
T E CHN I C A L R E POR T

Functional MRI registration with tissue-specific patch-based
functional correlation tensors

Yujia Zhou1,3 | Han Zhang3 | Lichi Zhang2,3 | Xiaohuan Cao3,4 | Ru Yang1,3 |

Qianjin Feng1 | Pew-Thian Yap3 | Dinggang Shen3,5

1Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China

2School of Biomedical Engineering, Shanghai Jiao Tong University, China

3Department of Radiology and BRIC, University of North Carolina, Chapel Hill, North Carolina

4School of Automation, Northwestern Polytechnical University, Xi’an, China

5Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea

Correspondence

Qianjin Feng, Guangdong Provincial Key

Laboratory of Medical Image Processing,

School of Biomedical Engineering, Southern

Medical University, Guangzhou, China.

Email: qianjinfeng08@gmail.con

and

Dinggang Shen, Department of Radiology

and BRIC, University of North Carolina,

Chapel Hill, NC, USA.

Email: dgshen@med.unc.edu

Funding information

National Natural Science Funds of

Guangdong United Found (NSFC-

Guangdong United Found), Grant/Award

Number: U1501256; The Science and

Technology Project of Guangdong

Province, Grant/Award Numbers:

2015B010106008, 2015B010131011;

National Institutes of Health, Grant/Award

Numbers: NS093842, EB022880

Abstract
Population studies of brain function with resting-state functional magnetic resonance imaging (rs-

fMRI) rely on accurate intersubject registration of functional areas. This is typically achieved

through registration using high-resolution structural images with more spatial details and better tis-

sue contrast. However, accumulating evidence has suggested that such strategy cannot align

functional regions well because functional areas are not necessarily consistent with anatomical

structures. To alleviate this problem, a number of registration algorithms based directly on rs-fMRI

data have been developed, most of which utilize functional connectivity (FC) features for registra-

tion. However, most of these methods usually extract functional features only from the thin and

highly curved cortical grey matter (GM), posing great challenges to accurate estimation of whole-

brain deformation fields. In this article, we demonstrate that additional useful functional features

can also be extracted from the whole brain, not restricted to the GM, particularly the white-matter

(WM), for improving the overall functional registration. Specifically, we quantify local anisotropic

correlation patterns of the blood oxygenation level-dependent (BOLD) signals using tissue-specific

patch-based functional correlation tensors (ts-PFCTs) in both GM and WM. Functional registration

is then performed by integrating the features from different tissues using the multi-channel large

deformation diffeomorphic metric mapping (mLDDMM) algorithm. Experimental results show that

our method achieves superior functional registration performance, compared with conventional

registration methods.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a popular noninvasive

brain functional imaging technique that can indirectly characterize

neural activities by detecting blood-oxygen-level dependent (BOLD)

signal changes (Ogawa, Lee, Kay, & Tank, 1990). A significant amount

of effort is currently focused on understanding how brain subsystems

interact and communicate with each other (van den Heuvel and Pol,

2010). In resting-state fMRI (rs-fMRI) studies, this is typically done by

determining the functional connectivity of different brain regions by

evaluating temporal correlations of their BOLD signals (Biswal, Yetkin,

Haughton, & Hyde, 1995; Greicius, Krasnow, Reiss, & Menon, 2003;
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Raichle and Snyder, 2007). This approach is useful for exploring the dis-

tinct patterns of synchronous brain activity when the brain is at rest

(Wang et al., 2015). Furthermore, differences in resting-state networks

between healthy and patient cohorts have been regarded as potential

biomarkers that could be valuable for clinical studies (Filippini et al.,

2009; Greicius, Srivastava, Reiss, & Menon, 2004).

Accurate intersubject registration is a key to improve the statisti-

cal power in group comparison using rs-fMRI data. Typically, inter-

subject registration of rs-fMRI is often achieved through structural

alignment with the help of the corresponding T1-weighted MR

images (Ashburner and Friston, 2005), the tissue probability maps

obtained by segmentation (Ashburner, 2007) or more sophisticated

diffeomorphic mapping (Xue et al., 2004, 2006a,b; Xue et al., 2006c).

However, recent studies (Cetin et al., 2015; Conroy, Singer, Haxby, &

Ramadge, 2009; Conroy, Singer, Guntupalli, Ramadge, & Haxby,

2013; Jiang, Du, Cheng, Jiang, & Fan, 2013; Khullar et al., 2011;

Langs, Tie, Rigolo, Golby, & Golland, 2010; Sabuncu et al., 2010)

have demonstrated that structural alignment does not necessarily

ensure functional alignment, since functional regions are not confined

by anatomical boundaries. Recently, attempts have been made to

directly employ fMRI data for functional registration (Cetin et al.,

2015; Conroy et al., 2009, 2013; Jiang et al., 2013; Khullar et al.,

2011; Langs et al., 2010; Sabuncu et al., 2010). For task-related

fMRI, functional registration can be achieved by maximizing the task-

specific BOLD signal correlation across subjects (Sabuncu et al.,

2010). However, this approach cannot be applied to rs-fMRI due to

the lack of task-related activation (Cole, Smith, & Beckmann, 2010).

In Conroy et al. (2009), Conroy et al. (2013), Jiang et al. (2013), and

Langs et al. (2010), functional alignment is performed with the help

of functional connectivity (FC) computed as Pearson’s correlation

coefficient between the functional MRI time series of a pair of vox-

els. FC-based registration can be divided into two categories: (a)

long-range FC, which is based on the FC for each pair of cortical

nodes (Conroy et al., 2009, 2013), and (b) short-range FC, which is

based on FC in local neighborhoods. Short-range FC registration

(Jiang et al., 2013) has been shown to improve the alignment of cort-

ical grey matter (GM). Connectivity features extracted via spectral

embedding was proposed in (Langs et al., 2010; Nenning et al.,

2017). Robinson et al. (2014) introduced a flexible framework for

multi-modal surface matching, which also offers the possibility of

incorporating functional features. However, all the above methods

focus only on voxels in the thin and highly curved cortical GM, pos-

ing challenges in estimating whole-brain deformations. Specially, this

can potentially cause significant registration errors in white matter

(WM), which will in turn affect the registration of cortical GM.

To improve registration, a natural solution is to consider func-

tional information not only in GM regions but also in WM regions.

Neuroimaging studies typically consider WM as unaffected by meta-

bolic states. However, culminating evidence has demonstrated the

existence of WM BOLD signals (Ding et al., 2013, 2016; Gawryluk,

Mazerolle, & D’Arcy, 2014; Greicius, Supekar, Menon, & Dougherty,

2009; Honey et al., 2009; Marussich, Lu, Wen, & Liu, 2017; Mazer-

olle et al., 2010; Quigley et al., 2003; van den Heuvel and Pol, 2010;

Weber, Fouad, Burger, & Buck, 2002). For example, fMRI activation

was observed in the corpus callosum during interhemispheric trans-

fer tasks (Mazerolle et al., 2010; Quigley et al., 2003) and in internal

capsule during a swallowing task (Mosier, Liu, Maldjian, Shah, &

Modi, 1999) and a finger-tapping task (Gawryluk, Mazerolle, Brewer,

Beyea, & D’Arcy, 2011). This arises from the fact that information

transfer in WM involves energy generated via glucose metabolism,

which is tightly coupled with regional cerebral blood flow (CBF)

(Weber et al., 2002). However, WM BOLD signal has lower signal-

to-noise ratio (SNR) than GM, that is, by a factor of around one-

fourth. Furthermore, it is challenging to extract valuable functional

information from the WM in the absence of task-evoked activation

and in the unconstrained state typically in the rs-fMRI studies. It has

been suggested that, compared with long-range FC (Mazerolle et al.,

2010; Quigley et al., 2003), short-range or local FC in the WM is

more robust due to substantially reduced signal-to-noise ratio (SNR)

of the WM BOLD signals. More importantly, recent works have pro-

posed an effective way to measure and extract such local WM func-

tional information via functional correlation tensors (FCTs) (Ding

et al., 2013, 2016), which is computed by considering the FC

between each voxel and its adjacent voxels (Ding et al., 2013, 2016).

Interestingly, the directions of the FCTs were found to be consistent

with the underlying WM fiber orientations (Ding et al., 2016). Several

studies have provided additional support for the functional character

of WM BOLD signal. For example, Wu et al. (2017) demonstrated

that BOLD signal in WM is detectable and is correlated with neural

activities. In Marussich et al. (2017), independent component analysis

(ICA) and hierarchical clustering were used to demonstrate the exis-

tence of clusters of correlated activity within the WM. They reported

that connectivity changes occurred when subjects passively watched

movies compared with resting state in WM clusters in the occipital

lobe. A recently published study (Peer, Nitzan, Bick, Levin, & Arzy,

2017) demonstrated that WM manifested intrinsic functional organi-

zation as interacting networks of functional modules, similar to GM.

In this article, we propose a novel functional registration algo-

rithm that utilizes functional information from both GM and WM.

The contribution of this article is threefold. First, we introduce noise-

robust patch-based FCTs (PFCTs) for quantifying local functional cor-

relation. Second, we extend PFCTs to tissue-specific PFCTs (ts-

PFCTs) to adapt to the different characteristics of BOLD signals in

GM and WM. Third, a multi-channel Large Deformation Diffeomor-

phic Metric Mapping algorithm (mLDDMM) (Zhang, Niethammer,

Shen, & Yap, 2014) is employed to utilize the complementary infor-

mation provided by ts-PFCTs for accurate registration. Experimental

results indicate that, compared with traditional methods, our method

improves statistical power in group analysis of various brain func-

tional networks. Importantly, although this paper focuses on registra-

tion of rs-fMRI data, our method can be easily applied to task-related

fMRI-based functional registration, making our method more power-

ful towards better understanding of human brain function. The code

for ts-PFCTs construction can be obtained via https://github.com/

zyjshmily/ts-PFCTs.
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2 | MATERIALS AND METHODS

2.1 | Method overview

Our goal is to achieve functional alignment of rs-fMRI data using ts-

PFCT features with mLDDMM. The proposed registration algorithm

consists of two components: (1) Feature extraction—Construction of

ts-PFCTs in a patch-based manner with separate characterizations of

functional correlation in GM and WM. We first introduce the definition

of FCTs in Section 2.2.1 and then extend it to PFCTs in Section 2.2.2.

(2) Intersubject registration—Estimation of the deformation field based

on ts-PFCTs using mLDDMM (Section 2.3). Figure 1 gives an overview

of our proposed method.

2.2 | Tissue-specific patch-based functional

correlation tensors (PFCTs)

2.2.1 | Functional correlation tensors (FCTs)

FC is defined as the temporal synchronization of the rs-fMRI BOLD

signals of two brain voxels or regions. GM FC has been employed for

registration of rs-fMRI data in a number of studies (Conroy et al., 2009,

2013; Jiang et al., 2013; Langs et al., 2010), but WM FC is often

neglected. We use the anisotropic short-range FC, characterized by

PFCTs of both GM and WM tissues, for registration. As shown in (Ding

et al., 2013, 2016), functional tasks cause changes in the FCTs, suggest-

ing the BOLD effects may be driven by neural activities along fiber

tracts. In the following, we first introduce the original FCT formulation

and then show how it can be extended using a patch-based approach

for multiple tissue types.

Local FC pattern: The FC between a voxel and its neighboring vox-

els can vary anisotropically. Figure 2a shows the 2D example, where

the local FC values from a voxel i to its eight neighboring voxels (1�8)

are different. We can define a directional vector pointing from a central

voxel i to each of its neighboring voxels. The length of each vector is

modulated by the FC strength, computed as the Pearson’s correlation

of the time series between the central voxel and its neighboring voxel

(Figure 2b). In above manner, we can calculate pair-wise FCs between

the rs-fMRI signal in voxel i and those in its eight neighboring voxels

one by one, with the highly correlated rs-fMRI time series

FIGURE 1 Overview of our proposed method [Color figure can be viewed at wileyonlinelibrary.com]
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corresponding to longer directional vectors, and vice versa. In this way,

as shown in Figure 2a, eight directional vectors may have their respec-

tive lengths, which could generate a specific local FC pattern.

Functional correlation tensor (FCT): To represent the local FC pat-

tern in 2D, a symmetric tensor T 232 with three free parameters can

be adopted (Figure 2c). The shape of this tensor is determined by the

two major axes k1 and k2. On the other hand, for the real fMRI data

residing in 3D space, the local FC pattern is represented using a 3D

tensor, which is a 3 3 3 symmetric matrix T 333 corresponding to an

ellipsoid with three orthogonal axes. The FCT Ti for voxel i is expressed

as follows:

Ti5

Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

2
664

3
7755RjcijUij (1)

Each of the diagonal elements Txx; Tyy; Tzzð Þ represents the func-

tional correlation along respective spatial dimension. The six off-

diagonal terms reflect the correlations between dimensions. cij is the

absolute value of Pearson’s correlation coefficient between the

corresponding times series of voxel i and that of its neighboring voxel j.

Uij is the dyadic tensor representing the directional vector uij5

uij;x; uij;y; uij;z
� �T

(Basser and Pajevic, 2000):

Uij5uijuij
T5

u2ij;x uij;xuij;y uij;xuij;z

uij;yuij;x u2ij;y uij;yuij;z

uij;zuij;x uij;zuij;y u2ij;z

2
6664

3
7775 (2)

2.2.2 | Tissue-specific patch-based functional correlation

tensors (ts-PFCTs)

Considering that the SNR of the BOLD signal in WM is much lower,

we use the following two strategies to estimate FC anisotropy more

robustly.

Patch-based strategy: In practice, imaging noise and physiological

artifacts may affect FC computation. For greater robustness to noise,

we use a patch-based strategy to compute FC. The correlation of the

BOLD time series of each voxel in a 3D patch is computed with respect

to the corresponding voxel in another patch (e.g., the upper left corner

voxel in patch A with other upper left corner voxel in the neighboring

patch B). For example, for a patch of size of 3 3 3 3 3 (Figure 3a), we

have 27 correlation coefficients in relation to another patch. The

patch-based FC is then calculated by averaging these 27 correlation

values (see Cij in Figure 3b). The directional vector for the Cij is from

the center of patch i to the center of neighboring patch j (see the green

arrow in Figure 3a). The corresponding tensor computed using patches

is called the patch-based FCT (PFCT).

Tissue-specific strategy: FCT was calculated in (Ding et al., 2013,

2016) without consideration of tissue types, despite the fact that the

oxygen consumption and blood flow in WM are approximately 4 times

lower than in GM. When applying univariate or multivariate time-series

analyses to GM and WM voxels together, signal variance and structure

are dominated by voxels in GM, whereas activity and connectivity pat-

terns in WM are likely under-detected or mistaken as noise. To avoid

this issue, the tissue probability maps are employed to tease apart the

contributions of GM and WM in computing PFCTs. For voxel i and its

neighboring voxel j, p�j represents the probability of voxel j belonging

to tissue type *, that is, pGMj for GM or pWM
j for WM (Figure 3b). These

probability maps can be obtained via tissue segmentation of co-

registered T1 MR images.

Finally, we construct the ts-PFCTs T�
i on voxel i by weighting the

dyadic tensor Uij with the patch-based FC Cij and tissue-specific

probability p�j (Figure 3c). Of note, this computation is mathemati-

cally similar to the diffusion tensor construction based on diffusion

weighted MRI, with the directional vectors similar to the directions

of the diffusion-encoding gradients, and also the product of

the patch-based FC and tissue probability similar to the diffusion

weight to each gradient. The ts-PFCT calculation for voxel i can be

rewritten as

T�
i 5

X
j
p�j CijUij5

T�
xx T�

xy T�
xz

T�
yx T�

yy T�
yz

T�
zx T�

zy T�
zz

2
664

3
775 (3)

Figure 3 shows an example of ts-PFCT at the GM-WM interface.

Here, FC of the 3D patch centered at voxel i (red) is computed with

respect to the patch centered at voxel j (blue) with the time series

shown, respectively, in red and blue curves. The Pearson’s correlation

coefficients Cij

� �
are weighted by the tissue probabilities

pGMj and pWM
j , respectively. Note that the shape and direction of the

two PFCTs are significantly different (Figure 3c).

FIGURE 2 A 2D example of FCT: (a) directional vectors pointing from a voxel i to its eight neighboring voxels 1–8; (b) time-series corre-
sponding to all voxels shown in (a); (c) local FC pattern represented by a 2D tensor [Color figure can be viewed at wileyonlinelibrary.com]
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2.3 | Multi-channel LDDMM (mLDDMM) registration

GM and WM FC features are used for multi-channel registration: 6

channels using the 6 free parameters of the GM PFCTs TGM
i and

another 6 channels using the 6 free parameters of the WM PFCTs

TWM
i . Given a 12-channel feature map TR as the reference and another

one TS as the source, our goal is to determine a reasonably smooth

deformation field / that minimizes the differences between TR and TS

by minimizing the energy functional E /ð Þ (Zhang et al., 2014):

/5arg min
/

E /ð Þ5M TS /ð Þ; TRð Þ1 1
r2

R /ð Þ; (4)

where M TS /ð Þ; TRð Þ measures the similarity between TR and TS /ð Þ.
Here, TS /ð Þ is the source image warped with the displacements /. R

/ð Þ is the regularization term, where multi-Gaussian kernels are

used to achieve the desired smoothness and the diffeomorphic

deformation field in (Zhang et al., 2014). r is the tuning parameter

that balances the similarity term M TS /ð Þ; TRð Þ and the regularization

term R /ð Þ.
We construct a ts-PFCT template in the Montreal Neurological

Institute (MNI) space. First, the mean rs-fMRI image of each subject is

warped to the EPI template in the MNI space using a standard SPM-

based spatial registration algorithm (with both affine and nonlinear

transformations). With the above deformation fields estimated from

traditional structural-based method, the ts-PFCT fields of the subjects

are warped to the MNI space. The ts-PFCTs in MNI spaces are then

averaged to produce an initial template of the 12 ts-PFCT feature

maps. Of note, here we use the traditional registration only aiming to

generate a ts-PFCT template. With the source ts-PFCTs for each sub-

ject and the above reference, we can register all fMRI data to a com-

mon space as described in Figure 1. We assume that the directions of

the ts-PFCTs remain relatively unchanged in a small number of

LDDMM iterations (n510), and update ts-PFCTs when n iterations are

completed:

1. Run LDDMM for n iterations;

2. Warp rs-fMRI time series using the resulting deformation field and

recompute the ts-PFCTs for each subject and the ts-PFCTs

template;

3. Repeat the above steps N times.

Setting N54 is found to be sufficient for convergence. In this way,

tensors can be gradually reoriented and updated during the registration.

3 | EXPERIMENTS AND RESULTS

3.1 | Materials and data preprocessing

Three different datasets were used for our experiments. (a) The rs-fMRI

data of 20 healthy subjects (8M/12F) were obtained from the New

York dataset B.1 Each rs-fMRI data has 175 frames with repetition time

(TR) 52s. (b) In addition, we used eye open (EO) t-fMRI data to evalu-

ate the accuracy of registration based on eye close (EC) rs-fMRI data.

The ECEO data of 48 college students (aged 19–31 years, 24M/24F)

can be accessed at 1000 Functional Connectomes Projects (Beijing:

Eyes open Eyes Closed Study2). The functional images were obtained

by using an echo-planar imaging sequence with the following parame-

ters: 33 axial slices, in-plane resolution5643 64, TR52s. Each condi-

tion consists of 240 functional volumes. (c) Finally, the ADNI dataset,3

which was launched in 2003 aiming at measuring the progression of

mild cognitive impairment (MCI) and early Alzheimer’s disease (AD), is

also used to demonstrate the quality and the ability of different regis-

tration methods in differentiating eMCI and normal control (NC). In

particular, we used the data of 36 eMCI subjects and 38 NCs, which

were both age- and gender-matched (the subjects with overall head

FIGURE 3 Computation of ts-PFCTs at GM–WM interface: (a) patch-based directional vector definition; (b) patch-based FC and tissue

probabilities for directional vector; (c) ts-PFCT construction [Color figure can be viewed at wileyonlinelibrary.com]

1http://fcon_1000.projects.nitrc.org (Detail information is listed here).
2http://fcon_1000.projects.nitrc.org/indi/IndiPro.html
3http://adni.loni.usc.edu
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motion larger than 2 mm or 28 during scanning were discarded). All three

datasets were preprocessed according to the conventional pipeline

using the DPARSF package.4 Preprocessing includes slice timing correc-

tion, head motion correction, band-pass filtering of 0.01–0.1 Hz, and

affine registration to the MNI space guided by the co-registered T1 MR

images. Finally, the data were resampled to 3 3 3 3 3 mm3. For accu-

rate feature extraction, head motion regression for rs-fMRI data was

performed using the Friston 24-Parameter Model. WM signal regres-

sion was not performed since the WM signal will be used for ts-PFCT

computation. Spatial smoothing was not applied (Jiang et al., 2013).

The experiments were conducted on a MacBook Pro with i7 CPU

operating at 2.7 GHz with 16 GB RAM. Registration of each subject

using the proposed method takes about 30 min. For SPM_EPI and

SPM_T1, the registration can be done within 1 min. For SPM_TPM and

DARTEL, the registration takes a little bit longer, that is, about 3 and

17 min, respectively, due to the segmentation of T1 MR images.

3.2 | Validation

3.2.1 | Resting-state fMRI

To demonstrate the effectiveness of our method, we compared it with

three commonly used registration techniques that are implemented in

SPM85:

1. Registration based on the mean rs-fMRI image to an EPI template

(SPM_EPI) (Ashburner, 2007);

2. Registration based on T1 MR images to a T1 MRI template

(SPM_T1) (Ashburner, 2007);

3. Registration based on the tissue probability maps derived from T1

MR image segmentation (SPM_TPM) (Ashburner and Friston, 2005).

In addition to the above three methods, we also compare our result

with a recently proposed functional registration method that uses only

the GM local FC (Jiang et al., 2013), which represents the state of the

art methods. To facilitate the comparison, we used the same dataset as

that used in (Jiang et al., 2013).

As there is no gold standard for direct evaluation of the functional

registration performance, the group-level statistical maps of resting-

state brain functional networks are used as surrogates for validation.

FIGURE 4 The group t maps of four networks with t>2.54 (p< .01) after registration by (a) SPM using the mean image of fMRI, (b) SPM
using tissue probability maps, (c) SPM using T1 MR images, and (d) our proposed method. The threshold is set to t>2.54 (p< .01). Zoom-in
views are also shown in the bottom of this figure [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Maximum t values in DMN, VN, SM, and CEN

SPM_EPI SPM_T1 SPM_TPM Proposed

DMN 12.29 11.90 12.49 23.07

VN 11.15 11.92 11.45 15.20

SM 9.32 9.98 9.24 15.41

CEN 11.77 11.15 9.34 14.40

Abbreviations: CEN5 central executive network; DMN5default mode
network; SM5 sensorimotor network; VN5 visual network.

4rfmri.org/DPARSF
5https://www.fil.ion.ucl.ac.uk/spm/soft-ware/spm8
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Four common networks, including default mode network (DMN), visual

network (VN), sensorimotor network (SM), and central executive net-

work (CEN), were used for evaluation. They were obtained via group

independent component analysis (ICA) decomposition using GIFT tool-

box (Jiang et al., 2013). Particularly, group ICA was applied to the rs-

fMRI data of the 20 subjects, generating 20 independent components.

ICA was performed for 100 times, each with different initial value using

ICASSO. Before ICA, two-stage principal component analysis (PCA)

data dimensionality reduction was conducted with 30 principal compo-

nents preserved in the first stage and 20 in the second stage. After

group ICA, back reconstruction was used to restore each subject’s indi-

vidual components. The four networks were identified by calculating

the correlation of 20 components with the corresponding network

template in (Smith et al., 2009). One sample t test was conducted for

each network to generate group-level t maps. Alternatively, the brain

networks can be obtained using a seed-based approach. The results,

included in Supporting Information, indicate that the conclusions similar

to the ICA-based analysis can be obtained.

Metrics similar to those in (Jiang et al., 2013) were used for evalu-

ating the intersubject functional consistency given by the different

fMRI registration algorithms:

1. Peak values of t maps and the total number of suprathreshold vox-

els: Voxel-wise one sample t test was applied to four networks

across all 20 subjects. Higher t value indicates higher functional

consistency. Given a threshold, binary maps of supra-threshold

voxels can also be obtained.

2. Spatial overlap between subject-specific networks and group net-

works: After transforming t map to z map, subject-specific

networks and group networks are obtained (by averaging binary

maps of all subjects). A number of binary maps are obtained via

thresholding. The overlap between each subject-specific binary

map and the group binary map is computed using the Dice score.

3. Intersubject component correlation: The correlation (0–1) of

specific networks is evaluated across subjects.

3.2.2 | Task fMRI

The parameters of rigid-body realignment of each EC subject in to the

EPI template were first estimated and then applied on both EC and EO

datasets. Nonlinear registration was then performed using SPM_EPI,

SPM_T1, SPM_TPM, and our proposed method.

To assess the alignment of functionally homologous regions, we

employed two widely used rs-fMRI metrics: (a) regional homogeneity

(ReHo; Zang, Jiang, Lu, He, & Tian, 2004) and (b) amplitude of low-

frequency fluctuation ALFF (Zou et al., 2008).

3.2.3 | eMCI-NC classifications

The eMCI-NC classification was performed according to the classification

pipeline6 described in Qiao et al. (2016). For each subject, the mean rs-

fMRI signals extracted from 90 ROIs defined by the Automated Anatomi-

cal Labeling (AAL) template (Tzourio-Mazoyer et al., 2002) were utilized

to construct brain functional networks using Pearson’s Correlation. For

feature selection, we used a two-sample t test (p< .01) to select features

that discriminate eMCI and NC subjects in the training data. The same

set of features was selected for the testing data. After feature selection,

we employ a linear SVM (Chang and Lin, 2011), with the default cost

parameter c51, for classification. A leave-one-out cross-validation

(LOOCV) strategy is adopted to verify the classification performance.

3.3 | Experimental results

3.3.1 | Evaluation based on rs-fMRI

Part I. Comparison with conventional registration methods

1. Peak values of t maps and the total number of suprathreshold vox-

els

FIGURE 5 The total number of suprathreshold voxels in DMN, VN, SM, and CEN, using two different thresholds (t>2.539 and t>4.997)
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Maximum t values in four major clusters of the DMN

SPM_EPI SPM_T1 SPM_TPM Proposed

PCC 12.29 11.90 12.49 23.07

mPFC 6.88 5.91 6.73 8.12

LAG 7.50 5.86 7.65 7.76

RAG 9.86 9.30 8.17 11.44

Abbreviations: LAG5 left angular gyrus; mPFC5medial prefrontal cor-
tex; PCC5posterior cingulate cortex; RAG5 right angular gyrus. 6http://www.nitrc.org/projects/modularbrain/ (codes).
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Figure 4 shows the group-level t maps of the DMN, VN, SM, and

CEN with t>2.539 (p< .01, uncorrected) using four different regis-

tration methods. Significant improvement can be observed from the

maximum t values for all the four networks.

Also, as shown in Table 1, our method increases the peak t values in

four networks to 23.07, 15.20, 15.41, and 14.40, respectively, with

an average improvement of 88.74% (i.e., ((23.07–12.29)/12.291

(23.07–11.90)/11.901(23.07–12.49)/12.49)/3 5 88.74%), 32.20%,

62.18%, and 35.22%. To compute the number of suprathreshold

voxels, two thresholds are used: (a) t>2.539 (p< .01, uncorrected)

and (b) t>4.997 (p<4e-5, uncorrected). In Figure 5, although CEN

shows negative gain compared with the registration using the mean

fMRI image, the relatively large improvements in DMN, VN, and SM

can be observed. If using a more stringent threshold (t>4.997), the

suprathreshold voxel number in CEN for our method is also the larg-

est in addition to the other three networks.

We also compared several major components in DMN. In Table

2, four major components in DMN, including posterior cingulate

cortex (PCC), medial prefrontal cortex (mPFC), and left and right

angular gyrus, also increase their maximum values of t map to

23.07, 15.20, 15.41, and 14.40, with the average improvements

of 88.74%, 25.35%, 12.44%, and 26.35%, respectively. We fur-

ther investigate the total number of statistically significant voxels

using two different thresholds (Figure 6). Our method is also the

best when evaluated based on the total number of suprathres-

hold voxels with two different thresholds (Figure 6). Importantly,

when setting a more stringent threshold (t>4.997), all other

three registration methods cannot detect adequate significant

FIGURE 6 Total number of suprathreshold voxels for the four major clusters of the DMN, using two different thresholds (t>2.539 and
t>4.997) [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 7 The overlap between each subject-specific component and the group component with different thresholds for four networks
[Color figure can be viewed at wileyonlinelibrary.com]
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functionally connected voxels in the mPFC, LAG, and RAG.

Overall, more significant voxels can be found in DMN, especially

at the PCC.

2. Spatial overlap between subject-specific networks and group net-

works

Figure 7 shows the individual versus group overlap for four net-

works with different thresholds. Our proposed method improves

the performance as seen from the large positive change in a number

of overlap percentages over different thresholds. For DMN, the

overlap of the proposed method starts to decrease after t>1.7,

whereas other methods start declining after t>0.5. Similarly, such a

threshold-dependent overlap curve was observed in the VN, for

which the maximum overlap for our method is at t>1.5. For the

SM and CEN, the overlap gradually decreases for all methods, but

our method decreases slower.

3. Intersubject component correlation

When measured by intersubject cross-correlation, our method still

shows superior performance over the other methods (Figure 8).

Specifically, our method gives the largest intersubject similarity for

all the four networks (Table 3).

For comparison based on the t map, our proposed method gives better

results compared with the structural registration methods for all net-

works (Figure 4). Other evaluation metrics, including the maximum value

of t map (Table 1), suprathreshold voxels on different thresholds (Fig-

ures 5 and 6), the overlap across different subjects (Figure 7), and the

intersubject component correlation (Figure 8), give similar conclusions.

Part II. Evaluation of functional information

We further analyzed the role of functional tensor information in registra-

tion using mLDDMM: (a) only GM PFCTs, (b) only WM PFCTs, and (c)

GM1WM ts-PFCTs (our proposed method). Figure 9 shows the group-

level t maps when different functional information is used for registra-

tion. Table 4 shows that the ts-PFCTs yield the best performance for all

the four networks. Compared with GM PFCTs, our method improves the

peak t values in four networks by 50.78%, 2.7%, 22.30%, and 10.77%,

respectively. Compared with WM PFCTs, our proposed method yields

improvements of 46.94%, 4.11%, 49.61%, and 5.11%, respectively.

Part III. Comparison with a state-of-the-art functional

registration method

Consistent with previous reports on the effectiveness of functional

registration (Cetin et al., 2015; Conroy et al., 2009, 2013; Jiang et al.,

FIGURE 8 Intersubject correlations of four networks using four different registration methods. * marks the statistically significant
difference with respect to our proposed method [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Intersubject correlation (mean/STD) in DMN, VN, SM,
and CEN

SPM_EPI SPM_T1 SPM_TPM Proposed

DMN 0.353/0.065 0.346/0.034 0.368/0.079 0.429/0.071

VN 0.336/0.048 0.357/0.045 0.333/0.043 0.423/0.056

SM 0.295/0.034 0.325/0.026 0.318/0.038 0.338/0.043

CEN 0.356/0.034 0.360/0.026 0.353/0.035 0.400/0.038

Abbreviations: CEN5 central executive network; DMN5default mode
network; SM5 sensorimotor network; VN5 visual network;.
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2013; Khullar et al., 2011; Langs et al., 2010; Sabuncu et al., 2010),

observations from the four main components of DMN (Table 2 and

Figure 8) further verified the effectiveness of our proposed method.

Using the same dataset as (Jiang et al., 2013), our method increases

the maximum value of t map from 17.9 to 23.07. Note that, unlike

(Jiang et al., 2013), our method does not use T1 MR image-based

structural registration as an initialization for functional registration.

3.3.2 | Evaluation based on task-fMRI data

Part I. Comparison with coventional registration methods

We detected significantly higher ALFF and ReHo values in some regions

in the visual cortex, including the bilateral IOG (inferior middle occipital)

gyrus and cuneus (BA19) (t test, p< .01, uncorrected) (Figure 10). Table 5

shows that our method improves the peak t values and suprathreshold

voxels of ALFF and ReHo over all the comparison methods.

Part II. Evaluation of functional information

Figure 10 and Table 6 show the functional consistency results for

different functional information used in registration. Table 6 shows

our method (GM1WM ts-PFCTs) improves the peak t values and

suprathreshold voxels of ALFF and ReHo over GM ts-PFCTs and WM

ts-PFCTs.

3.3.3 | eMCI-NC classification

Part I. Comparison with coventional registration methods

In Table 7, we list the classification performance with respect to differ-

ent registration methods. Although SEN and SPE are relatively lower

than SPM_T1 and SPM_TPM, our method shows improvements in

ACC and AUC. The ROC curves shown in Figure 11a indicate that our

proposed framework outperforms all structural registration methods.

Part II. Evaluation of functional information

In Table 8, we list the classification performance with respect to differ-

ent functional information, again confirming that our method yields the

best performance. The ROC curves shown in Figure 11b indicate that

our proposed framework outperforms structural registration methods.

It is worth noting that GM PFCTs can also perform better in ACC and

AUC than structural registration methods. In addition, the ROC curves

shown in Figure 11b confirm that using both GM and WM functional

connectivity in registration improves the classification outcome.

4 | DISCUSSION

4.1 | Structural versus functional registration

Using the ICA-based data-driven analysis method for rs-fMRI data, we

examined the inter-subject functional consistency for rs-fMRI registra-

tion using functional and structural features. The results of multiple

functional brain networks show that (a) functional registration yields

higher functional consistency than structural registration and (b) func-

tional regions are not necessarily confined by anatomical boundaries,

consistent with the observations in previous studies (Cetin et al., 2015;

Conroy et al., 2009, 2013; Jiang et al., 2013; Khullar et al., 2011; Langs

et al., 2010; Sabuncu et al., 2010).

FIGURE 9 The group t maps of four networks with t>2.54 (p< .01) after registration by (a) GM PFCTs, (b) WM PFCTs, and (c) GM1WM
ts-PFCTs (proposed method). The threshold is set to t>2.54 (p< .01). Close-up views are also shown at the bottom [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 4 Maximum t values when different functional tensor infor-
mation is used for registration

GM PFCTs WM PFCTs Proposed

DMN 15.30 15.70 23.07

VN 14.80 14.60 15.20

SM 12.60 10.30 15.41

CEN 13.00 13.70 14.40
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4.2 | GM versus whole-brain registration

The effectiveness of our method can be attributed to the utilization of

whole-brain functional features for registration. Using only functional

features from cortical GM may cause registration error in WM, which

will in turn deteriorate GM. The experimental results indicate that using

ts-PFCTs on the whole brain offers the best registration performance.

The computation of ts-PFCTs is key to the effectiveness of whole-

brain functional registration. Since the spatial resolution of rs-fMRI is

relatively low, voxels on WM-GM boundaries may also contain func-

tional information across tissues. Separate consideration of the WM

and GM is essential for teasing apart the influences of different tissue

types on FC.

4.3 | Comparison with other functional registration

approaches

The techniques developed in Conroy et al. (2009, 2013) align

fMRI data based on similarity of functional connectivity along the

cortical sheet. In Robinson et al. (2014), functional alignment is

integrated with anatomical alignment for cross-subject registra-

tion. Methods described in Langs et al. (2010) and Nenning et al.

(2017) uses spectral embedding of FC features. Our method

offers two advantages: (a) it does not require structural registra-

tion, which is used in all the above functional registration meth-

ods for initialization; (b) unlike the above methods that use only

FIGURE 10 The paired t test for ECEO dataset using ALFF and ReHo evaluations after registration by (a) SPM_EPI, (b) SPM_T1, (c)
SPM_TPM, (d) GM PFCTs, (e) WM PFCTs, and (f) our proposed method. Close-up views are shown at the bottom [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE 5 Maximum t values and the number of suprathreshold

voxels given by different four registration methods

SPM_EPI SPM_T1 SPM_TPM Proposed

ALFF Peak t value 6.37 6.41 6.13 7.17

Suprathreshold
voxels

2718 2548 2484 4494

ReHo Peak t value 7.51 7.96 7.62 8.57

Suprathreshold
voxels

3584 3425 3032 4461

TABLE 6 Maximum t values and the total number of suprathres-
hold voxels given by registration using different functional
information

GM PFCTs WM PFCTs Proposed

ALFF Peak t value 6.78 6.81 7.17

Suprathreshold
voxels

3831 2484 4494

ReHo Peak t value 8.28 8.32 8.57

Suprathreshold
voxels

4082 4492 4461
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GM information, our method employs functional information not

only on GM but also on WM.

4.4 | Biology or neurophysiology rationale of WM

fMRI

The fMRI signal usually refers to the temporal variation of voxel inten-

sities in gradient-echo echo planar imaging (GE-EPI) sequences that

have primarily T2*-weighted contrast. Multiple sources contribute to

this signal, but these sources may not be directly related to neural activ-

ity (Bianciardi et al., 2009). For the BOLD signals in GM, the BOLD fluc-

tuation reflects the combined effects of cerebral blood flow (CBF),

blood volume (CBV), and the metabolic rate of oxygen (CMRO2) (Bux-

ton, Wong, & Frank, 1998). Such hemodynamic and metabolic changes

are coupled with neural activity in terms of both synaptic input and

spiking output (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 2001;

Smith et al., 2002).

However, whether or not the WM signal is related to neural

activity, is still actively investigated. The WM contains connections

between specialized functional areas, accounting for about half of

the human brain (Arai and Lo, 2009; Harris and Attwell, 2012). The

functional significance of WM has been established through exten-

sive injury and anatomical studies, which have demonstrated the

importance of the integrity of WM for normal brain function. Many

mental disorders are associated with WM damage and dysconnec-

tion (Catani and Ffytche, 2005). Evidence supporting WM FC is as

follows: (a) Astrocytes that mediate neuronal coupling in GM are

also present in WM (Rash, 2010). (b) Despite the low density of

vasculature, CBF and BOLD signals are detectable in the WM,

although at a lower magnitude than that in the GM (Rostrup et al.,

2000; Thomas, Liu, Park, Van Osch, & Lu, 2014). (c) Metabolic

changes in neuromodulation can be observed in WM (Weber et al.,

2002). (d) WM fMRI signals show task-dependent activations (Ding

et al., 2013, 2016). Importantly, we think that the FCT could be a

suitable metric for characterizing the unique WM functional infor-

mation, although the amplitude of local FC used in Jiang et al.

(2013) is also informative. This is because the supportive micro

blood vasculature and capillary vessels in WM may follow the main

direction of the fiber bundles due to spatial constraint and thus

form a highly structured local FC pattern, which can then be cap-

tured by FCT (Ding et al., 2013). The FCT, compared with the

amplitude of local FC, carries more information (i.e., shape and

direction) than just the local FC strength. For example, the FCT can

capture WM fiber bundle orientation information, as demonstrated

by (Ding et al., 2013, 2016). This is essentially important for func-

tional registration because the underlying WM fibers link cortical

functional areas together and could be used to detect functional

borders (Thomas et al., 2014).

TABLE 7 eMCI-NC classification performance (%) for different
registration methods

SPM_EPI SPM_T1 SPM_TPM Proposed

ACC 66.22 67.57 67.57 74.32

SEN 69.44 80.56 58.33 74.29

SPE 68.42 55.26 76.23 74.36

AUC 70.39 70.25 68.27 83.11

Abbreviations: ACC5 accuracy; AUC5 area under curve; SEN5 sensitiv-
ity; SPE5 specificity.

FIGURE 11 The ROC curves of eMCI-NC classification: (a) comparison with different registration methods and (b) comparison with differ-
ent functional information [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 8 eMCI-NC classification performance (%) for different
functional information

GM PFCTs WM PFCTs Proposed

ACC 70.27 64.86 74.32

SEN 69.44 63.16 74.29

SPE 71.05 66.67 74.36

AUC 75.95 72.51 83.11

Abbreviations: ACC5 accuracy; AUC5 area under curve; SEN5 sensitiv-
ity; SPE5 specificity.
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5 | CONCLUSION

In this article, we have proposed a novel whole-brain functional regis-

tration method for rs-fMRI data. It is implemented via a multi-channel

large deformation diffeomorphic metric mapping (mLDDMM) based on

the tissue-specific patch-based functional correlation tensors (ts-PFCTs)

extracted from both GM and WM tissues. We have conducted a com-

prehensive evaluation based on primary and cognitive networks. The

results demonstrate that our method significantly increases intersubject

consistency of functional regions after registration, compared with the

registration using just the structural information or cortical functional

features. The improved accuracy in functional registration given by our

method will further improve statistical power in group-level analysis

and sensitivity for individualized disease diagnosis.
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