
PH
YS

IC
S
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Unveiling spins of physical systems usually gives people a fun-
damental understanding of the geometrical properties of waves
from classical to quantum aspects. A great variety of research has
shown that transverse waves can possess nontrivial spins and
spin-related properties naturally. However, until now, we still lack
essential physical insights about the spin nature of longitudinal
waves. Here, demonstrated by elastic waves, we uncover spins
for longitudinal waves and the mixed longitudinal–transverse
waves that play essential roles in spin–momentum locking. Based
on this spin perspective, several abnormal phenomena beyond
pure transverse waves are attributed to the hybrid spin induced
by mixed longitudinal–transverse waves. The unique hybrid spin
reveals the complex spin essence in elastic waves and advances
our understanding about their fundamental geometrical proper-
ties. We also show that these spin-dependent phenomena can
be exploited to control the wave propagation, such as non-
symmetric elastic wave excitation by spin pairs, a unidirectional
Rayleigh wave, and spin-selected elastic wave routing. These find-
ings are generally applicable for wave cases with longitudinal and
transverse components.
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A lmost 150 years ago, Helmholtz’s theorem unveiled the fun-
damental geometry that any vector field can be decomposed

into two parts u= uL + uT (1), a curl-free component and a
divergence-free component, namely, a longitudinal wave and a
transverse wave, respectively. Since then, several studies have
shown that the transverse propagating waves, i.e., optical waves,
carry their characteristic spin determined by the wave vector
and polarization profile (2, 3). Due to the essential geometrical
properties (4–6), nontrivial Berry phase and quantum spin Hall
effect (QSHE) can be induced and possessed for transverse
waves, even in a vacuum (7–13). Many experiments also have
shown that the spin of transverse waves can supply a robust and
powerful approach to control the wave flow (14–17). Neverthe-
less, despite distinct geometrical properties, no studies have yet
been made to discuss the corresponding physical characteristics
of longitudinal waves, especially their spin properties.

The elastic wave describes the basic dynamic principle of how
solid objects deform and become internally stressed in a peri-
odic form (18), which can reflect the properties from classical
solid motion to lattice oscillation in a quantum field. Distinct
from the transverse optical wave and longitudinal acoustic wave,
the elastic wave can support both the longitudinal and transverse
components simultaneously (18). Thus, the elastic wave serves as
the ideal platform for exploring geometrical and spin properties
of longitudinal waves, as well as the interaction between lon-
gitudinal and transverse ones. In this work, we find that the
longitudinal component possesses its own unique spin density
that plays an important role in geometrical and spin-related
properties of elastic waves. The mixed longitudinal–transverse
waves will carry an extra spin due to their hybridization, which
will be responsible for abnormal phenomena beyond pure trans-
verse waves. By analyzing the spin properties of elastic waves in
detail, we identify that the total spin angular momentum density
can be dissected into three contributions, as (see Materials and
Methods)

s= sL + sT + sh [1]

where sL = 〈uL|Ŝ|uL〉 is the spin contribution from longitudinal
wave uL, sT = 〈uT |Ŝ|uT 〉 is from transverse wave uT , and, spe-
cially, sh = 〈uL|Ŝ|uT 〉+ 〈uT |Ŝ|uL〉 is the hybrid spin density due
to nontrivial spin projections among these two states, where Ŝ
is the quantum spin operator for elastic waves. Spin is one of
the most important physical properties in quantum mechanics
and is a cornerstone for topological states, which can reveal the
complex interactions among multiple physical mechanisms. It is
worth emphasizing that the spin we discuss here is intrinsic in the
sense that it is the real physical spin angular momentum of elastic
waves, rather than the artificially constructed pseudospin degree
of freedom in literature (19, 20). Except for the well-known spin
sT (2, 3, 21), sL and sh are hidden and unobservable in a pure
transverse wave. We will fill this gap and advance the understand-
ing about the geometrical and spin properties of elastic waves in
isotropic media.

Considering the elastic waves in a homogeneous isotropic
solid, the linear elastic equation can be decoupled into two
independent forms: longitudinal wave uL and transverse wave
uT (18). The propagating elastic waves in solid are polarized
plane waves. With the basic geometrical conditions of longi-
tudinal wave ∇× uL =0 and transverse wave ∇· uT =0, their
polarization vectors will become momentum-dependent in plane
wave form. The transverse wave can hold a circularly polar-
ized propagating form and carry transverse wave spin density
naturally sT 6=0 (2, 21). For a pure longitudinal wave, there
is no extra degree of freedom to constitute the nontrivial chi-
rality so that sL =0. However, geometrically, we can use two
wave interferences (11) to induce an effective “circularly polar-
ized” profile for the total wave field, as shown in Fig. 1. For the
combination of two waves with different wave vectors, the total
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Fig. 1. Geometry and spin of arbitrary waves. The strong relations between
polarization profile and wave vector reflect the spin–orbit couplings: kL×
uL = 0 and kT · uT = 0, i.e., the spin–momentum lockings. (A) For the com-
binations of two longitudinal waves with different wave vectors kL,1 6= kL,2,
uL = uL,1 + uL,2, the total elastic field carries nontrivial spin angular momen-
tum density sL 6= 0 due to the wave interference, 〈uL,1|Ŝ|uL,2〉. (B) The
transverse waves in the same settings, uT = uT ,1 + uT ,2, also induce nontrivial
spin density sT 6= 0. (C) For the total elastic waves that contain longitudi-
nal and transverse plane waves simultaneously, u = uL + uT , the total elastic
spin density is attributed to the hybrid spin density s = sh, which reflects the
major geometrical difference between longitudinal and transverse waves.
The spheres in the figure are k spheres, and the real parts of displacement
fields are plotted.

elastic wave will possess a similar property to the circularly polar-
ized wave profile. In particular, the total elastic wave still keeps
its original characteristic geometry relations, namely,∇× uL =0
in Fig. 1A and ∇· uT =0 in Fig. 1B, but with nonzero spin
sL 6=0 and sT 6=0, respectively. This is due to the fact that,
despite 〈ui |Ŝ|ui〉=0 for each single wave field ui , (i =1, 2), the
wave interference within the total vector field u= u1 + u2 offers
the nonzero cross terms 〈u|Ŝ|u〉= 〈u1|Ŝ|u2〉+ 〈u2|Ŝ|u1〉 6=0 that
lead to the nonzero spin. Besides these conventional cases,
there exists one special spin form sh in the mixed longitudinal–
transverse wave in Fig. 1C. Although wave interference only
occurs in waves of the same type conventionally, longitudinal–
transverse wave mixing can be considered as generalized
effective wave interference to produce the nontrivial hybrid
spin: sh .

Topological properties are associated with the momentum-
dependent polarization profile, especially spin states (22, 23).
Considering the basic momentum-dependent geometrical con-
ditions of an elastic wave, we can see that the polariza-
tion profile of uL (uT ) is normal (tangent) to the k sphere.
Actually, these essential geometrical relations underlie the
spin–orbit coupling of elastic waves in an isotropic homoge-
neous solid, which is reminiscent of the spin–orbit coupling
of light in a vacuum (4, 7). Generalizing the normalized lon-
gitudinal wave uL =(0, 0, 1)e ikLz and the circularly polarized
transverse wave uT =1/

√
2 (1, iσ, 0)e ikT z ,σ=±1 into arbitrary

direction uL(kL) and uT (kT ), one can calculate their Berry con-
nections Aσ

T =−i(uσ
T )
∗ · (∇k)uσ

T , AL =−i(uL)
∗ · (∇k)uL and

obtain Berry curvatures, respectively, as

Fσ
T =∇k×Aσ

T =σ
kT

k3
T

, FL =∇k×AL =0. [2]

The topological Chern numbers for the transverse wave C σ
T =

1
2π

∮
Fσ

Td
2k and for the longitudinal wave CL = 1

2π

∮
FLd

2k,
where integrals are taken over the kT sphere and kL sphere,

would be responsible for unveiling their topological nature. The
circularly polarized transverse wave will yield C σ

T =2σ, but, for
the longitudinal wave, CL =0 due to the zero Berry curvature.
The total Chern numbers for the transverse wave and the lon-
gitudinal wave thus are trivial: CT =

∑
σ=±1 C

σ
T =0, CL =0.

However, for the spin Chern number Cspin , it would be nonzero
for the transverse wave but vanishes for the longitudinal wave
due to the lack of circularly polarized profile,

CT
spin =

∑
σ=±1

σC σ
T =4, CL

spin =0. [3]

The nontrivial Berry curvature and nonzero spin Chern number
CT

spin =4 have been proposed theoretically (7, 12) in the circu-
larly polarized electromagnetic wave and are verified experimen-
tally (24, 25). Different from kT · uT =0 for transverse wave,
the geometric constrain kL× uL =0 of the longitudinal wave
gives a trivial Berry curvature and spin Chern number CL

spin =
0, implying its different topological nature. Their topological
invariant difference can be defined by their distinct geometri-
cal relations. To obtain nontrivial spin topology for longitudinal
waves, one can exploit by constructing the circularly polarized
profile or hybrid spin with the help of wave interference with
others.

To exemplify the hybrid spin density sh , we consider the sim-
plest plane wave form in Fig. 2A. A longitudinal elastic wave
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Fig. 2. Spin hybridization of elastic waves. (Left) Plots showing real parts
of displacement fields, and (Right) corresponding spin textures. (A) When
two kinds of elastic waves propagate along same direction, longitudinal
wave uL∝ exp(ikLx)ex and transverse wave uT ∝ exp(ikT x)ey in plane wave
form, the total elastic waves u = uL + uT reveal the spin hybridization raised
from the geometrical differences. The total spin density varies periodi-
cally along the propagation direction x, s = sh∝ sin((kL− kT )x)ez. The z
component of s is plotted beyond the total displacement field. Another
intriguing case of elastic spin is rotating spin texture. (B) For the combi-
nation of longitudinal wave and circularly polarized transverse wave with
nontrivial spin density sT > 0, the total elastic spin becomes clockwise rotat-
ing along the propagation direction. (C) When sT < 0, the total elastic
spin density becomes anticlockwise rotating along the propagation direc-
tion; s∝∓ cos((kL− kT )x)ex − sin((kL− kT )x)ey ± ez, positive for sT > 0 and
negative for sT < 0, respectively.
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and the other linear polarized transverse wave propagate in par-
allel. They both individually carry zero spin density, but the
complex geometrical form of their total elastic field reflects
the spin hybridization between them. This hybridization induces
nonzero hybrid spin density sh 6=0, which contributes to the total
spin density s= sh . Importantly, this hybrid spin varies periodi-
cally along propagating direction sh ∝ sin((kL− kT )x ), and this
oscillation induces nonzero Poynting vector contribution ps ∝
∇× s 6=0, which is observable and detectable in experiments.
The hybrid spin will introduce some interesting spin phenomena,
such as wave spin lattice (see SI Appendix, Fig. S1) and rotating
spin texture. Considering the combination of a longitudinal wave
and a circularly polarized transverse wave with nontrivial spin
density sT 6=0 in Fig. 2 B and C, one can find that the total spin
direction will rotate along the propagating direction. The rotat-
ing direction is associated with the spin profile of the transverse
wave: clockwise for sT > 0 and anticlockwise for sT < 0. Conven-
tionally, ps for the circularly polarized transverse wave vanishes
due to the cancellation of neighbor spin currents (10). However,
mixed with a longitudinal wave, the total elastic wave will carry
detectable nonzero ps 6=0 with the help of nonzero hybrid spin
density sh .

Besides two-wave interference, the pure longitudinal wave can
also carry nontrivial spin density in spatial confined Gaussian
waveform. We calculate the spin density of an elastic longitu-
dinal wave in Fig. 3A (24). One can obtain that the two sides
of the longitudinal wave beam have opposite spin distribution,
which can be described by the nonzero spin density of a spatial
Gaussian decay field s∝ 4y/kLδ

2 exp(−2y2/δ2)ez , where δ is the
width of Gaussian decay (detailed derivations can be found in
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Fig. 3. Nontrivial spin texture in an elastic longitudinal wave beam. Besides
the wave interference approaches, the elastic Gaussian wave beam can also
induce nontrivial spin density distribution. (A) The longitudinal wave Gaus-
sian beam in the xOy plane, |uL| ∝ exp(−y2/δ2), will carry the antisymmetric
spin density around the center of the beam, s∝ 4y

kLδ
2 exp(−2y2/δ2)ez. The z

component of s is plotted above the displacement field of the longitudinal
wave Gaussian beam. (B) The real part of the displacement field behaves
effectively as a circularly polarized wave profile, whose rotation reflects
the nontrivial transverse spin properties along both sides of the Gaussian
beam.

SI Appendix, section 2). The nontrivial spin originates from the
effective imaginary vector field along the Gaussian decay direc-
tion that induces the circularly polarized wave profile, with the
geometrical constraint of longitudinal wave ∇× uL =0. In Fig.
3B, we indeed see that the real part of displacement fields forms
an opposite circularly polarized wave profile on both sides of the
Gaussian beam, which can carry nontrivial spin along z similar
to the case of transverse waves (2, 24). This antisymmetric spin
texture underlies the spin–orbit coupling in the Gaussian beam
so that the waves over different sides possess different polariza-
tions. Moreover, this spin texture is locked with the propagating
direction of the Gaussian beam: opposite direction with opposite
spin texture.

Strong spin texture momentum locking in an elastic wave
inspires several schemes to excite a spatial nonsymmetric elastic
wave with selective directionality. We exploit two different circu-
larly polarized elastic loads to serve as the pair of spin sources
to induce corresponding spin texture in Fig. 4A. We can see that
the propagating direction of excited elastic waves shows strong
dependence on the spin pair profile. Higher directionality can
be excited by using more elastic wave sources with polarization
gradients. Besides this scheme, we can excite the unidirectional
Rayleigh wave and especially associate its propagation direction
with spin profile, by using circularly elastic loads on the boundary
of solids in Fig. 4B, reminiscent of the phononic QSHE (26) and
photonic QSHE (7). However, the surface elastic modes are Z2

topologically trivial (Cspin/2 mod 2=0, with Cspin =CL
spin +

CT
spin =4); thus they have the usual scattering properties and are

not robust against defects or disorders. Besides QSHE of elastic
wave, in anisotropic material, we can realize spin-selected elastic
routing, as shown in Fig. 4C, which can be regarded as SHE of
the elastic wave, analogous to the optical case (27). It is achieved
by placing the circularly elastic load in the isotropic side, in near-
field proximity to the interface of the anisotropic elastic media
with hyperbolic-like dispersion. The induced evanescent wave at
interface possesses strong spin–momentum locked phenomena:
different momentum directions with opposite spins. Thus, when
the source excites the evanescent wave with a selected spin, the
wave will choose the spin-locked momentum, and then it will
selectively couple with the corresponding modes of high local
density of states and excite unidirectional wave radiation prop-
agating along a critical angle in the anisotropic elastic media.
The spin of the elastic wave is defined in the isotropic side. The
spin angular momentum of the elastic wave is responsible for
all of these phenomena (details can be found in SI Appendix,
section 3).

Finally, we discuss the experimental scheme to excite and
observe elastic spin. To excite the elastic wave with nontrivial
spin density, we consider four piezoelectric ceramics to induce
effective circularly polarized elastic point loads shown in Fig.
4D. The spatial gradient of excitation phases {φ1,φ2,φ3,φ4} will
be responsible for reconstructing the circularly polarized pro-
files (i) sz > 0: φ1 =0, φ2 =−π/2, φ3 =−π, and φ4 =−3π/2;
and (ii) sz < 0: φ1 =0, φ2 =π/2, φ3 =π, and φ4 =3π/2. Besides
piezoelectric ceramics, the laser beam array with different phases
can also induce the same spin excitation effect. To measure the
elastic spin, we can focus on one of the spin-related physical
phenomena: QSHE of elastic wave. After placing this excitation
array on the boundary of elastic media, i.e., aluminum, one can
observe the unidirectional excitation of the surface wave with
different phase patterns: spin–momentum locking. The experi-
mental proposal details and numerical verifications can be found
in SI Appendix, sections 4 and 5.

Our work unveils the physical properties of the spin angular
momentum in elastic waves of both longitudinal and transverse
nature in isotropic media, which can be regarded as a generaliza-
tion of the intimate relation between electron spin and angular
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momentum, revealed by Einstein and de Haas a century ago.
Moreover, it gives us a perspective on the underlying relation
between the spinful elementary excitations in condensed mat-
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Fig. 4. Spin–momentum locking in elastic waves. The strong directional
excitation of a spin-selected elastic wave can be realized based on the spin–
momentum locking. (A) Nonsymmetric elastic wave excitation in bulk can
be achieved by exploiting two circularly polarized elastic loads to induce an
effective opposite spin pair. The total displacement field is plotted. (B) Uni-
directional elastic surface mode, Rayleigh wave, can be excited selectively
by setting different circularly polarized elastic loads. The total displacement
field is plotted. (C) The spin-controlled elastic wave routing in bulk can be
achieved in anisotropic materials interfaced with isotropic media. The chiral
elastic wave spins are excited and characterized in the isotropic side. Differ-
ent spin excitation in the isotropic side selectively couples with the different
directional wave routing in the anisotropic side through the selective local
mode couplings of different spins at the interface. The area above the black
line is anisotropic material, and the area below is isotropic material, with
the black line as an interface. The divergence of the total displacement
field that reflects the longitudinal component is plotted. (D) The experi-
mental scheme to realize circularly polarized elastic loads. Four piezoelectric
ceramics with different excitation phases are inserted into the surface of alu-
minum. By adjusting the excitation pattern {φ1,φ2,φ3,φ4}, we can excite
the elastic wave with nontrivial spin density. After placing this array on the
boundary of the aluminum block, we will observe spin–momentum locking
phenomena: unidirectional excitations associated with their phase patterns.
The spin–momentum locking analysis and experimental scheme details can
be found in SI Appendix.

ter theory and polarized waves in classical fields. Potentially, our
results about the elastic spin could be extended to connect other
spin-related systems, (28) from conventional elastic wave devices
(29) to nanoscale phononic materials (30, 31), e.g., the highly
efficient spin-selected wave emitter, spin-sensitive detector, mul-
tichannel information transfer (32), or even spin conversions
among different excitations (33, 34).

Materials and Methods
Here, we will show that the spin of an elastic wave is contained in the
definition of angular momentum intrinsically, especially for the spin of a
longitudinal wave and the hybrid spin in a mixed longitudinal–transverse
wave. The total angular momentum density of an elastic wave in isotropic
medium can be defined as R× (ρ d

dt R), where R is the Lagrangian position
vector R = r− u, r is the Eulerian position vector after elastic deformation
u, and ρ is the mass density. For the velocity term d

dt u, we have

du

dt
=

d

dt
(uxex + uyey + uzez)

= ex
dux

dt
+ ey

duy

dt
+ ez

duz

dt
+ ux

dex

dt
+ uy

dey

dt
+ uz

dez

dt

=
∂u

∂t
+

(
∂u

∂t
· ∇
)

u +

(
∂

∂t
∇× u

)
× u,

[4]

where ex , ey , and ez are the unit vectors. From Eq. 4, we can see that the
first part, ∂u/∂t + (∂u/∂t · ∇)u, is a material derivate, which reflects the
time evolution of the displacement field that is subjected to a space–time–
dependent velocity field variations. The second part, ∂/∂t(∇× u)× u, is
raised from the rotating frame of reference with nonzero local vorticity,
namely∇× u 6= 0.

Considering u = uL + uT , the time-averaged angular momentum density
j can be written as

j =
〈

(r− uL− uT )×
(
ρ

d

dt
(r− uL− uT )

)〉
t

=

〈
ρ(r− uL− uT )×

(
−
∂

∂t
uL−

∂

∂t
uT

)〉
t

+

〈
ρ(r− uL− uT )×

(
−
∂

∂t
(uL + uT ) · ∇

)
(uL + uT )

〉
t

+

〈
ρ(r− uL− uT )×

(
−
(
∂

∂t
∇× uT

)
× (uL + uT )

)〉
t

=

〈
−ρr×

∂

∂t
uL

〉
t
+

〈
−ρr×

∂

∂t
uT

〉
t

+

〈
ρ(r− uL− uT )×

(
−
∂

∂t
(uL + uT ) · ∇

)
(uL + uT )

〉
t

+

〈
ρ(r− uL− uT )×

(
−
(
∂

∂t
∇× uT

)
× (uL + uT )

)〉
t

+

〈
ρ(uL + uT )×

(
∂

∂t
uL +

∂

∂t
uT

)〉
t

,

[5]

where 〈·〉t denotes the time-averaged operator. In our work, based on
monochromatic elastic wave fields with frequency ω in a uniform nondis-
persive solid, the displacement field can be described by u(r, t) = u0(r)e−iωt ;
thus

〈
ρr× ∂

∂t uL
〉

t
+
〈
ρr× ∂

∂t uT
〉

t
= 0. Considering |r|� |uL + uT |, R≈ r,

we can decompose the time-averaged angular momentum density j into
two different parts,

j = l + s. [6]

The first orbital angular momentum contribution l = ρω/2r× (Re[−iuL* ·
(∇)uL] + Re[−iuT* · (∇)uT ] + Re[−iuL* · (∇)uT ] + Re[−iuT* · (∇)uL]), with u* ·
(∇)u = ux*∇ux + uy*∇uy + uz*∇uz, is an extrinsic origin-dependent quantity,
which results from the third and fourth terms in Eq. 5. The second spin
angular momentum contribution

s =
ρω

2
Im[uL*× uL + uT*× uT + uL*× uT + uT*× uL] [7]

represents the spin density of elastic waves, which is an intrinsic local
property and is origin-independent, as a result of the last term in Eq. 5.
Obviously, s is strongly associated the polarization profile of the local elastic
wave. In Eq. 7, the total spin density can be decomposed into three parts
with different physical meanings,
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s = sL + sT + sh, [8]

where sL = ρω/2Im[uL*× uL] is the spin density of longitudinal elastic
wave, sT = ρω/2Im[uT*× uT ] is the spin density of transverse elastic wave,
and sh = ρω/2Im[uL*× uT + uT*× uL] is the hybrid spin density in a mixed
longitudinal–transverse elastic wave.

It is interesting to point out that the spin density can be expressed as
the quantum spin representation of the SO(3) group. To represent the spin
density in convenient quantum-like representation, we introduce the local
state vector of the field,

|u〉= |uL〉+ |uT〉 , [9]

where

|uL〉=
√
ρω

2

uL,x

uL,y

uL,z

, |uT〉 =

√
ρω

2

uT ,x

uT ,y

uT ,z

. [10]

Using the state vector, spin and orbital angular momentum density can be
written as “local expectation values” of the corresponding operators,

l = Re[〈u| − i(r×∇)|u〉]

sL = 〈uL|Ŝ|uL〉

sT = 〈uT |Ŝ|uT〉

sh = 〈uT |Ŝ|uL〉+ 〈uL|Ŝ|uT〉,

[11]

where Ŝ is the spin angular momentum density operator for elastic wave,
u* · (Ŝ)u = Im[u*× u] (7, 10, 21, 35). From the results, we can find that the
physical mechanism behind the nontrivial sh is the nonzero projection of
spin from one kind of elastic wave to another kind.

Spin Operator
The spin angular momentum of an elastic wave can be described
by the following spin-1 operator, which has the same form with
light (7, 10) due to the similar geometry relation:

Ŝx =−i

0 0 0
0 0 1
0 −1 0

 Ŝy =− i

0 0 −1
0 0 0
1 0 0


Ŝz =−i

0 1 0
−1 0 0
0 0 0

.
[12]

The spin operator Ŝ satisfies the fundamental commutation
relations of angular momentum: [Ŝi , Ŝj ] = iεijk Ŝk .
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