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Psoriatic arthritis (PsA) is a complex chronic musculoskeletal condition that occurs in ~30%

of psoriasis patients. Currently, no systematic strategy is available that utilizes the differences

in genetic architecture between PsA and cutaneous-only psoriasis (PsC) to assess PsA risk

before symptoms appear. Here, we introduce a computational pipeline for predicting PsA

among psoriasis patients using data from six cohorts with >7000 genotyped PsA and PsC

patients. We identify 9 new loci for psoriasis or its subtypes and achieve 0.82 area under the

receiver operator curve in distinguishing PsA vs. PsC when using 200 genetic markers.

Among the top 5% of our PsA prediction we achieve >90% precision with 100% specificity

and 16% recall for predicting PsA among psoriatic patients, using conditional inference forest

or shrinkage discriminant analysis. Combining statistical and machine-learning techniques,

we show that the underlying genetic differences between psoriasis subtypes can be used for

individualized subtype risk assessment.
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Psoriatic arthritis (PsA) is a chronic inflammatory muscu-
loskeletal condition associated with psoriasis vulgaris (PsV)
that affects populations of people worldwide. Although the

prevalence of PsA is rare in the general population (<0.5%)1, it
occurs in ~30% of psoriasis patients2, and its symptoms (joint
pain, swelling, and limitation of movement and deformity)
typically arise after psoriasis has been diagnosed based on skin
lesions3. PsA has been shown to cause reduced quality of life and
is associated with comorbidities that increase mortality4, thus
posing a significant social and economic burden to society. Early
diagnosis is critical for effective management, and the longer
symptoms continue before being diagnosed, the worse the out-
come typically is5; a delay of 6 months, until consultation with a
rheumatologist, was found to result in more severe joint erosion
and inflammation6. It is difficult to diagnose PsA early because of
variation in the way the disease manifests itself and how it
develops7; in a recent meta-analysis8, 15% of psoriasis patients
undergoing dermatology treatment/monitoring were estimated to
have undiagnosed PsA. Current approaches to PsA diagnosis are
based on clinical, laboratory and radiological features9, including
the use of criteria such as ClASsification criteria for Psoriatic
ARthritis10 and MAdrid Sonographic Enthesitis Index11. How-
ever, there is limited systematic strategy to provide quantitative
assessment for PsA risk among psoriasis patients, before symp-
toms appear.

The heritability of PsA is estimated to be around 80%12, higher
than that reported for psoriasis in general. While this suggests a
genetic risk metric should be achievable, PsA shares many of the
same genetic loci as cutaneous-only psoriasis (PsC)13, patients
who have PsV but do not get PsA. The development of a PsA-risk
assessment metric is therefore far from trivial. Genetic difference
has been observed between PsA and PsC in the major histo-
compatibility complex (MHC)14,15, and other loci have also
presented genetic heterogeneity. However, only variants in the

MHC region have so far been found to distinguish PsA from PsC
with genome-wide significance13. In fact, due to the subtle genetic
differences between PsA and PsC, large sample sizes are required
to provide sufficient statistical power to identify signals that dif-
ferentiate the two subtypes. While early GWAS were limited by
the number of genotyped patients available with subtype
information16–18, recent international collaborations13,19–22 have
enabled us to collect more PsA and PsC samples.

In this study, we hypothesize that by combining statistical
genetics and machine-learning approaches, we would be able to
assess the risk of PsA (and PsC) among psoriasis patients using
genetic information. Compared to a previous genetic study on
these two psoriasis subtypes13, our study significantly increases
the number of samples with genome-wide content. As a result,
our study identifies one new genome-wide significant locus for
psoriasis and further reveal eight new loci for psoriasis subtypes.
We also show that the genetic differences between the two sub-
types are enriched in regulatory elements of lymphocytes.
Machine-learning techniques (including random forest, condi-
tional inference forest, shrinkage discriminant analysis, and
elastic net regression) are applied to predict PsA and PsC status
from these differences. While success has previously been
achieved using machine-learning to distinguish subtypes of
inflammatory bowel disease23, we here attempt to apply these
techniques to evaluate the genetic risk of psoriasis subtypes. We
show that genetic information can be used to classify subtypes
among psoriasis patients (AUC= 0.82), with the ability to
accurately predict psoriasis subtypes especially among individuals
carrying the most extreme genetic burden (e.g., we achieve over
90% precision for the top 5% of patients predicted as having PsA).

Results
Overview. Our pipeline for predicting psoriasis subtypes involves
five stages (Fig. 1a): data processing (quality control and
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Fig. 1 Computational pipeline to predict psoriasis subtypes. a Overview of pipeline, through quality control, phasing and imputation, association analysis,
meta-analysis, and stepwise conditional analysis. b The machine-learning process included separating data randomly into training (cross-validation to
optimize the model) and test (holdout) sets, as well as evaluating the results with and without the PAGE Immunochip dataset. PsA psoriatic arthritis; PsC
cutaneous-only psoriasis; QC quality control
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rephenotyping), phasing and genotype/amino acid imputation,
association analyses per cohort, meta-analyses, and machine-
learning for subtype prediction and risk assessment. After data
processing and imputation, we conducted cohort-specific asso-
ciation analysis and meta-analysis iteratively, to select indepen-
dent markers differentiating the subtypes (PsA and PsC); finally,
we utilized machine-learning techniques to build models for
subtype risk assessment (Fig. 1b).

Numbers of samples and markers enhanced. To provide a
comprehensive evaluation of the genetic differences between PsA
and PsC, we included genotyped samples from five GWAS
datasets (CASP19, Exomechip with GWAS content20, Genizon21,
Kiel21, and PsA GWAS13) and one Immunochip dataset
(PAGE22). The total numbers of PsA and PsC samples were
increased by 20 and 15% (Table 1), among which PsA and PsC
samples with GWAS coverage were increased, respectively by
39% and 97% (to 2703 PsA and 2681 PsC samples), compared to
the previous largest meta-analysis of psoriasis subtypes13. This
was achieved by including an additional cohort, Exomechip
(which contains genome-wide markers for over 10,000 samples)
and rephenotyping the samples to incorporate recent PsA diag-
noses. The density and diversity of genetic/amino acid markers
were raised substantially through genetic and HLA imputation
and by combining the Haplotype Reference Consortium (HRC)24

and 1000 Genomes Project (1KG)25 as reference panels: we
increased the number of well-imputed (i.e., r2 ≥ 0.7) single
nucleotide polymorphisms (SNPs) and short insertions and
deletions (INDELs) for each cohort by 12–17% (Supplementary
Table 1), when compared to using either one of the panels alone.
To evaluate the quality of our imputation, we compared the
imputation results with genotyped data for 24 independent
markers previously genotyped in 6052 samples from CASP,
PsAGWAS, and PAGE13. In most cases the observed imputation
quality was higher than that predicted by Minimac, suggesting the
quality of our imputation is high (Supplementary Figure 1). We
then compared the imputation quality for these genotyped mar-
kers with the 200 markers we used for classification and did not
observe any strong evidence of differences in imputation quality
(two sided Wilcoxon test: p > 0.05) when including or excluding
PAGE (Supplementary Figures 2 and 3). Together with previous
imputation work illustrating the robustness of MaCH/Minimac
genetic imputation26, especially for markers with high imputation
quality (we used r2 ≥ 0.7 in our study), we are confident the
imputed dosages reflect the actual genotypes accurately. We also
performed imputation on HLA alleles/amino acid markers, using

a modified version of SN2HLA. Altogether, we utilized ~9.7
million well-imputed markers with ≥1% minor allele frequencies
in our association study (Table 1).

New loci identified for psoriasis and psoriasis subtypes. Asso-
ciation analysis was performed with four different comparisons
for each cohort: PsV vs. Control; PsA vs. Control; PsC vs. Con-
trol; and PsA vs. PsC. In our PsV vs. control meta-analysis, we
identified a new psoriasis susceptibility locus at 13q14.2
(rs9591325; p= 7 × 10−9 [Wald test]; odds ratio= 1.25), which is
located inside an intron of DLEU1 (Supplementary Figure 4).
Interestingly, the effect size of this locus is larger than those of the
psoriasis loci recently identified through Immunochip GWAS-
based meta-analysis20,22,27. Upon investigation, we found this
marker was not well-imputed in the large Immunochip dataset27

when using 1KG as a reference panel, and thus the previous
association results for this marker relied solely on the GWAS
datasets. The HRC imputation panel we employed here has sig-
nificantly enhanced the imputation quality of this marker (from
r2= 0.54 to 0.84), thus allowing the inclusion of the Immunochip
cohort and the increase of statistical power at this locus. Inter-
estingly, this marker was previously identified as genome-wide
significant (p= 1 × 10−10)28 for primary biliary cirrhosis; and it
was suggested to be a secondary signal for multiple sclerosis (p=
2 × 10−7)29, independent of the genome-wide significant primary
signals (rs80634930: ld-r2= 0.076, rs281219729: ld-r2= 0.14).

With enhanced subphenotype sample size and number of well-
imputed markers, our PsA/PsC vs. control meta-analyses showed
that all 10 PsA, and 10 out of 12 PsC loci identified in the
previous study13 still achieve genome-wide significance (p ≤ 5 ×
10−8) (Fig. 2). In addition, we showed eight new genome-wide
significant loci for PsA/PsC (three for PsA; five for PsC; Table 2)
from PsV loci with previously unknown subtype association.
Since one of the cohorts (PsA GWAS) only contains PsA samples,
it was not possible to include this cohort in a direct meta-analysis
comparing PsA vs. PsC. Confirming previous findings13, we
found indirect meta-analysis (i.e., comparing summary statistics
from PsA vs. control to PsC vs. control) using all the cohorts to be
more powerful at differentiating the genetic architectures than
direct meta-analysis without the PsA GWAS (Supplementary
Figure 5). However, comparisons of the genetic architecture
between PsA and PsC (direct and indirect PsA vs. PsC meta-
analyses) only identified markers within MHC (Supplementary
Figure 6) as having genome-wide significance, which is in
concordance with our previous study13.

Table 1 Number of patients and markers in each Genetic Cohort

Cohort Patients Markers (genotyped and well-imputed)

PsV PsA PsC Control Genotyped SNPa INDELa HLA/AAa Total

PsA GWAS 1430 1430 NA 1417 972,453 17,510,941 1,278,891 1251 18,791,083
CASP GWAS 1338 349 639 1370 438,609 15,759,031 1,063,919 1247 16,824,197
Kiel GWAS 464 33 269 1135 504,625 13,315,820 1,077,158 1236 14,394,214
Genizon GWAS 760 139 399 993 489,501 13,624,904 1,093,913 1224 14,720,041
Exomechip 3863 752 1374 4027 461,092 16,411,455 976,233 1254 17,388,942
PAGE Immunochip 3169 971 885 7394 160,228 1,414,274 84,270 1245 1,499,789
New Total 11,024 3674 3566 16,336 New Union 23,657,701

(8,730,264b)
1,403,045
(1,021,305b)

1270 (1217b) 25,062,016
(9,752,786b)

New GWAS Total 7855 2703 2681 8943 New intersection (All) 1,120,138 (43,356c) 66,845 (3301c) 1203 (546c) 1,188,186 (47,203c)
Previous13 Total 9293 3061 3110 17,393 New intersection (GWAS) 9,771,987 (247,740c) 870,338 (27,115c) 1205 (546c) 10,643,530 (275,401c)
Previous13 GWAS Total 4007 1946 1363 4934 Previous13,14 Union 8,265,477 (7,091,979b) 681,304 (627,111b) 1342 (1216b) 8,948,123 (7,720,306b)

Previous13,14 intersection (All) 40,249 (8,775c) 3187 (717c) 1141 (309c) 44,577 (9801c)
Previous13,14 intersection (GWAS) 6,964,145 (229,722c) 589,032 (20,195c) 1269 (326c) 7,554,446 (250,243c)

PsV psoriasis vulgaris; PsA psoriatic arthritis; PsC cutaneous-only psoriasis; NA not available
aWell-imputed markers (r2≥ 0.7)
bUnion of markers filtered using MAF≥ 0.01 (these are the markers used in our unconditional meta-analysis)
cIntersection of markers filtered using MAF≥ 0.01 and p≤ 0.05 (these are the markers used in our conditional meta-analysis). All the samples are of Caucasian descent
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Previous studies have illustrated that psoriasis loci are enriched
among regulatory elements20,31. Here, our enrichment analysis
showed markers differentiating PsA and PsC were also enriched
among regulatory elements. We evaluated the proportions of
overlap with active regulatory elements (measured by H3K27ac
marks31) for markers with different significance levels in PsA vs.
PsC indirect meta-analysis (see Methods). Interestingly, we found
that markers with the most significant p values differentiating the
two subtypes were enriched for H3K27ac peaks across 34 cell
types we examined (Fig. 3a). Specifically, the most significant
genetic markers exhibited higher overlap with active elements
in immune cells. Five cell types, i.e., B-cells (adult CD20), Tnaive

(CD25- CD45RA+ naive), Tmemory (CD25− CD45RO+mem),
Th17 (CD25− IL17+ Th17 stim), and CD8+naive (CD45RA+
CD8), achieve over 15% of overlap among the most significant
markers (Fig. 3b). It is worth noting the MHC plays a large role in
psoriasis immunology, and that outside this region, the cell type
overlap is different.

Conditional analysis for feature selection. We performed step-
wise conditional analysis to identify independent features asso-
ciated with psoriasis subtypes (and used for the subtype
classification): we conditioned on the most significant marker
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(out of markers with p value ≤ 0.05 in the unconditional indirect
PsA vs. PsC meta-analysis), and repeated the association analysis
iteratively, assessing the ability of the identified features to classify
the psoriasis subtypes (Fig. 1a). The results of the conditional
meta-analysis were integrated with our machine-learning
approach. We stopped this process once the median area under
the receiver operator curve (on our cross-validation set), mea-
sured over nonoverlapping sets of ten consecutive markers
(identified through conditional analysis), increased by less than
0.2% three times in a row, compared to the previous set of ten
markers. Conditional analysis was performed including and
excluding the PAGE Immunochip dataset, to evaluate the impact
of only using cohorts that have genome-wide coverage. Excluding
PAGE, our stopping criterion was achieved after 170 markers had
been identified through conditional analysis, whereas including
PAGE it was achieved after 200 markers. To ensure a fair com-
parison, we continued to run conditional analysis excluding
PAGE until 200 markers had also been identified. In each case,
the MHC contains the most markers identified through feature
selection (18 with PAGE and 5 without it), reflecting its key role
in the genetic signature for psoriasis subtypes13,14. Nevertheless,
91% of markers identified (through conditional analysis) with
PAGE and 98% identified without PAGE were outside the MHC
region. Our results illustrate that loci outside the genome-wide
significant region can still play important roles in psoriasis sub-
type classifications (Supplementary Table 2, Supplementary
Data 1). Only 15 of the 200 markers selected through conditional
analysis without the PAGE cohort were also well-imputed (r2 ≥
0.7) in PAGE. In addition, indicating that genotype imputation is
key to integrating different datasets in our machine-learning
pipeline, none of the markers selected through conditional ana-
lysis were genotyped across all cohorts; only 11.5% (23 out of 200)
of markers selected including PAGE and 6.5% (13 out of 200) of
markers selected excluding PAGE, respectively, were genotyped
in at least one cohort. To further improve the robustness of our
models when applied to new data, we also implemented an
ensemble-based approach, whereby conditional analysis is repe-
ated multiple times on different subsets of samples (see
Discussion).

Predicting psoriasis subtypes. We compared the performance of
a wide range of machine-learning classifiers using cross-
validation (CV) through the MLR32 package in R (Fig. 4a, Sup-
plementary Figure 7); 70% of the 26 classifiers we evaluated had

an AUROC > 0.7, indicating the features we selected are robust in
classifying psoriasis subtypes. To minimize the impact of any
random noise, we repeated the results over 50 CV trials and
calculated the mean AUROC (Supplementary Figure 8). When
using all cohorts, Random Forest, an ensemble learning
approach, achieved the highest mean AUROC (0.78). However,
when excluding the PAGE cohort in the model, another
ensemble learning approach, conditional inference forest,
achieved the highest mean AUROC (0.82). The main difference
between these two approaches is that, in Random Forest, indi-
vidual trees are constructed using Gini impurity (a measure
of how well separated the PsA/PsC classes are), whereas in con-
ditional inference forest, trees are constructed according to
a permutation test (to compare the correlation of the class
variable with each of the predictors, i.e., genetic markers).
Interestingly, classifier performance was consistently enhanced by
5% when PAGE was removed, when using the best classifier in
each case. This difference was confirmed using a separate hold-
out test set (which also gave 0.78 and 0.82 mean AUROCs
with and without PAGE, respectively) (Fig. 4b). The AUROC
for the test set also increases with the number of samples in
the training set (Supplementary Figure 9). Using the ensemble-
based approach for conditional analysis and model training, we
found shrinkage discriminant analysis to be the most effective
classifier, with an AUROC of 0.82 (Supplementary Figure 10).
While AUROC is often used to measure classification perfor-
mance, it is not sensitive to class (i.e., PsA/PsC subtype) pro-
portions, and might not have sufficient translational impact,
especially when the prevalence of the disease of interest is low or
if the prevalence of the disease subtype is different from the
proportion in the training dataset. We therefore evaluated addi-
tional metrics of classifier performance (i.e., precision, specificity
and recall; Fig. 4c), and used an independent test set (10% of the
samples selected at random and held out until after classifier
selection and tuning was completed) with 3:7 ratio of PsA and
PsC samples, assuming 30% of PsA prevalence among psoriatic
patient2. We achieved over 90% precision (Supplementary
Table 3) on average for the top 5% of patients predicted to have
PsA (with 100% specificity and 16% recall). There is a trade-off
between precision and recall, as for example when conditional
analysis was not performed in each fold of the ensemble (i.e., our
original approach), predicting the top 10% of patients to have
PsA provides a recall of 33%, but extending our prediction to the
top 20% increases recall to 55%. We also evaluated the perfor-
mance when MHC variants were used on their own to provide

Table 2 Meta-analysis results for possible new psoriasis loci

Marker ID Chr Position
(hg19)a

Alleles (risk/
nonrisk)

Nearby
gene

Phenotype
comparison

Direction
(PCKGEI)b

Control AFc Case AFc Meta
ORd

Meta pd

rs9591325 13 50811220 T/C DLEU1 PsV-ctl ++++++ 0.921 0.934 1.25 7 × 10−9

rs7612823 3 101613923 T/C NFKBIZ PsA-ctl ++++++ 0.806 0.836 1.25 3 × 10−8

rs848 5 131996500 C/A IL13 PsA-ctl ++++++ 0.787 0.827 1.27 1 × 10−9

rs588177 11 64024056 C/A PRDX5 PsA-ctl ++−+++ 0.301 0.339 1.20 1 × 10−8

rs1177202 2 61074576 C/G REL PsC-ctl ++++++ 0.566 0.606 1.18 2 × 10−8

rs2111485 2 163110536 G/A IFIH1 PsC-ctl +++++ 0.605 0.641 1.18 4 × 10−8

rs14990525 16 31006289 TGGTGCTA/- FBXL19 PsC-ctl +++++ 0.362 0.402 1.20 9 × 10−10

rs34536443 19 10463118 G/C TYK2 PsC-ctl ?++++ 0.955 0.978 2.08 2 × 10−13

rs34685920 20 48572650 A/− RNF114 PsC-ctl +++++ 0.568 0.608 1.20 1 × 10−10

Chr chromosome, AF allele frequency, OR odds ratio, p p value
aFor insertions or deletions of the reference sequence, position of first base before the insertion point or of first base of the deleted sequence is shown, respectively
bFor six studies of discovery meta-analysis (P= PsA GWAS, C= CASP GWAS, K= Kiel GWAS, G=Genizon GWAS, E= Exomechip, I= PAGE Immunochip) indicates whether OR of risk allele is ≥1
(+), <1 (−), or undetermined due to low imputation quality (?). PsA GWAS directions are only included for PsV-ctl and PsA-ctl, since the PsA GWAS cohort does not contain any patients with PsC
subphenotype
cAFs are represented according to the risk allele
dOR and p value for fixed effects meta-analysis with inverse variance weighting
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PsA vs. PsC risk assessment. When restricting the model trained
without PAGE to its 5 MHC markers (Supplementary Data 1),
the AUROC was reduced to 0.58 in cross-validation and 0.54 on
the training dataset. These results suggest that, whilst the MHC is
the only genome-wide significant locus comparing PsA and PsC,
using it alone is not the most effective approach.

For comparison, we also created classification models for
distinguishing PsA, PsC and PsV samples from controls. Using a
comparable and more time-effective approach, elastic net
regression, the AUROC for PsA vs. Control was 0.91 in cross-
validation and 0.92 on the test set; for PsC vs. Control, the
AUROC was 0.88 in cross-validation and 0.89 on the test set; and
for PsV vs. Control, the AUROC was 0.89 in both cross-
validation and testing.

PsA-risk assessment. We implemented an approach to assess the
risk psoriasis patients will later develop PsA, by incorporating
prior PsA prevalence (among psoriasis patients) using Bayes’
theorem. We evaluated the risk for each patient with 10, 20, 30
and 40% prior prevalence for PsA, and calibrated the classifier
scores produced during cross-validation (using conditional
inference forest without PAGE), then applied this to the (3:7 PsA/
PsC ratio) independent test set (Fig. 4d). As expected, a (correct)
prior of 30% resulted in the most accurate risk assessment. If we
underestimated the PsA prevalence (e.g., 10%), then we would
also under-estimate the posterior probability for patients to
develop PsA. In addition, the calibrated probability predictions
(regardless of prior probability) followed the empirical PsA pre-
valence (calculated from the actual PsA/PsC labels) much more
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closely than the raw classifier scores (Fig. 4d). This illustrates the
classifier calibration approach is superior to the use of raw clas-
sifier scores, which are based on the prevalence in the training set.
Sensitivity analyses using other prior prevalence also provided
better results than using raw classifier scores, indicating the
adjustment of subtype prevalence in the risk assessment is
important. We then applied our classifier calibration approach to
assess the PsA risk among 2471 psoriatic patients with undiag-
nosed subphenotype status and genome-wide coverage; interest-
ingly, we identified 17 patients with >80% of risk of developing
PsA (including two patients with >98% risk). Our results illustrate
genetic data can serve as part of a robust personalized healthcare
metric to aid diagnosis of psoriasis subtypes.

Discussion
In this work, we combined advanced machine-learning techni-
ques with the largest number of genotyped PsA and PsC samples
so far, to reveal a set of comprehensive genetic features (through

statistical imputation with a combination of reference panels) and
predict the risk of PsA. Our study illustrates nine new loci for
psoriasis and psoriasis subtypes and suggests robust prediction of
PsA and PsC can be achieved using genetic data alone.

We ensured the robustness of our study by performing
extensive quality control, through relatedness testing and rephe-
notyping of samples. We also used cross-validation to train our
classification model and held out a subset of samples for testing
the fitted model. To evaluate the translational impact of our
machine-learning approaches, we selected samples for the test set
proportional to the prevalence of PsA (30%2) expected among
psoriasis patients. However, we sampled the training set as an
even proportion of psoriasis subtypes, to prevent over-fitting to
any one class, and selected the samples for the training and test
set at random, to avoid any systematic bias. Since markers were
selected for the classification models using stepwise conditional
meta-analysis on the entire dataset, there is a risk of selection bias
in the classifier performance. To evaluate this, we reperformed
direct PsA vs. PsC meta-analysis using only samples in the
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training set (to ensure the test set remained completely inde-
pendent), and then selected markers with association p ≤ 0.05 to
train an elastic net model. Comparable with our original
approach (Fig. 4b), the AUROC was 0.81 in cross-validation and
0.77 on the test set, but the elastic net approach selected 2948
markers to achieve this. Restricting the model to the most
informative 226 markers (λ= 0.0227) gave 0.80 AUROC in both
cross-validation and testing, and the AUROC on the test set does
not start to decrease until ~500 markers are included in the model
(Supplementary Figure 11). This supports our decision to select
200 markers for our model, since the AUROC is maximized while
minimizing the potential for over-fitting. As the markers identi-
fied by our approach are all common variants (MAF ≥ 0.01),
probes can be designed to capture their genotypes, and 200
markers is a small enough number to allow a relatively inex-
pensive chip design. When assessing PsA risk, we calibrated the
classifier scores by applying Bayes theorem to the cross-validation
results (with various prior prevalence for PsA) and confirmed the
accuracy of our probability predictions on the separate test set.
All these steps are critical to avoid over-fitting and ensure the
robustness of our machine-learning approaches.

To further evaluate the robustness of our approach, we left out
each cohort one at a time and then trained on the remaining
cohorts. The AUROC, testing on the left out cohorts, was 0.74 for
CASP, 0.80 for Exomechip, 0.74 for Genizon and 0.55 for Kiel
GWAS (we are unable to leave out PsAGWAS, as it does not
contain any PsC samples). To address the lower than expected
performance on certain left out cohorts, we also implemented an
ensemble approach: we first set aside 10% of samples (with 3:7
PsA/PsC ratio) as a test set, then the remaining samples were
divided into tenfolds (preserving the PsA/PsC ratio for each
cohort); stepwise conditional meta-analysis was applied sepa-
rately to each fold. and we created ten different models (one for
each fold) before combining their predictions (on the common
test set). The resulting 154 markers from each fold can be found
in Supplementary Data 2. Instead of including all the markers in a
single model (as with our original approach), we trained ten
separate models using the data and markers from each fold, and
then combined the predicted PsA samples according to the rank
of their classification scores from each model. The ensemble
approach achieved the same 0.82 AUROC (in cross-validation
and testing) as our original technique (Supplementary Figure 12),
with a slight reduction in precision (Supplementary Figure 13)
recall and specificity (Supplementary Figure 14). However, our
ensemble approach achieved a higher AUROC on each of the left
out cohorts: 0.75 on CASP, 0.84 on Exomechip, 0.96 on Genizon,
and 0.86 on Kiel, suggesting this approach to classification may be
more robust when generalizing to new samples.

The new locus identified by our study (rs806349) is located
inside an intron of DLEU1, a gene that plays a role in the reg-
ulation of apoptosis33. This suggests a way the locus may con-
tribute to psoriasis, since keratinocytes from psoriatic skin have
been found to be resistant to apoptosis and increase in apoptosis
is associated with healing after photochemotherapy (PUVA)34.
Although in knockdown experiments with mice33, DLEU1 was
previously shown to affect the expression of apoptotic genes such
as BCL2 and BAX, which have been found to be differentially
expressed in psoriasis35, the DLEU1 locus is a new genome-wide
significant finding for psoriasis. It is interesting that this locus is
also known to be associated with primary biliary cirrhosis28 and
multiple sclerosis29. The most significant marker at this locus in
our meta-analysis was considered a likely candidate to be a causal
variant in multiple sclerosis, due to its proximity to transcription
factors binding sites29. In fact, psoriasis shares many suscept-
ibility regions with various autoimmune diseases20. This points to
an ancillary benefit of our pipeline: by identifying patients with an

elevated risk of PsA early (i.e., before symptoms appear), we not
only improve personalized healthcare for psoriasis patients, but
our pipeline can also be extended to differentiate comorbidity
rates for psoriasis subtypes, such as cardiovascular disease,
metabolic syndrome, and inflammatory bowel disease (IBD)36.
All the new loci we identified for psoriasis subtypes (PsA and
PsC) are already known loci for PsV. In addition, no loci outside
of the MHC were genome-wide significant in direct or indirect
PsA vs. PsC meta-analysis. Nevertheless, by combining multiple
markers that have not yet achieved genome-wide significance, we
are able to robustly distinguish between PsA and PsC subtypes.
This reaffirms that, although the genetic differences between PsA
and PsC are subtle, sufficient useful information exists in the
genetic data to be taken advantage of by advanced machine-
learning techniques and used as the basis for a clinically validated
risk metric.

Machine-learning approaches have been applied to other types
of -omics data, to study or classify psoriasis: random forests have
been used to predict psoriasis from transcriptome data37 and
electronic records38; support vector machines have been used to
predict psoriasis from dermoscopy images39. Here, we applied
machine-learning toward the production of a metric for predicting
the risk of psoriasis subtypes among psoriasis patients, using
purely genetic data. With regards to other autoimmune diseases,
classification has been used to distinguish subtypes of IBD23 using
genetic markers, with comparable accuracy (AUROCs of 0.86 and
0.83 for Crohn’s disease and ulcerative colitis, respectively).
However, we have attempted to make our work translationally
relevant, by combining PsA and PsC prediction into a single
model, which can produce calibrated risk predictions that have
been tested against realistic prevalence of PsA. In addition, we can
achieve good performance using fewer genetic markers (our
machine-learning approaches used the same 200 markers for PsA
and PsC, compared to the separate sets of 573 markers for Crohn’s
disease and 366 markers for ulcerative colitis in the IBD paper23).
We used the default parameters for each classification algorithm
(Supplementary Table 4), to make it easier for other researchers to
reproduce our results. However, a caveat in the application of our
pipeline to new cohorts or other diseases is that clinical, demo-
graphic or genotyping differences may make it difficult to train a
model on one cohort and apply it to another. In order for the
model to learn the cohort-specific parameters for optimized per-
formance, the effects of these markers can be first modeled in the
cohort before applying for future subtype risk assessment, thus
ensuring the specific properties of their cohort are addressed. A
potential limitation of using conditional analysis for marker
selection (particularly when the sample size is small, such as in
each fold of our ensemble approach) is that, as more markers are
added to the conditional analysis, the separation of variables will
eventually prevent the identification of the next marker on which
to condition. This limits the total number of markers that can be
selected for classification (by conditional analysis). Furthermore,
we should point out that the machine-learning techniques
employed in our study (random forest/conditional inference for-
est, shrinkage discriminant analysis, and elastic net) use different
numbers of markers, and this is important to consider when
comparing their performance.

Personalized approaches to healthcare have the potential to
improve PsA prediction, management, and treatment by identifying
subpopulations of patients for which individualized healthcare plans
can be provided40. Instead of treating all patients suffering from
psoriasis/PsA in the same way, personalized medicine can sig-
nificantly improve the efficacy and efficiency of healthcare, by
providing customized disease management through translational
research41. For example, more than 30% of PsA patients do not
respond sufficiently to TNF-α blockers42. Our pipeline could be
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used to develop individualized therapies that identify genetic sig-
natures to differentiate PsA treatment responses43, thus limiting the
use of ineffective and unnecessary treatments, though heritability of
treatment response can play a major role, as a previous attempt
using genetic data to predict patients’ response to anti-TNF drugs in
rheumatoid arthritis failed to improve predictive performance
compared to clinical traits44. The value of our work (to provide an
accurate risk metric for PsA) is therefore high, both in terms of
economic costs and in better outcomes for the patients. The risk
assessment model we have developed has the potential to serve as a
PsA signature in dermatology clinics and identify patients with
psoriasis who are likely to develop PsA. This would advance clinical
practices by reforming disease screening, prognosis, and treatment
options including enhancing the design of clinical trials to deter-
mine whether PsA can be delayed or prevented with more
aggressive treatment for certain individuals.

Early PsA diagnosis is essential5,6 for improving quality of life
and reducing the economic burden to society. The pipeline we
have developed represents a systematic strategy for quantitative
risk assessment, before symptoms (joint pain, inflammation and
damage) appear. We have identified new loci, shown that the
genetic differences between PsA and PsC are due to regulatory
elements, developed a robust metric for distinguishing the two
subtypes and provided a framework for expansion with other
kinds of data including transcriptomic and proteomic data, which
are likely to become widely available in the coming era of per-
sonalized medicine.

Methods
Data processing. We defined the PsC subtype as PsV patients who, at the
latest evaluation, have had psoriasis symptoms for over 10 years, without
being diagnosed with PsA. All PsV patients were diagnosed by dermatologists
and the PsA status was evaluated by rheumatologists (and/or dermatologists
with specialized training in the diagnosis of PsA). Samples from each cohort
were quality controlled as described previously13,20, and relatedness testing was
performed to ensure only independent samples were used (we removed one of
the duplicates or first/second degree relatives). All the samples in our study are
of Caucasian descent and samples were excluded if they had substantial non-
European admixture. X chromosome genotypes were used to validate gender.
Population stratification was addressed using principal components analysis and
geographic indicator covariates. Furthermore, markers with <0.01 MAF (minor
allele frequency), <95% genotype call rate, <1 × 10−6 Hardy–Weinberg p value
were removed. All human subjects provided written informed consent and were
enrolled according to the protocols approved by the institutional review board
for human subject research of each institution, in adherence with the Declaration
of Helsinki principles.

Phasing and imputation. Phasing was determined using ShapeIT45, to improve
the accuracy and speed of imputation through efficient graph-based calculations
for statistical haplotype estimation that scale linearly with the number of samples
and markers. Imputation was performed for SNPs and INDELs using Minimac346.
We retained only markers that are well-imputed (imputation quality r2 ≥ 0.7) in at
least one cohort for at least one reference panel; when the same marker was well-
imputed in both the 1KG and HRC panels, we used the imputed dosage from the
panel with the higher imputation quality. HLA markers were imputed using the
Type I Diabetes Genetics Consortium (T1DGC) reference panel47. We modified
the imputation tool (SNP2HLA) to take advantage of the increased accuracy of
imputation in Beagle 4.148.

Association analysis. We used the logistic regression (Wald) test in the latest
version of PLINK (2.0)49, which has implemented a more efficient statistical
algorithm through bit manipulation and parallelism50. Variants with <1% minor
allele frequency were excluded. In addition, top principal components and geo-
graphic cohort indicators were included as covariates13,20.

Meta-analysis. We performed meta-analysis, using the inverse variance approach
implemented in METAL51, to combine effect sizes and standard errors across the
six cohorts. Genomic inflation factors were also used to control population stra-
tification. Indirect meta-analysis was conducted by computing the statistic

χ2PsA=PsC ¼ βPsA�βPsCð Þ2
VPsAþVPsC�2ρPsA;PsC

ffiffiffiffiffiffiffiffiffiffiffiffiffi

VPsAVPsC

p , where βPsA and βPsC are the log odds ratios for

PsA vs. Control and PsC vs. Control meta-analyses, respectively; VPsA and VPsC are
the corresponding variances, and ρPsA,PsC is the correlation between the two log

odds ratios. Since there is no analytic approximation for the correlation between
odds ratios, we assumed it is zero (deliberately making the test more con-
servative13). The test statistic follows a chi-squared distribution (with one degree of
freedom), so we retrieved the resulting p values from the corresponding cumulative
distribution function.

Machine-learning for subtype prediction and risk assessment. This was
achieved by calculating the mean area under the receiver operator curve (AUROC)
in tenfold cross-validation, using 90% of the samples (randomly selected) for
training; 10% of the samples were held out (as a test set) until after classifier
selection and tuning was completed (Fig. 1b). In addition to AUROC, we used
precision (the proportion of subtype prediction that was accurate) and recall (the
proportion of PsA/PsC patients successfully predicted to have PsA/PsC status,
respectively) to evaluate the performance of the resulting classification model at
distinguishing between psoriasis subtypes. We also estimated each individual’s
probability of developing PsA, using Bayes’ theorem to integrate the prior pre-

valence of PsA, given a classifier score of s: P PsAjsð Þ ¼ dðsjPsAÞP PsAð Þ
dðsjPsAÞP PsAð ÞþdðsjPsCÞP PsCð Þ,

where P(PsA) denotes the proportion of PsA among psoriasis patients, P(PsA)+ P
(PsC)= 1; and d(s|PsA), d(s|PsC) are kernel density estimates from the classifier
scores for patients with known PsA and PsC status. We compared the effect of
using different prior probabilities for P(PsA) and applied our model to assess the
risk of PsA among patients who have shown psoriasis symptoms, but as of yet have
unknown PsA/PsC status.

The default parameters for each classifier were used throughout our study32. We
used the p ≤ 0.05 threshold in the elastic net model for PsA vs. PsC, but for other
comparisons (PsA/PsC/PsV vs. Control), we adopted a slightly more stringent p ≤
0.01 threshold for these models due to memory issue. Even so, we had to modify
the code of R’s glmnet package slightly to allow classification on the large datasets
on which we applied Elastic Net Regression, by replacing standard R calls to
Fortran code with the dotCall64 library. For the conditional analysis stopping point
(i.e., no substantial increase in the mean AUROC of ten consecutive markers), we
evaluated the AUROC for all possible stopping points up until this criterion had
been met (Fig. 4d).

Code availability. In addition to the software packages previously described, some
custom scripts were also used to produce the results. These may be found on
GitHub (https://github.com/cutaneousBioinf).

Data availability
Data from the CASP (phs000019.v1.p1), Exomechip (phs001306.v1.p1) and PsAGWAS
(phs000982.v1.p1) cohorts are available in dbGap. The data for other cohorts are
available upon request.
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