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Abstract
Background.  Meningiomas are adult brain tumors originating in the meningeal coverings of the brain and spinal 
cord, with significant heritable basis. Genome-wide association studies (GWAS) have previously identified only a 
single risk locus for meningioma, at 10p12.31.
Methods. To identify a susceptibility locus for meningioma, we conducted a meta-analysis of 2 GWAS, imputed 
using a merged reference panel from the 1000 Genomes Project and UK10K data, with validation in 2 independent 
sample series totaling 2138 cases and 12 081 controls.
Results. We identified a new susceptibility locus for meningioma at 11p15.5 (rs2686876, odds ratio  =  1.44, 
P = 9.86 × 10–9). A number of genes localize to the region of linkage disequilibrium encompassing rs2686876, includ-
ing RIC8A, which plays a central role in the development of neural crest-derived structures, such as the meninges.
Conclusions. This finding advances our understanding of the genetic basis of meningioma development and pro-
vides additional support for a polygenic model of meningioma.

Key words  

genome-wide association study | meningioma | polygenic | risk |  
single-nucleotide polymorphism

mailto:elizabeth.claus@yale.edu?subject=
mailto:richard.houlston@icr.ac.uk?subject=


 1486 Claus et al. Genome-wide association study of meningioma risk

Meningiomas are adult tumors arising in the membranous 
layers surrounding the brain and spinal cord and account 
for around a third of all primary brain tumors.1–3 The inci-
dence of meningioma is 2-fold higher in females than in 
males, and the disease is more common in individuals with 
African ancestry.1 Although mortality rates are relatively 
low, meningioma is associated with substantial morbidity.

Compared with malignant glial tumors, meningioma has 
been relatively understudied with regard to etiologic risk 
factors. Indeed, excluding exposure to ionizing radiation, 
no environmental factor has consistently been associated 
with tumor risk.2,3 Evidence for an inherited predisposi-
tion to meningioma is provided by the elevated risk seen 
in neurofibromatosis4 and Gorlin syndrome.5 While the risk 
of meningioma associated with these disorders is high, 
they are rare and collectively contribute little to the 3-fold 
increased risk of the tumor in the relatives of meningioma 
patients.6,7 Evidence for common genetic variation contrib-
uting to meningioma predisposition has been provided by 
a genome-wide association study (GWAS),8,9 which identi-
fied a risk locus at chromosome 10p12.31.10,11

To gain a further insight into inherited susceptibility to 
meningioma, we performed a meta-analysis of a previ-
ously published GWAS10 and a new unpublished GWAS, 
thereby providing increased study power to identify new 
risk loci and reduce the likelihood of false positives.12 
Following replication genotyping in 2 additional independ-
ent series, we report the identification of a new risk locus 
for meningioma mapping to chromosome 11p15.5.

Methods

Ethics

Collection of patient samples and associated clinico-
pathological information in this study was completed 
with written informed consent and relevant ethical review 
board approval at the respective centers in accordance 
with the tenets of the Declaration of Helsinki. Specifically, 
these centers are for the German-GWAS: the ethics 
committees of the Medical Faculty of the University of 
Bonn and University Hospital Essen; USA-GWAS: the 
institutional review boards at Yale University School of 
Medicine, Brigham and Women’s Hospital, the University 
of California at San Francisco, The MD Anderson Cancer 
Center, Duke University School of Medicine, the Kaiser 

Foundation Research Institute, and the State of Connecticut 
Department of Public Health Human Investigation 
Committee; UK-replication: the South East Multicentre 
Research Ethics Committee and the Scottish Multicentre 
Research Ethics Committee; Danish-replication: the Danish 
ethical committee system, the Danish Data Protection 
Board, and the Danish Ministry of Justice.

Genome-Wide Association Studies

This meta-analysis was completed based on 2 GWAS data-
sets (Supplementary Table S1). The diagnosis of meningi-
oma (ICD-10 D32/C70) was established in accordance with 
World Health Organization (WHO) guidelines.

The German-GWAS comprised 834 cases (250 male) and 
2103 controls (1047 male). The German-GWAS case-con-
trol study has been described previously.10 Case subjects 
were patients who underwent surgery for meningioma at 
the University of Bonn Medical Center between 1996 and 
2008. Control subjects were healthy individuals with no 
past history of malignancy from the Heinz Nixdorf Recall 
(HNR) study.13 DNA was extracted from samples using con-
ventional methodologies and quantified using PicoGreen 
(Invitrogen). Genotyping of cases and controls was con-
ducted using either Infinium HD Human660w-Quad or 
OmniExpress Beadchips according to the manufacturer’s 
protocols (Illumina).

The USA-GWAS comprised 772 cases (217 male) and 
7720 controls (2966 male). Case patients eligible for the 
study included all persons diagnosed between 2006 and 
2013 with a histologically confirmed intracranial men-
ingioma among residents of the states of California, 
Connecticut, Massachusetts, North Carolina, and Texas. 
Case patients were diagnosed between the ages of 
20 and 79 and were identified through the Rapid Care 
Ascertainment systems and state tumor registries at their 
respective study sites. Controls were obtained through 
random-digit dialing performed by an outside consulting 
firm (Kreider Research and Consulting) (n  =  689) or are 
from The Resource for Genetic Epidemiology Research 
on Aging (GERA) cohort (n = 7031).14,15 Controls obtained 
through random-digit dialing were frequency matched 
with case patients by 5-year age interval, sex, and state 
of residence. Patients with a prior history of meningioma 
and/or a brain lesion of unknown pathology were not eli-
gible for inclusion. The GERA cohort comprises 110 266 
adult members of the Kaiser Permanente Medical Care 

Importance of the study
Meningiomas are adult tumors arising in the men-
inges and account for around a third of all primary 
brain tumors. Evidence for common genetic variation 
contributing to meningioma predisposition has been 
provided by a GWAS, which identified a risk locus at 
chromosome 10p12.31. To gain further insight into the 
inherited susceptibility of meningioma, we performed a 
meta-analysis of 2 GWAS and 2 independent validation 

series comprising 2138 cases and 12 081 controls, and 
report the identification of a new risk locus for men-
ingioma at 11p15.5. A number of genes localize to this 
locus, including RIC8A, which plays a central role in the 
development of neural crest-derived structures, such 
as the meninges. This is only the second study, and the 
largest, to robustly associate common genetic variation 
as a risk factor for meningioma.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
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Plan, Northern California Region (KPNC). Participants 
were enrolled through participation in a mailed study 
conducted in 2007 of all KPNC adult members who had 
been members for more than 2 years. Respondents who 
completed consent forms were mailed saliva collection 
kits (Oragene). We sampled 7031 individuals from 56 848 
non-Hispanic white individuals whose data passed quality 
control for inclusion in the control group, to ensure 1:10 
matching between cases and controls in the USA-GWAS, 
thereby optimizing study power, since there is little benefit 
of additional controls thereafter.16 Genotyping of cases and 
controls of all USA-GWAS subjects was completed using 
Affymetrix Axiom EUR arrays according to the manufac-
turer’s protocols.

Statistical Analysis

The quality control procedure described by Anderson et al17 
was applied to each GWAS individually (Supplementary 
Table S1). To identify samples with discordant sex informa-
tion, the mean homozygosity rate across X-chromosome 
markers was computed and samples were excluded if this 
rate contradicted the reported sex or was inconclusive (a 
rate between 0.2 and 0.8). We next excluded individuals 
if they exhibited an elevated genotype failure rate (>3%) 
or an outlying heterozygosity rate (±3 standard deviations 
from the mean). To identify duplicated or related individu-
als, the degree of shared ancestry between pairs of individ-
uals was computed (using identity by descent, IBD). If a pair 
of individuals had an IBD score >0.185, then the individual 
with the lowest variant call rate was excluded. Individuals 
with a non-European ancestry were identified by merg-
ing data from 3 HapMap version II populations (CEU, JPT/
CHB, and YRI) and conducting principal component ana-
lysis on the merged individuals. Individuals with a second 
principal component score less than 0.072 were excluded. 
Variants were excluded if they had a high missing data rate 
(>5%), if the genotyping call rates differed between the 
cases and the controls (P < 10−5 using Fisher’s exact test), 
if they had a minor allele frequency (MAF) <0.01, or if they 
deviated significantly from Hardy–Weinberg equilibrium 
(HWE, P < 10–5). Individuals were phased using SHAPEIT 
version 2.r837 software18 and a merged reference panel 
(EGAD00001000776, the European Genome-phenome 
Archive) containing data from the 1000 Genomes Project19 
(Phase 3) and the UK10K.20 GWAS data were imputed to 
more than 10 million single nucleotide polymorphisms 
(SNPs) using IMPUTE version 2.3.021 and the same ref-
erence panel. Imputation was conducted separately for 
each of the studies. In each dataset, the data were pruned 
to the set of variants common to the cases and controls 
before imputation. Tests of association between the dir-
ectly genotyped and imputed SNPs and meningioma were 
performed using logistic regression under an additive gen-
etics model using SNPTEST version 2.5.2.22 Poorly imputed 
SNPs (information measure <0.8), SNPs with a low MAF 
(<0.005), and SNPs that deviated from HWE (P  <  10−5) 
were excluded. To evaluate the possibility of differential 
genotyping of cases and controls and the adequacy of the 
case-control matching, quantile-quantile (Q-Q) plots of the 
test statistics were generated (Supplementary Figure  1). 

The computed inflation factor λ is based on the 90% least 
significant SNPs.23 In each study, the effects of population 
stratification were limited by including in the analysis the 
first 2 and 3 principal components for the German and USA 
series, respectively. Eigenvectors for each of the GWAS 
datasets were computed using EIGENSOFT version 4.2.24

Meta-analyses of the individual GWAS were com-
pleted using the β estimates and standard errors from 
each study and the fixed-effects inverse-variance method 
implemented in META version 1.7.25 Cochran’s Q-statistic 
and the I2 statistic were used to test for heterogeneity and 
estimate the proportion of the total variation that is due 
to heterogeneity.26 Meta-analysis was only completed for 
an SNP if it passed the quality thresholds in all considered 
GWAS. SNPTEST was used to perform conditional asso-
ciation analysis. SNP associations at P  <  5  ×  10−8 in the 
meta-analyses are considered genome-wide significant.27 
Despite imposing a stringent significance threshold of 
P < 5 × 10−8 for declaring a GWAS association as being sig-
nificant, it is possible that some such associations might 
still be false positives. To further assess the robustness of 
an association, Wakefield has proposed the application of 
an approximate Bayes factor to calculate the Bayes false 
discovery probability (BFDP).28 We estimated the BFDP 
based on a plausible odds ratio of 1.2 and a prior probabil-
ity of 0.0001.29

Replication Studies

Ten promising SNP associations from the meta-analysis 
of the 2 GWAS were taken forward for de novo replication 
(Supplementary Table  S2). Promising associations were 
prespecified as loci with SNP association P-values  <10−5, 
which also had support from additional correlated SNPs 
mapping to the same genetic region (ie, r2  >  0.5 and 
P  <  10−3). The UK-replication series comprised 439 cases 
(ICD10 D32/C70) from the INTERPHONE study30 and 1865 
population-based controls with no past history of any 
malignancy, ascertained through the National Study of 
Colorectal Cancer Genetics.31 The Danish-replication ser-
ies comprised 115 cases (ICD-O 9530–9537) from the 
INTERPHONE study and 411 controls with no past history of 
cancer, ascertained through the Danish Central Population 
Registry. Replication genotyping of UK and Danish sam-
ples was performed using allele-specific PCR KASP chemis-
try (LGC). Primers are detailed in Supplementary Table S3. 
Thirty-four samples were excluded from the UK-replication 
series for having 3 or more failed calls. Call rates for each 
genotyped SNP were >98% in the remaining UK samples. 
Six samples were excluded from the Danish-replication 
series due to the failed call of the genotyped SNP.

Sequencing

To assess the fidelity of imputation of rs7124615, a sub-
set of 126 cases and 56 controls from the German-GWAS 
series, selected to be enriched for the presumptive T 
allele, were sequenced using BigDye Terminator v3.1 
Cycle Sequencing Kit (Applied Biosystems) in conjunc-
tion with ABI 3700xl semi-automated sequencers (Applied 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
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Biosystems). We did not detect the presence of the T allele 
in any of the samples. The SNP rs7124615 maps to a highly 
repetitive region, suggesting that this SNP may be incor-
rectly annotated to this region. Primer sequences are 
detailed in Supplementary Table S3.

Heritability Analysis

We used genome-wide complex trait analysis (GCTA) to 
estimate the heritability ascribed to the genotyped SNPs 
across all autosomes and each individual autosome.32 
SNPs were excluded based on high missing rate (>5%), 
low MAF (<0.01), or evidence of deviation from HWE 
(P  <  0.05). Individuals identified as being closely related 
were also excluded. Restricted maximum likelihood ana-
lysis was run using a genetic relationship matrix for each 
pair of samples. The lifetime risk of meningioma was used 
to transform the estimated heritability to the liability scale, 
as previously advocated when calculating the heritability 
of common lethal diseases such as cancer.33 The lifetime 
risk of brain and nervous system tumors is 0.62%,34 men-
ingioma accounts for 36% of primary brain tumors,35 and 
we therefore estimated the lifetime risk of meningioma to 
be 0.224%. We followed the methodology of Yang et al36 to 
adjust for incomplete linkage disequilibrium between the 
genotyped and causal SNPs at a range of MAF thresholds 
between 0.1 and 0.5. Heritability was estimated for the 
German and USA series individually and a meta-analysis of 
the results was completed under a fixed-effects model. We 
additionally used the phenotype correlation–genotype cor-
relation (PCGC) regression method to estimate the heritabil-
ity ascribed to the genotyped SNPs across all autosomes,37 
using the genetic relationship matrix and lifetime risk esti-
mate that was used with GCTA. We adjusted for population 
structure when estimating heritability using the GCTA and 
PCGC regression approaches by including as covariates 
the first 2 and 3 principal components for the German and 
USA series, respectively. Estimates of individual variance in 
risk associated with meningioma risk SNPs was carried out 
using the method described in Pharoah et al.38

Expression Quantitative Trait Loci Analysis

Publicly available data from 47 tissues from the Genotype-
Tissue Expression (GTEx) project39 v7 release were used to 
examine the relationship between SNP genotype and gene 
expression. We set a significance threshold for the expres-
sion quantitative trait loci (eQTL) analysis of P < 2.01 × 10−5, 
corresponding to a Bonferroni correction for 2491 tests (53 
genes across 47 tissues).

Summary-Level Mendelian Randomization 
Analysis

To examine the relationship between meningioma risk 
loci and gene expression we performed a summary-level 
Mendelian randomization (SMR) analysis, as per Zhu 
et  al.40 Briefly, GWAS summary statistics files were gen-
erated from the meta-analysis. Reference files were gen-
erated using data from the 1000 Genomes Project (Phase 

3) and UK10K. As previously advocated, only probes with 
at least one eQTL P-value of <5.0 × 10−8 were considered 
for SMR analysis. We set a threshold for the SMR test of 
PSMR < 1.01 × 10−4, corresponding to a Bonferroni correc-
tion for 496 tests (496 probes with a top eQTL P < 5.0 × 10−8 
across 47 tissues). For the HEIDI (heterogeneity in depend-
ent instruments) test, P-values <0.05 were taken to indicate 
significant heterogeneity. 

Data Availability

Genotype data from GERA are available from dbGaP 
(accession phs000674.v2.p2). The 1000 Genomes Project 
and UK10K imputation panel data are available from 
the European Genome-phenome Archive (accession 
EGAD00001000776). Remaining data are available from 
the authors upon request.

Results

Association Analysis

We analyzed GWAS SNP data passing quality control for 
1606 cases and 9823 controls of European ancestry from 
2 studies: a previously reported GWAS of 834 cases and 
2103 controls (German-GWAS)10 and a new GWAS of 772 
cases and 7720 controls (USA-GWAS) from Yale University, 
Brigham and Women’s Hospital, The MD Anderson Cancer 
Center, Duke University School of Medicine, and the 
University of California San Francisco (Supplementary 
Tables  S1 and S4). To increase genomic resolution, we 
used data from the 1000 Genomes Project and UK10K to 
impute >9 million SNPs. Q-Q plots for SNPs with a MAF 
>1% post imputation did not show evidence of substantive 
overdispersion (λ between 0.99 and 1.04; Supplementary 
Figure  S1). We computed joint odds ratios and 95% CIs 
under a fixed-effects model for each SNP and associ-
ated per allele principal component corrected P-values 
for all cases versus controls from the 2 series (Fig.  1, 
Supplementary Figure 2).

The strongest association was provided by SNP 
rs530000334 (P  =  1.41  ×  10−11), which maps to the previ-
ously identified risk locus at 10p12.31 (Fig.  1). Excluding 
the poorly imputed SNP rs7124615 at 11p15.5, no other 
association was genome-wide significant. We sought 
independent validation of promising associations (ie, 
P < 10−5) at 10 loci where support was provided by SNPs 
in linkage disequilibrium (r2 > 0.5 and P < 10−3) by geno-
typing additional case-control series from the UK and 
Denmark (Supplementary Table  S2). In a combined ana-
lysis of the GWAS and replication datasets for these select 
SNPs, the only genome-wide association was shown by 
rs2686876, also at 11p15.5 (P = 9.86 × 10−9; Table 1, Fig. 2, 
Supplementary Table  S2). The BFDP for this association 
was 1.8%, thereby supporting the robustness of the associ-
ation. At both 11p15.5 and 10p12.31, a conditional analysis 
of SNP genotypes provided no evidence for additional 
independent signals at either risk locus.

Most meningiomas (>80%) are WHO grade I  tumors, 
with the remainder grade II (atypical, 15%) and grade 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
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III (anaplastic) meningioma41; males are more likely 
than females to have atypical or aggressive lesions. We 
assessed the relationship between 11p15.5 genotype and 
WHO grade, sex, and age at diagnosis by case-only anal-
ysis. WHO grade was not available for all USA-GWAS, 
UK-replication, and Danish-replication cases and there-
fore the WHO grade case-only analysis was restricted 
to the German-GWAS cases. Case-only analyses of sex 
and age at diagnosis were conducted in all series. These 
analyses provided no evidence for association between 
rs2686876 and WHO grade, sex, or age at diagnosis, con-
sistent with a generic effect of genotype on meningioma 
risk (Supplementary Table S5).

A number of genes localize to the region of linkage 
disequilibrium encompassing rs2686876 (Fig.  3). They 
include RIC8A, a homolog of C.  elegans Ric8/synembryn 
that encodes a highly conserved G protein regulator. 
Intriguingly RIC8A plays a central role in the development 
of neural crest-derived structures including the menin-
ges.42 To gain insight into the biological basis underly-
ing the 11p15.5 association, we first evaluated each of 
the risk SNPs as well as the correlated variants (r2 > 0.8) 

using the online resources HaploReg v4,43 RegulomeDB,44 
and SeattleSeq45 for evidence of functional effects 
(Supplementary Table S6). These data revealed active chro-
matin states overlapping SNPs correlated with rs2686876.

We explored whether there were any associations 
between rs2686876 genotype and the transcript levels of 
genes within 1 Mb using eQTL data on 47 tissues gener-
ated by the GTEx project39 (Supplementary Table S7). After 
accounting for multiple testing (53 genes across 47 tissues; 
P < 2.01 × 10−5), significant eQTL for ANO9 were observed 
in brain caudate basal ganglia (P = 8.30 × 10−7) and brain 
putamen basal ganglia (P  =  2.58  ×  10−6), for BET1L in 
esophagus mucosa (P  =  9.03  ×  10−6) and for PSMD13 
in brain anterior cingulate cortex (P = 1.36 × 10−5). ANO9 
upregulation has been observed in colorectal cancer46 and 
has been associated with poor prognosis in pancreatic 
cancer.47 The rs2686876 meningioma risk allele was, how-
ever, conversely associated with lower ANO9 expression 
at the 2 eQTLs. While the risk allele of rs2686876 is associ-
ated with higher RIC8A expression at nominal significance 
levels (P < 0.05) in 15 of the 47 tissues, the associations 
were not significant after correction for multiple testing.
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Fig. 1  Manhattan plot of association P-values. Shown are the genome-wide P-values (2-sided) of >9 million successfully imputed SNPs in 1606 
cases and 9823 controls. Text labeled in red is about previously identified risk loci and text labeled in blue is about newly identified risk loci. 
Imputation of rs7124615 was not supported by sequencing and this SNP is therefore not represented.

Table 1  Summary results for the SNP from the newly reported locus associated with meningioma risk

SNP Locus Position 
(bp) *

Risk Allele Study Case RAF Control RAF OR (95% CI) P-value

rs2686876 11p15.5 258909 T German-GWAS 0.927 0.902 1.29 (1.05–1.59) 1.69 × 10–2

USA-GWAS 0.938 0.910 1.46 (1.21–1.77) 1.09 × 10–4

GWAS phase meta-analysis 1.38 (1.20–1.59) 8.19 × 10–6

UK-replication 0.955 0.921 1.61 (1.21–2.14) 1.05 × 10–3

Danish-replication 0.943 0.905 1.65 (0.97–2.82) 6.62 × 10–2

Replication phase  
meta-analysis

1.62 (1.26–2.08) 1.73 × 10–4

Combined GWAS/replication  
phase meta-analysis

1.44 (1.27–1.63) 9.86 × 10–9

RAF, risk allele frequency; OR, odds ratio; CI, confidence interval. *Position is based on NCBI build 37.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noy077#supplementary-data
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We used SMR analysis to test for a concordance between 
signals from GWAS and cis eQTL for genes within 1 Mb of 
the sentinel and correlated SNPs (r2 > 0.8) at the 11p15.5 
locus and derived bXY statistics, which estimate the effect 
of gene expression on meningioma risk (Supplementary 
Table S8). After accounting for multiple testing, the SMR 
analysis failed to provide overwhelming evidence to impli-
cate a specific gene.

Discussion

We have provided the first evidence that implicates vari-
ation at 11p15.5 as a determinant of meningioma risk. To 
our knowledge this is only the second study, and the larg-
est, to robustly associate common genetic variation as a 
risk factor for meningioma.

Although functional studies will be required, dysregu-
lation of RIC8A provides an attractive basis of the 11p15.5 
association a priori. RIC8A has an essential role in the 
development of the mammalian central nervous system, 
maintaining the integrity of pial basement membrane and 
modulating cell division.42 Intriguingly, conditional Ric8a 
knockout mice have been reported to exhibit defects in 
meningeal layer formation.42

Thus far, variation at only 2 loci has been robustly 
shown to affect meningioma risk.10 To estimate the 
potential heritability of meningioma attributable to all 
common variation, we applied GCTA32 and PCGC regres-
sion37 to the GWAS datasets (Supplementary Table S9). 
Combining data from the 2 GWAS indicates that the 
heritability associated with common variation is 27.9% 
(±4.4%).

The identification of risk variants at 11p15.5 provides fur-
ther evidence for common genetic variation influencing 
meningioma risk and suggests the involvement of specific 
genes in tumor development. Since variation at 10p12.31 
and 11p15.5 account for only ~4% of the familial risk of 
meningioma (Supplementary Table S10), it is likely that fur-
ther risk variants for meningioma will be identified through 
additional and larger GWAS.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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