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Abstract

Background—A large portion of intronic and intergenic space in our genome consists of 

repeated sequences. One of the most prevalent is the Long INterspersed Element-1 (LINE-1, L1) 

mobile DNA. LINE-1 is rightly receiving increasing interest as a cancer biomarker.

Content—Intact LINE-1 elements are self-propagating. They code for RNA and proteins which 

function to make more copies of the genomic element. Our current understanding is that this 

process is repressed in most normal cells, but that LINE-1 expression is a hallmark of many types 

of malignancy. Here, we will consider features of cancer cells when cellular defense mechanisms 

repressing LINE-1 go awry. We will review evidence that genomic LINE-1 methylation, LINE-1-

encoded RNAs, and LINE-1 open reading frame 1 protein (ORF1p) may be useful in cancer 

diagnosis.

Summary—The repetitive and variable nature of LINE-1 DNA sequences pose unique 

challenges to studying them, but recent advances in reagents and next generation sequencing 

present opportunities to characterize LINE-1 expression and activity in cancers, and identify 

clinical applications.

Introduction

A very small portion - about one percent - of our DNA is recognizable as protein-coding 

gene exons. Much of the intervening sequence is intronic and intergenic space littered with 

the remains of mobile DNAs. These are known as transposable elements (TEs), and their 

ability to copy themselves over time has shaped much of the modern human genome. We 
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carry hundreds of thousands of copies of these sequences scattered as interspersed repeats. 

Collectively, they make up half of our DNA (1, 2).

TEs exist as transposons, which operate via a “cut-and-paste” mechanism, or 

retrotransposons, which propagate by a “copy-and-paste” mechanism known as 

retrotransposition. Retrotransposons use an RNA intermediate expressed from a genomic 

locus which is then reverse transcribed by retrotransposon-encoded proteins to make a new 

genomic insertion. Retrotransposons are classified as long terminal repeat (LTR) or non-LTR 

elements. They can furthermore be described as autonomous or non-autonomous depending 

on whether they encode the protein machinery necessary for retrotransposition. The only 

autonomous, active elements in humans are non-LTR retrotransposons known as Long 

INterspersed Elements (LINEs). LINEs have an evolutionary history that predates humans 

by hundreds of millions of years. In aggregate, the human genome is 17% LINE-1 sequence 

and 5–6% LINE-2 and LINE-3 sequences (1, 3). All retrotransposition today is driven by 

LINE-1 (L1), the only autonomous element in humans, which remains the focus of this 

review (4–7).

An intact LINE-1 sequence measures approximately 6 kilobases in length and encodes two 

well-recognized proteins, open reading frame 1 protein (ORF1p) and open reading frame 2 

protein (ORF2p)(Figure 1). LINE-1 also has an antisense promoter (ASP) activity that can 

initiate fusion transcripts (8–10) and aberrant coding sequence (ORF0) (11) in the opposing 

direction.

ORF1p trimerizes to form an RNA binding complex required for LINE-1 transposition (12–

14). ORF2p encodes two enzymatic activities also essential for retrotransposition, an 

endonuclease and a reverse transcriptase (15–17). ORF2p reverse transcribes new genomic 

DNA copies of LINE-1 from its RNA and is co-opted to copy other repeats, namely the Alu 
Short INterspered Element (SINE)(18), and the SVA (SINE, VNTR, Alu) composite 

elements (19, 20).

Each individual inherits a small complement of full-length, retrotransposition-active or ‘hot’ 

LINE-1 loci (21–24). The specific loci vary from person to person. The prevailing 

hypothesis in the field is that these potentially protein-coding LINE-1 are then kept in check 

by a series of host defenses to maintain genome integrity. In this article, we will briefly 

reference aspects of normal LINE-1 control and contrast this with LINE-1 expression in 

malignancy.

Mechanisms of LINE-1 Repression

Expression of LINE-1 sequences and subsequent steps in retrotransposition are repressed by 

host factors. In the germ line, the piRNA pathway is critical in establishing repressive DNA 

methylation patterns (reviewed in (25)). In somatic cells, the SWI/SNF2-related, matrix-

associated, actin-dependent regulator of chromatin, subfamily A, member 6 (SMARCA6) 

helicase (26, 27) and p53 (28) feature prominently.

Once expressed, LINE-1 transcripts and proteins can be altered in their activities. 

Mechanisms include RNAi pathways (29, 30), nonsense mediated decay via up-frame shift 1 
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(UPF1) (31), and antiviral proteins like apolipoprotein B mRNA editing enzyme catalytic 

polypeptide 3 (APOBEC3) cytidine deaminase (32), Moloney leukemia virus 10 (MOV10) 

(33, 34), and zinc-finger antiviral protein (ZAP) (35, 36).

LINE-1 Hypomethylation in Cancer

Full-length LINE-1 transcription is driven by a CpG dinucleotide-rich internal promoter. 

Many genomic LINE-1 sequences are 5’ truncated at the time of genomic integration, and so 

have lost their promoter. Many intact promoter sequences are found throughout the genome, 

however, and CpG methylation of LINE-1 is used by many as a surrogate marker of whole 

genome methylation levels (37). It is important to note that while many tumor suppressor 

gene promoters are methylated in tumors, whole genome methylation and LINE-1 

methylation specifically tend to be reduced in malignancies.

LINE-1 methylation studies have been conducted in many of the most common lethal 

cancers, including (in order of mortality) lung cancer, colon and rectal cancers, breast 

cancer, prostate cancer, liver cancer, ovarian cancer, and esophageal cancer (Figure 2). In 

non-small cell lung cancer, LINE-1 promoter hypomethylation is common (38) and is 

associated with genomic instability (39) and poor prognosis (40). In colon cancer, LINE-1 

hypomethylation appears to be an early event (41) also associated with poor outcomes (42, 

43). It appears inversely correlated with microsatellite instability (44, 45). Interestingly, 

colon cancer patients whose tumors exhibit extremely low levels of LINE-1 methylation 

may be a clinically distinct group, with a tendency to present at a younger age (46). LINE-1 

hypomethylation is more pronounced in colon cancer liver metastases compared to matched 

primary tumors (47). In breast cancer, LINE-1 hypomethylation has been reported in 

preneoplastic phases of epithelial atypia with persistently low LINE-1 promoter methylation 

seen in in situ and invasive lesions (48). It has also been associated with decreased overall 

survival and drug resistance in younger patients (49). In prostate cancers, LINE-1 

hypomethylation is also reported, particularly in association with chromosome 8 

abnormalities (50); it appears more pronounced in metastatic lesions than in primary tumors 

(51). In hepatocellular carcinoma, several groups have associated LINE-1 hypomethylation 

with poor clinical outcomes, including disease recurrence after resection (52–54). In 

epithelial ovarian cancers, LINE-1 hypomethylation is correlated with more aggressive 

histology, poorer progression-free intervals, and poorer survival (55). Finally, in esophageal 

squamous cell carcinomas, LINE-1 hypomethylation is also recognized and associated with 

poorer survival (56). Evidence of aberrant LINE-1 hypomethylation is less frequently 

reported for hematolymphoid neoplasias.

A meta-analysis of LINE-1 hypomethylation as a marker for cancer risk revealed that tissue-

based DNA assays fairly consistently reveal LINE-1 hypomethylation in cancers compared 

to controls (57). In contrast, LINE-1 methylation status in blood is apparently not a marker 

of cancer risk across 19 studies included in the meta-analysis, suggesting that direct assays 

of malignant tissues are more sensitive to these changes (57).

Many of the studies cited above compare aggregate normal and tumor LINE-1 methylation 

levels without delineating the specific LINE-1 loci driving these changes or accounting for 

differences in the complement of inherited LINE-1 sequences between individuals. 
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However, very recent work suggests that more personalized approaches are likely to yield 

new insight, and add nuance to the overly simplistic model that relating cancerous 

histopathology or poor outcomes with LINE-1 hypomethylation. Emma Scott and her 

colleagues in Scott Devine’s laboratory recently traced somatic retrotransposition events in a 

case of colon cancer to three inherited, full-length LINE-1 elements. One of these hot 

elements, a LINE-1 on chromosome 17, appears responsible for the cancer as it generated a 

1.4 kb insertion in the adenomatous polyposis coli (APC) gene (58). This is a classic ‘driver 

mutation’ positioned to inactivate the tumor suppressor. The ‘parent’ or ‘source’ element is a 

polymorphic variant in human populations, which can be methylated appropriately – it is 

methylated in reference DNA from lymphoblastoid cell lines. However, its promoter 

sequence was largely unmethylated in both normal colon and cancerous tissue from this 

patient. So, while some LINE-1 may acquire hypomethylation in the permissive 

environment of a cancer cell, others appear to escape silencing in normal tissues and be 

poised to play important inciting roles in tumor pathogenesis.

LINE-1 RNA

LINE-1 and other interspersed repeat RNAs have been less well characterized than gene 

messenger RNAs (mRNAs) in cancer. They pose a challenge because there are hundreds of 

thousands of LINE-1 genomic loci that have the potential to be incorporated into larger 

transcripts. Indeed, most of these genomic copies are 5’ truncated, and it follows that their 

transcription will not be directed by the LINE-1 promoter, but rather exclusively by ‘read-

through’ transcription. Most LINE-1 do not have intact ORFs, and roles of their RNAs are 

not well understood. LINE-1 RNA has long been recognized as a component of 

heterogeneous nuclear RNAs (59), and recent in situ hybridization studies demonstrate that 

repetitive RNAs, and 3’ LINE-1 RNA in particular, are long-lived components of chromatin 

(60). The abundant expression of these fragments of LINE-1 RNA has been seen across 

cancers (61).

LINE-1 RNA that is the intermediate for retrotransposition is encoded by the LINE-1 

promoter and is the same length as a full-length genomic element, 6 kilobases (kb) (i.e., the 

so-called unit LINE-1 transcript (62)). Before advances in next generation sequencing, RNA 

expression directed specifically from the LINE-1 promoter could be most reliably detected 

by Northern blots so that the size of the resulting RNA could be assessed. This was how 

LINE-1 RNA was first identified in cytoplasmic fractions of Ntera2D1 teratocarcinoma cells 

(63), and it remains a valuable approach for experimentalists today (64). Despite caveats for 

interpreting their results, RNAse protection assays, RT-PCRs, and in situ hybridizations have 

also been used to infer unit LINE-1 expression. When these assays target the 5’ end of 

LINE-1, they are expected to be relatively more specific than when 3’ positioned probes and 

primers are used. Similarly, selecting for polyadenylated, cytoplasmic RNA and/or using 

assays specific for the sense strand of LINE-1 can further promote specificity for unit 

transcripts.

There is recent evidence reported by Claude Philippe and colleagues with Gaël Cristofari’s 

laboratory that active LINE-1 RNAs [L1Hs or L1(Ta)] can be traced to specific templating 

loci using next generation sequencing data. Their analysis involves integrating a 
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combination of data types, including a genomic LINE-1 insertion map, RNA-seq reads, and 

chromatin immunoprecipitation (ChIP)-seq data (65). Actively transcribed LINE-1 loci have 

a two-part ‘signature’ : (i.) RNA-seq reads corresponding to ‘read-through’ transcription 

downstream (3’) of the polyA tail, as well as (ii.) histone H3K4 trimethylation, H3K27 

acetylation, and RNA polymerase II ChIP-seq reads extending into upstream (5’) sequence. 

With these as proxies for LINE-1 expression, the group was able to identify a small number 

of transcribed LINE-1 loci in human cancer cell lines – about 5 to 15 elements appear 

responsible for most unit LINE-1 RNA expression in cells. These data are consistent with a 

model wherein cancer cells maintain LINE-1 repression at most full length loci, with only a 

handful of escaping elements with the capability of retrotransposition.

Long read sequencing may be useful for detecting unit LINE-1 RNAs as well as resolving 

RNA species transcribed from other genomic repeats. These long reads may incorporate 

unique flanking sequence, may also enable unequivocal mapping of full-length transcripts. 

Being able to accurately phase internal sequence variants of unit LINE-1 RNAs and relate 

these variants back to individual genomic loci (58) will represent an important advance.

ORF1p expression

Intact, full length LINE-1 sequences code for two proteins, ORF1p and ORF2p. Of these, 

expression of the first has been best characterized in human cancers. LINE-1 expression 

constructs in in vitro transfected cells produce ORF1p at 1,000- to 10,000-fold higher levels 

than ORF2p (31).

ORF1p (p40) is an RNA binding protein essential for retrotransposition (12–14, 66). Its 

crystal structure has been solved (67). Three ORF1p protein molecules intertwine 

throughout the length of their N-terminal coiled coil to form a homotrimeric complex. The 

central RNA recognition motifs (RRMs) (68) and C-terminal domains (CTDs) project 

outward from the coiled coil axis to form deep intervening clefts. These clefts are highly 

positively charged surfaces that likely interact with the backbone of single-stranded RNA.

At least two studies have sequenced the RNAs that interact with LINE-1 protein in 

HEK293T cells overexpressing exogenous LINE-1. Taylor et al. immunoprecipitated 

LINE-1 ribonucleoproteins using FLAG-tagged ORF1p or ORF2p and found that L1 RNA 

represented 8.3–10.3% and 18.0–28.2% of reads associated with ORF1p pulldown or 

ORF2p pulldown, respectively (31). There was also enrichment of U6 snRNA. Mandal and 

colleagues used photoactivatable ribonucleoside-enhanced crosslinking and 

immunoprecipitation (PAR-CLIP) followed by sequencing to discover that 22% of all 

ORF1p-associated RNAs were mRNAs with known pseudogenes (69). ORF1p also 

associated with small structured RNAs included spliceosomal and hY RNAs, in addition to 

LINE-1, Alu, and SVA RNA. It is not known whether ORF1p sequesters cellular RNAs 

within tumors or what impacts this may have on cancer cell biology.

The first antibody developed against ORF1p was a rabbit polyclonal reagent described in 

1990 by Debra Leibold and colleagues in Thomas Fanning’s laboratory (70). The group 

reported detecting LINE-1 ORF1p in embryonal carcinoma cells (Ntera2), teratocarcinoma 

cells (2102Ep), and choriocarcinoma cells (JEG-3). Many of the first studies of ORF1p 
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expression then focused on these highly expressing germ cell tumors. Gary Bratthauer also 

with Thomas Fanning surveyed primary adult testicular germ cell tumors and pediatric germ 

cell tumors by immunohistochemistry to find ~10% positive for L1Hs expression. All were 

epithelial with typical embryonal carcinoma or yolk sac tumor appearances (71, 72).

A larger study of pediatric malignant germ cell tumors (MGCT) was next conducted by the 

Children’s Oncology Group (COG), also using the same Fanning laboratory reagent, but 

with a more sensitive immunohistochemistry protocol. Using this method, the group, led by 

Xiao-Ou Shu found evidence for expression in all of the 162 MGCT cases assessed. They 

stratified these into cases that were strongly, moderately, and weakly immunoreactive for 

LINE-1 ORF1p and reported that strong expression of ORF1p was associated with poor 

differentiation, extragonadal sites of disease, and yolk sac tumor histologies (73).

Breast malignancies also received early recognition as LINE-1 ORF1p-expressing cancers. 

Bonnie and Harold Asch in collaboration with the Fanning laboratory reported that ORF1p 

expression could be detected by Western blot in both malignant and nonmalignant breast 

epithelium. Most (4/5) normal tissue samples recovered from reduction mammoplasties had 

low levels as compared with tumors. However, their work suggested that malignant cells 

produce more of the protein. They suggest that immunostaining intensity can serve as an 

indicator of malignancy; they report ORF1p reactivity in all cases of invasive cancer 

examined (12), whereas benign proliferative disease and normal tissues were weakly 

reactive and negative (74).

In 2010, Chris Harris and colleagues prepared rabbit polyclonal antibody against ORF1p and 

described a broader expression pattern in human tumors (75). The group reported positivity 

in 99% of breast cancers, but as well, expression in a significant proportion of bladder 

cancers, prostate cancers, colorectal cancers, ileal carcinoids, and pancreatic neuroendocrine 

tumors. Much of their work focused on breast cancers, where they reported nuclear 

localization of ORF1p in a subset of cases. Nuclear immunoreactivity was associated with 

increased incidence of local recurrence, distant metastases, and poorer overall survival.

We have since developed a mouse monoclonal antibody against ORF1p (76, 77). The 

reagent was raised against amino acids 35–44 of ORF1p (AAB60344.1, MENDFDELRE). 

This is a region close to the N-terminus of the protein, before the coiled-coil domain begins 

and where mouse and human LINE-1 sequences diverge. Using a combination of rabbit 

polyclonal antibody from Chris Harris and this mouse monoclonal antibody, Nemanja Rodić 

surveyed human cancers using tissue microarray immunostaining. We did not see nuclear 

staining in this study, but cytoplasmic immunoreactivity was very common, and either 

specific for malignant tissue or overexpressed in malignant cells as compared to adjacent 

normal. LINE-1 ORF1p immunoreactivity was seen in significant proportions of lung 

cancers (51%), esophageal cancers (64%), breast cancers (97%), liver cancers (19%), colon 

cancers (50%), ovarian cancers (92%), and prostate cancers (41%). These data are 

summarized in Figure 2.

There is no direct way to trace ORF1p protein expression back to individual LINE-1 

genomic loci. Within an individual, multiple LINE-1 loci may contribute to protein 
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expression, and between individuals, the LINE-1 loci contributing to protein expression need 

not be shared.

Several types of tumors have been shown to have genomic evidence of LINE-1 

retrotransposition, implying that in addition to ORF1p, LINE-1 unit-length RNA and ORF2p 

are also expressed. In partnership with the Kazazian laboratory, we have demonstrated 

expression of ORF1p by immunohistochemistry in specific cases of pancreatic ductal 

adenocarcinomas (78), esophageal adenocarcinoma (79) and esophageal squamous cell 

carcinoma (80) with somatically-acquired genomic LINE-1 insertions.

Concluding Remarks

Once dismissed as obscure junk DNA, LINE-1 is now the focus of increasing studies in 

cancer biology and in the search for cancer markers. Genomic LINE-1 hypomethylation, 

increases in LINE-1 RNA transcription, and ORF1p accumulation seem to be features of 

malignant cells more so than adjacent normal tissues. Going forward, a better understanding 

of consequences of LINE-1 expression in cancer biology is critical in our view.

We note that the phenomenon is not uniform across tumor types or individual patients. This 

may reflect features inherent to the pathogenesis of each disease, p53 function for example, 

raising the possibility that LINE-1 expression will be useful for subclassification or 

prognosis. For instance, ORF1p expression positively correlates with TP53 deficiency and 

higher-grade lesions (76). Tumor cell type also matters. Aberrant LINE-1 ORF1p expression 

is a hallmark of epithelial tumors more than, for example, hematolymphoid malignancies. 

Finally, personalized approaches that interpret LINE-1 expression markers in light of the 

inherited complement of LINE-1 loci may become important.

Due to the complexity of LINE-1 genomic sequences and RNA species, we remind readers 

that biomarkers related to these should be regarded as uncoupled from LINE-1 protein 

expression. Depending on assay design, LINE-1 methylation or RNA expression may serve 

as surrogates of global or local chromatin status, whereas protein may be a more specific 

indicator of bona fide expression of the unit LINE-1 element.
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Figure 1. 
A schematic of a LINE-1 element. A full-length LINE-1 is 6 kilobases (kb) in length. It 

includes a CpG-rich bidirectional promoter and two open reading frames for ORF1p and 

ORF2p proteins. The element is illustrated as a block with widened open reading frames. 

ASP=antisense promoter; EN=endonuclease, RT=reverse transcriptase, pA=polyA tail. 

Beneath this schematic is a plot showing the relative genomic copy number of L1Hs 

sequences in the human genome as a function of position along the length of the 6kb 

consensus sequence. There are relatively more copies of the 3’ end of the element because 

many copies are 5’ truncated at the time of their integration. The length of a LINE-1 is stable 

after insertion with the exception of the polyA portion. The pie chart to the right illustrates 

the percentage of the human genome comprised of repetitive elements. LINE=Long 

INterspersed Element; SINE=Short INterspersed Element; LTR=Long Terminal Repeat; 

DNA=DNA transposons (‘cut-and-paste’ transposons).
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Figure 2. 
LINE-1 ORF1p expression in cancer. Diagram of tissue types with known LINE-1 positive 

cancers. Hypomethylation of LINE-1 promoters has been described for tumors originating 

from all of these sites. The proportion of cases with LINE-1 ORF1p expression detectable 

by sensitive immunohistochemistry (IHC) is shown next to each tissue of origin.
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