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Quantifying the dependence between two random variables
is a fundamental issue in data analysis, and thus many mea-
sures have been proposed. Recent studies have focused on the
renowned mutual information (MI) [Reshef DN, et al. (2011) Sci-
ence 334:1518–1524]. However, “Unfortunately, reliably estimat-
ing mutual information from finite continuous data remains a sig-
nificant and unresolved problem” [Kinney JB, Atwal GS (2014) Proc
Natl Acad Sci USA 111:3354–3359]. In this paper, we examine the
kernel estimation of MI and show that the bandwidths involved
should be equalized. We consider a jackknife version of the
kernel estimate with equalized bandwidth and allow the band-
width to vary over an interval. We estimate the MI by the largest
value among these kernel estimates and establish the associated
theoretical underpinnings.

jackknifed estimation | mutual information | statistical dependence |
kernel density estimation

A key issue in data science is how to measure the depen-
dence between two random variables. Pearson’s correlation

coefficient (1) provides a powerful measure for linear depen-
dence, but it is incapable of detecting nonlinear association (2,
3). Thus, many other measures have been introduced to quantify
complex dependence. For example, Gretton et al. (4) proposed
a kernel-based independence criterion that uses the squared
Hilbert–Schmidt norm of the cross-covariance operator. Székely,
Rizzo, and Bakirov (5) introduced the distance correlation
(dCor) which does not involve any nonparametric estimation and
is free of tuning parameters. Heller, Heller, and Gorfine (6) pro-
posed a rank-based distance measure which demonstrates good
numerical performance. Although many different measures have
been proposed, the mutual information introduced by Claude
Shannon in 1948 (7) is not replaceable and is still of great
research interest. As a fundamental measure of dependence,
mutual information (MI) possesses several desirable proper-
ties and can be interpreted intuitively (8). These advantages
secure MI as a very powerful measure of nonlinear dependence
with very wide applications in data analysis. As such, studies
have focused on its mathematical properties and its estimation
efficiency (2, 9, 10).

For continuous data, there are three typical groups of estima-
tion for MI. The first group is the “bins” method that discretizes
the continuous data into different bins and estimates MI from
the discretized data (11, 12). The asymptotic performance for
this bins method is systematically analyzed in ref. 13. The second
group is based on estimates of probability density functions, for
example, the histogram estimator of ref. 14, the kernel density
estimator (KDE) of ref. 15, the B-spline estimator of ref. 16, and
the wavelet estimator of ref. 17. To reduce the bias at the bound-
ary region, ref. 18 introduced the mirrored KDE and derived
its exponential concentration bound. Recently, ref. 19 further
applied the ensemble method in kernel estimation and derived
the ensemble estimator. The third group is based on the rela-
tionship between the MI and entropies. One of the most popular
estimations in this group is the k-nearest neighbors (kNN) esti-

mator introduced in ref. 20, which was extended in ref. 10, lead-
ing to the introduction of the Kraskov–Stögbauer–Grassberger
(KSG) estimator. This estimator is further discussed in refs.
21–23.

Although many different approaches have been considered,
the estimation of MI, especially for continuous data, relies
heavily on the choice of the tuning parameters involved such
as the number of bins, the bandwidth in kernel density estima-
tion, and the number of neighbors in the kNN estimator. As a
consequence, the corresponding estimators may be very unsta-
ble or seriously biased. However, little research has been done
on the selection of these parameters. In this paper, we focus on
the KDE approach (24, 25), which involves at least four band-
width matrices. Experience with tests for independence suggests
that the bandwidths should be set equal. Equalization of band-
widths also helps us reduce the bias at the boundary region and
thus improve the efficiency of estimation. To free the estimation
from bandwidth selection, we consider a jackknife version of MI
(called JMI) and show that JMI has asymptotically a unique max-
imum with respect to the equalized bandwidth. We adopt the
maximum value as our estimator of MI and provide the neces-
sary statistical underpinnings. Interestingly, for the very special
case of independent random variables, JMI enjoys a consistency
rate higher than that of root-n. Numerically, we compare the esti-
mation efficiency of JMI vs. that of other estimation methods
that include the mixed KSG of ref. 23, the copula-based KSG
of ref. 21, and other KDE methods. We also construct a test for
independence (2, 3, 26) based on the JMI and compare it with
several popular methods, such as the dCor of ref. 5, the maximal
information coefficient (MIC) of ref. 9, and the Heller–Heller–
Gorfine (HHG) test of ref. 6. These comparisons demonstrate
the superior performance of JMI.
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ties and has stable numerical performance.
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MI and Its Kernel Estimation
Consider two random variables X=(X1,X2, . . . ,XP )

′ and Y=
(Y1,Y2, . . . ,YQ)′. Let us focus on the case that their joint
probability density function exists. MI is defined as

MI (X,Y)=E

{
log

fXY(X,Y)
fX(X)fY(Y)

}
,

where fX, fY, and fXY are the density functions of X, Y, and (X,Y),
respectively. This definition can be easily extended to other types
of random variables that may not have density functions (13). As
a measure of complex dependence, MI possesses the following
desirable properties. It is always nonnegative, i.e., MI (X,Y)≥ 0,
and equality holds if and only if the two variables are indepen-
dent. Moreover, the stronger is the dependence between two
variables, the larger is the MI. MI is also invariant under strictly
monotonic variable transformations. More recently, Kinney and
Atwal (2) proved that MI satisfies the so-called self-equitability,
indicating that MI places the same importance on linear and
nonlinear dependence.

Let S = {(xi , yi), i =1, . . . ,n} with xi =(xi1, xi2, . . . , xiP )
′

and yi =(yi1, yi2, . . . , yiQ)′ be independent samples from (X,Y).
Let | · | represent the determinant of a matrix. Consider the
following multivariate KDEs:

f̂X,HX(x)=
1

n

n∑
j=1

KP
HX(xj − x);

f̂Y,HY(y)=
1

n

n∑
j=1

KQ
HY
(yj − y);

f̂XY,BX,BY(x, y)=
1

n

n∑
j=1

KP
BX(xj − x)KQ

BY
(yj − y).

Here HX, HY, BX, and BY are diagonal bandwidth matrices
with HX = diag(h2

X1
, h2

X2
, . . . , h2

XP
), HY = diag(h2

Y1
, h2

Y2
, . . . ,

h2
YQ

), BX = diag(b2X1
, b2X2

, . . . , b2XP
), and BY = diag(b2Y1

, b2Y2
,

. . . , b2YQ
); typically, for diagonal matrix A, KP

A (x)= |A|−1/2KP

(A−1/2x), where KP is a P-dimensional symmetric density func-

tion with KP (x)=
P∏

p=1

K (xp). Based on these estimators, the

KDE of MI is

Î1(BX,BY,HX,HY)=
1

n

n∑
i=1

log
f̂XY,BX,BY(xi , yi)

f̂X,HX(xi)f̂Y,HY(yi)
. [1]

This estimator is consistent under some mild conditions. How-
ever, as pointed out by ref. 15, its numerical performance is
heavily influenced by the choice of bandwidths. Another problem
is the notorious boundary effect, which becomes more serious as
f̂X,HX(xi) and f̂Y,HY(yi) appear in the denominator.

In checking the independence between X and Y, we
usually compare the product of frequencies in hyper-
cubes DX = {xi : |xip − xp |< hXp , p=1, 2, . . . ,P} and DY =
{yi : |yiq − yq |< hYq , q =1, 2, . . . ,Q} with the frequency in their
intersection DX ∩DY = {(xi , yi) : |xip − xp |< hXp , |yiq − yq |<
hYq , p=1, 2, . . . ,P , q =1, 2, . . . ,Q}. Let # denote the number

of elements in a set. By taking KP (x)=
P∏

p=1

[1(|xp |≤1)/2], where

1A is the indicator function of set A, those frequencies are,
respectively,

#DX

n
=

2P

n

n∑
i=1

P∏
p=1

K (
xip − xp
hXp

)= 2P |HX|1/2 f̂X,HX(x),

#DY

n
=

2Q

n

n∑
i=1

Q∏
q=1

K (
yiq − yq
hYq

)= 2Q |HY|1/2 f̂Y,HY(y),

and

#(DX ∩DY)

n
=

2P+Q

n

n∑
i=1

P∏
p=1

K (
xip − xp
hXp

)

Q∏
q=1

K (
yiq − yq
hYq

)

= 2P+Q(|HX||HY|)1/2 f̂XY,HX,HY(x, y).

Thus, the ratio of comparison is

#(DX ∩DY)/n

#DX/n#DY/n
=

f̂XY,HX,HY(x, y)

f̂X,HX(x)f̂Y,HY(y)
.

Note that the bandwidth matrices corresponding to X in both
estimators of fX and fX,Y are the same, and the same is true for
the case of Y. We therefore argue that BX =HX and BY =HY

should be imposed on the KDE. With these equalizations of
bandwidths, the joint and marginal densities are well defined; i.e.,∫
f̂XY,HX,HY(x, y)dx= f̂Y,HY(y) and

∫
f̂XY,HX,HY(x, y)dy= f̂X,HX(x),

which is an important feature in the definition of MI. Another
important motivation for equalizing the bandwidths is that it can
automatically reduce the estimation bias at the boundary region;
see theoretical justification in the next section.

Jackknife Estimation of MI
Marginal transformation is an efficient way to improve the
estimation of ref. 1 and to reduce the technical complexity
(27, 28). We consider the uniform transformation U=(U1,U2,
. . . ,UP )

′=(FX1(X1),FX2(X2), . . . ,FXP (XP ))
′ and V=(V1,

V2, . . . ,VQ)′=(FY1(Y1),FY2(Y2), . . . ,FYQ(YQ))′, whereFXp ,
p=1, 2, . . . ,P and FYq , q =1, 2, . . . ,Q are the cumulative
distribution functions of Xp and Yq , respectively. It is easy to
see that MI (U,V)=MI (X,Y). Use cU(u), cV(v) and cUV(u, v) to
denote the copula density functions of U, V, and (U,V), respec-
tively. For observed data, the corresponding transformation
is (u?i , v?i )

′=(u?i1, . . . , u
?
iP , v

?
i1, . . . , v

?
iQ)′=(FX1,n(x1), . . . ,FXP ,

n(xP ),FY1,n(y1), . . . , FYQ ,n(yQ))′ with FXp ,n , p=1, 2, . . . ,P
and FYq ,n , q =1, 2, . . . ,Q denoting the empirical cumulative dis-
tribution functions of {xip , i =1, . . . ,n} and {yiq , i =1, . . . ,n},
respectively.

A main problem with the KDE is the selection of bandwidths.
In the literature, many selection methods have been proposed
(29–31). Although good properties have been proved for these
selectors in the estimation of density function, applying them to
the estimation of MI does not work well (15, 32).

Jackknife Estimation. Note that MI is zero when the two ran-
dom variables are independent, and generally bigger MIs imply
stronger dependence. Thus, the bandwidths should be selected
to maximize MI to detect possible dependence. This idea was
also applied in statistical tests (33, 34). However, maximizing MI
tends to overfit the MI, making it possibly infinite. Instead, we
use the jackknife estimation (27, 35). Let

Î2(BU,BV,HU,HV)=
1

n

n∑
i=1

log
ĉ
\i
UV,BU,BV

(u?i , v?i )

ĉ
\i
U,HU

(u?i )ĉ
\i
V,HV

(v?i )
[2]

with bandwidth matrices HU = diag(h2
U1

, h2
U2

, . . . , h2
UP

), HV =

diag(h2
V1

, h2
V2

, . . . , h2
VQ

), BU = diag(b2U1
, b2U2

, . . . , b2UP
), BV =

diag(b2V1
, b2V2

, . . . , b2VQ
), and

Zeng et al. PNAS | October 2, 2018 | vol. 115 | no. 40 | 9957



ĉ
\i
U,HU

(u)=
1

n − 1

∑
j 6=i

KP
HU(u

?
j − u);

ĉ
\i
V,HV

(v)=
1

n − 1

∑
j 6=i

KQ
HV
(v?j − v);

ĉ
\i
UV,BU,BV

(u, v)=
1

n − 1

∑
j 6=i

KP
BU(u

?
j − u)KQ

BV
(v?j − v).

We estimate MI by the maximum of Î2(BU,BV,HU,HV). With
four bandwidth matrices as arguments, this maximization is not
easy. However, as suggested above, the bandwidths in the calcu-
lation should be set equal. The bias expansion in Theorem 1 also
indicates that this equalization of bandwidths in Eq. 2 is helpful
for counteracting boundary bias.

For theoretical analysis, we define an “oracle” estimator

Î0 =
1

n

n∑
i=1

log
cUV(ui , vi)
cU(ui)cV(vi)

.

Note that Î0 is exactly 0 when the two variables are indepen-
dent and, by the central limit theorem, it is root-n consistent

when 0<MI <∞ and E
[
log cUV(U,V)

cU(U)cV(V)

]2
<∞. As Î0 is actu-

ally not obtainable, hereafter we use it only as a benchmark for
asymptotic analysis.

Theorem 1. Under general regularity conditions (SI Appendix, sec-
tion C, Assumptions A.1, A.2, A.5, and A.6) on functions K , cU,
cV, and cUV and bandwidth matrices, we have

1

n

n∑
i=1

log ĉ
\i
UV,BU,BV

(u?i , v?i )−
1

n

n∑
i=1

log cUV(ui , vi)

=−C1

[
P∑

p=1

bUp +

Q∑
q=1

bVq

]
+ oP

(
P∑

p=1

|bUp |+
Q∑

q=1

|bVq |

)
,

where C1 is given in in SI Appendix, Eq. S1. Furthermore,

Î2(HU,HV,BU,BV)− Î0

=C1

[
P∑

p=1

(hUp − bUp )+

Q∑
q=1

(hVq − bVq )

]

+oP

(
P∑

p=1

(|hUp |+ |bUp |)+
Q∑

q=1

(|hVq |+ |bVq |)

)
.

The first part of Theorem 1 indicates that a kernel-based esti-
mate of a copula density has a bias of the same order as the

bandwidth. It is caused by the boundary points since the ker-
nel density estimation has a much faster consistency rate for
the interior points (36). The second part concerns Î2, which
involves a divisor in the form of a product of two marginal cop-
ula densities; it shows that its bias depends on the difference of
bandwidths, i.e., hUp − bUp and hVq − bVq . If the commonly used
selectors (24, 25, 31, 37) are adopted to select the bandwidths
separately, then bUp and bVq are of order n−1/(P+Q+4) while
hUp and hVq are of order n−1/(P+4) and n−1/(Q+4), respec-
tively. Consequently, the kernel estimator of MI with those
bandwidths would suffer a bias of order n−1/(P+Q+4). How-
ever, if we equalize the bandwidths, BU =HU and BV =HV, the
leading term in the bias will be eliminated automatically. To
further simplify the bandwidth selection, we also restrict HU =
h2IP and HV = h2IQ with In the n ×n identity matrix. This
restriction is reasonable since each component of U and V is
uniformly distributed on [0, 1] after the transformation. Thus,
we consider a jackknife estimator of MI with one common
bandwidth,

Î3(h)=
1

n

n∑
i=1

log
ĉ
\i
UV,h2IP ,h2IQ

(u?i , v?i )

ĉ
\i
U,h2IP

(u?i )ĉ
\i
V,h2IQ

(v?i )
.

Our final estimator is

ĴMI (X,Y)=max
h>0

[Î3(h)].

Since this estimation procedure involves a maximization prob-
lem, the existence of a global maximum is crucial for computa-
tion. With a different relationship between X and Y, the objective
function Î3(h) possesses three typical shapes: (i) When X and Y
are independent of each other, Î3(h) is an increasing function
bounded by 0 as in Fig. 1 Ci; the maximum is achieved with a
large h and tends to 0. (ii) When X and Y are functionally depen-
dent (i.e., one is a function of the other), the objective function
is monotone decreasing as in Fig. 1 Cii, suggesting a zero-valued
bandwidth and that the estimated information tends to infinity.
(iii) When X and Y are partially correlated, Î3(h) is a unimodal
function as shown in Fig. 1 Ciii. These shapes are further justified
by Theorem 2. In particular, when X and Y are partially corre-
lated, Theorem 2 indicates that the unique maximum is achieved
at h ∝n−1/(P+Q+3).

Theorem 2. Under general regularity conditions (SI Appendix, sec-
tion C, Assumptions A.1, A.5, and A.7) on functions K , cU, cV, and
bandwidth,

a) if MI <∞ and cUV satisfies the regularity condition A.2 in SI
Appendix, section C, then

0 0.2 0.4 0.6

-6

-4

-2

0

0 0.2 0.4 0.6
0

1

2

3

4

5

0 0.2 0.4 0.6

-3

-2

-1

0

1

0 0.2 0.4 0.6

-0.04

-0.02

0

0.02

0.04

0 0.2 0.4 0.6

0.7

0.8

0.9

1.0

1.1

Fig. 1. Typical shapes of function Î3(h). In Ci, Cii, and Ciii, at least one of X and Y is a continuous variable; in Di and Dii, both X and Y are discrete.
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Î3(h)− Î0 =−
C2

2
h3− C3

2nhP+Q
+ oP (h

3 +
1

nhP+Q
),

where C2 and C3 are two nonnegative constants given in SI
Appendix, section C. In particular, C2 =0 when X and Y are
independent.

b) If MI =∞, and X and Y are functionally dependent and satisfy
regularity condition A.3 in SI Appendix, section C, then

Î3(h)=min(P ,Q) log
1

h
+ oP

(
log

1

h

)
.

Although JMI is defined for continuous random variables, it
also applies to the discrete random variables and mixed ran-
dom variables (with neither purely continuous distributions nor
purely discrete distributions). If both X and Y are discrete, Î3(h)
depends on h as shown in Fig. 1 Di or Dii: If they are inde-
pendent, Î3(h) changes only marginally with h; otherwise Î3(h)
remains unchanged when h is smaller than a certain value and
is decreasing thereafter, suggesting any bandwidth that is small
enough will give the same estimator. If X and Y have a mix-
ture of continuous components and discrete components, Î3(h)
depends on h in the same way as in Fig. 1 Ci, Cii, and Ciii. More
details about extension of JMI to discrete case can be found in
SI Appendix, section G.

Compared with existing methods such as mirrored KDE (18),
ensemble KDE (19), copula-based KSG (21), and mixed KSG
(23), the ĴMI (X,Y) has several advantages. First, it is more com-
putationally efficient since only one common bandwidth is intro-
duced. Second, the procedure is completely data driven, and we
provide a stable selection procedure for bandwidth h so that no
tuning parameter needs to be predetermined. Third, our method
does not necessitate boundary correction and yet it retains the
same estimation efficiency because the boundary biases are
eliminated automatically. Finally and most importantly, tak-
ing the unique maximum value makes ĴMI (X,Y) numerically
stable.

Consistency of the Estimation. We have the following results for
the consistency of our estimator.

Theorem 3. Under general regularity conditions (SI Appendix, sec-
tion C, Assumptions A.1, A.5, and A.8) on functions K , cU, cV, and
bandwidth,

a) if MI <∞ and cUV satisfies regularity condition A.2 in SI
Appendix, section C, then

ĴMI (X,Y)− Î0 =OP (n
−3/(P+Q+3));

b) if MI =∞ and cUV satisfies regularity condition A.4 in SI
Appendix, section C, then

ĴMI (X,Y)→∞, a.s..

Note that Î0 is the oracle estimator of MI with root-n con-
sistency. When X and Y are both univariate random vari-
ables, Theorem 3a indicates that JMI has, in general, the same
root-n consistency as Î0, which is the minimax rate (38) for
estimating MI. Interestingly, for the special case when X and
Y are independent, Î0 =0 and the estimator converges to 0
at rate n−3/5, which is even faster than root-n. We exploit
this faster consistency rate for the independent case to yield
a test for independence with high local power as shown in SI
Appendix, section F.

Test for Independence
The proposed JMI estimator is a natural test statistic for inde-
pendence. Tests based on asymptotic distributions require data
with large sample size. In contrast, the permutation technique
can give a precise distribution for even small samples (39–
41). For a random sample of n observations, S = {(xi , yi), i =
1, . . . ,n}, from (X,Y), let δ(1), δ(2), . . . , δ(n) be a random
permutation of 1, 2, . . . ,n . Based on data S1 = {(xi , yδ(i)), i =

1, . . . ,n}, calculate the jackknife estimator, denoted by ĴMI 1.
On repeating the above procedure N times, T = {ĴMI k , k =

1, . . . ,N } are obtained. The distribution of ĴMI , under the null
hypothesis H0, can be approximated by the empirical distribu-
tion of T . At significance level α, we reject the null hypothesis
when ĴMI based on the original data is greater than the (1−α)th
quantile of T .

Simulation Study
Estimation of MI. In this section, we compare the efficiency of the
JMI estimator with that of existing estimators of MI. As shown
in ref. 23, the mixed KSG has the best performance among the
three kNN-based estimators they considered and outperforms
the partitioning method in their simulation studies. We thus
include the mixed KSG as a representative of kNN-based meth-
ods in the comparison. As the copula-based KSG (21) makes the
same marginal transformation as ours, it is also included in the
comparison. To illustrate the stability of the bandwidth selection
of JMI, we compare its performance with that of mirrored KDE
(18) and other KDE methods that select bandwidths, respec-
tively, by the rule-of-thumb method (THUMB) and the plug-in
method (PLUG-IN). We use the same models as in ref. 23 and
their variations for multivariate cases, all together nine models,
to evaluate the estimation methods. Details of these models are
listed in SI Appendix, section D. Similar to ref. 23, the mean-
squared errors (MSEs) of different methods for different models
and sample sizes are calculated based on 250 replications. The
results for the first five models are plotted in Fig. 2, while those
for the other four models are shown in SI Appendix, section E. It
can be seen that the other KDE methods have much bigger MSE
than JMI, possibly due to the fact that unequalized bandwidths
tend to cause boundary estimation bias. Copula-based KSG also
performs badly as it is not applicable directly to discrete random
variables. Mixed KSG shows satisfactory performance in all of
the models but is worse than JMI, especially for models I and
III. In comparison, our JMI has the smallest MSE for almost
all models across different sample sizes, indicating its superior
performance.

Test for Independence. Many statistical tests have been proposed
for independence. As demonstrated in ref. 3, HHG of ref. 6 usu-
ally has the best performance among all of the existing methods.
To ease visualization, we include only dCor of ref. 5, HHG of
ref. 6, and MIC of ref. 9 in this simulation study. We exam-
ine 16 models that were used in refs. 2, 3, and 6 which include
both univariate models and multivariate models. For each model,
we further consider the additive noise and the case where the
data are contaminated with pure noise. Details of these models
are listed in SI Appendix, section D. Similar to ref. 2, we simu-
late data with sample size n =320 and 25 different magnitudes
of noise level. For models with additive noise, we increase the
noise level by changing the noise ratio amplitude (NR), while for
models with contaminations, we raise the noise level by intro-
ducing more contaminating observations. We plot the power
curves for some of the results in Fig. 3, and the others are in SI
Appendix, section E.

We summarize the results as follows. dCor performs well
only for linear models with symmetric additive noise, but poorly
for the other models. Similar to results in refs. 2 and 3, MIC

Zeng et al. PNAS | October 2, 2018 | vol. 115 | no. 40 | 9959

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715593115/-/DCSupplemental


1000 2000 3000
10-4

10-3

10-2

10-1

1

10

1000 2000 3000
10-5

10-4

10-3

10-2

10-1

1

1000 2000 3000

10-2

10-1

1

10

1000 2000 3000
10-4

10-3

10-2

10-1

1

1000 2000 3000

10-4

10-3

10-2

10-1

1

Fig. 2. In each panel, the lines represent MSEs of different estimation methods based on 250 replications. Correspondence between colors and the methods
are as follows: JMI in red, mixed KSG in green, rule of thumb KDE in blue, plug-in KDE in black, mirrored KDE in dark yellow, and copula-based KSG in
brown. For model III, the plug-in method and the mirrored KDE method are not calculated due to their excessive computational complexity.

performs very well in testing independence for the high-
frequency sine model but it fails in other models. In most cases,
HHG has relatively better performance than MIC and dCor,
which is consistent with the findings in ref. 3. Generally, JMI
appears to be the most stable test for independence. It has simi-
lar performance to HHG for models with additive noise but has
clear superiority for data with contaminated observations.

Discussion
In this paper, we have introduced a jackknife kernel estimation
for the MI (JMI). Inspired by statistical tests for independence
and guided by asymptotic analysis, we propose that the band-
widths involved in the estimation should be set equal. For mea-

suring the dependence, we estimate the MI using its maximum
value with respect to the equalized bandwidth. JMI is completely
data driven and does not incur predetermined tuning parame-
ters. It enjoys very good statistical properties such as automatic
bias correction and high local power in testing for independence.
The superiority of JMI is also demonstrated through simulation
studies. We attribute the good performance of JMI to two fac-
tors: (i) the definition of MI itself and (ii) our estimation method
that enjoys several advantages mentioned above.

Materials and Methods
“Mixed KSG” was calculated by the codes in ref. 23. “Copula-based KSG”
was based on the algorithm described in ref. 21. “Mirrored KDE” was
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Fig. 3. In each pair of panels, Left shows the model and the data, and Right shows the power of tests at significance level α= 0.05: Models a1–a6 with
additive noise are in Upper panels, and models c4–c9 with contaminated noise are in Lower panels. For power curves, correspondence between colors and
different methods is as follows: red for JMI, green for HHG, blue for MIC, and black for dCor.
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computed by the algorithm introduced in ref. 42. For the other methods, the
simulations were conducted in R. “dCor” and “MIC” were estimated using
packages “energy” and “Minerva,” respectively. The HHG test was carried
out using the package “HHG.” For kernel methods, the rule of thumb used
the optimal Gaussian bandwidth given in ref. 24; bandwidths for “PLUG-
IN” were calculated using the package “ks.” “JMI” was calculated by the
procedure discussed in SI Appendix, section B. For estimation efficiency,
MSE for each model and sample size was calculated based on 250 repli-
cations. For the test of independence, we adopted the permutation test

discussed above. For each sample, we randomly permuted observations of
Y to generate samples under the null hypothesis. The power curve for each
model and at each noise level was calculated based on 1,000 simulations.
Our calculation codes are available at https://github.com/XianliZeng/JMI.
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