limitations. The molecular 
mechanisms by which HDACIs affect CHL have not been deeply 
investigated in this primary study. A previous study demon-
strated that blockage of PD‑L1/PD‑L2 on 9p24.1 may prolong 
progression‑free survival in patients with CHL (50). However, the 
effects of HDACIs on 9p24.1 amplification in CHL have not yet 
been reported. Based on the present data, the effects of HDACIs 
on 9p24.1 amplification deserve further assessment. The current 
study focused on exploring the possibility of combining HDACIs 
and other targeted drugs such as NF‑κB and/or PD‑L1 inhibitors. 
Therefore, the effects of HDACIs on CHL were assessed in terms 
of Bcl‑2, NF‑κB and PD‑L1 expression levels.
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