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The proto-oncogene Bcl3 induces survival and proliferation
in cancer cells; however, its function and regulation in ovarian
cancer (OC) remain unknown. Here, we show that Bcl3 expres-
sion is increased in human OC tissues. Surprisingly, however,
we found that in addition to promoting survival, proliferation,
and migration of OC cells, Bcl3 promotes both constitutive and
interferon-� (IFN)-induced expression of the immune check-
point molecule PD-L1. The Bcl3 expression in OC cells is fur-
ther increased by IFN, resulting in increased PD-L1 transcrip-
tion. The mechanism consists of an IFN-induced, Bcl3- and
p300-dependent PD-L1 promoter occupancy by Lys-314/315
acetylated p65 NF-�B. Blocking PD-L1 by neutralizing antibody
reduces proliferation of OC cells overexpressing Bcl3, suggest-
ing that the pro-proliferative effect of Bcl3 in OC cells is partly
mediated by PD-L1. Together, this work identifies PD-L1 as a
novel target of Bcl3, and links Bcl3 to IFN� signaling and PD-L1-
mediated immune escape.

The proto-oncogene Bcl3 is a member of I�B family that was
first identified in patients with chronic lymphocytic leukemia
(1, 2). However, unlike other I�B proteins in cancer cells, Bcl3 is
a predominantly nuclear protein, which contains a transactiva-
tion domain, and can be recruited to NF-�B-responsive pro-
moters, resulting in transcriptional activation or repression,
depending on the subunit composition of NF-�B complexes,
and other transcription factors and regulators present in the
transcription complexes (3–9). High expression of Bcl3 has
been reported in a number of hematological malignancies (10 –
16), as well as in several solid tumors, including breast can-
cer, nasopharyngeal carcinoma, and colorectal and cervical
cancer (17–23). Consistent with its oncogenic function, Bcl3
can transform cells and induce their proliferation and tumor
growth (24). Recent studies have shown that miR-125b,
which targets Bcl3, is down-regulated in ovarian cancer
(OC)2 tissues (25, 26), suggesting an increased Bcl3 expres-

sion in ovarian cancer. However, the Bcl3 expression in OC
has not been investigated, and its function in OC cells
remains unknown.

Epithelial ovarian cancer (EOC) is the most common gyne-
cological cancer in women, with poor survival and high mortal-
ity rates. As many other types of cancer, EOC is characterized
by an increased activity of the transcription factor NF-�B (27–
29), which promotes expression of anti-apoptotic and pro-an-
giogenic genes. However, recent studies have shown that in
addition to inducing expression of anti-apoptotic and pro-in-
flammatory genes, NF-�B induces transcription of the immune
checkpoint molecule, programmed death ligand 1 (PD-L1;
B7-H1, CD274) (30 –35). PD-L1 expression on tumor cells is
induced by interferon-� (IFN). By binding to programmed cell
death-1 (PD-1) expressed on cytotoxic T cells, PD-L1 then
induces T cell apoptosis and tolerance, thus inhibiting the anti-
tumor immunity. However, tumor PD-L1 has also tumor-in-
trinsic effects that include increased cancer cell survival and
proliferation, regulation of tumor glucose utilization, and inhi-
bition of autophagy (36 –38). PD-L1 is expressed on the surface
of OC cells, and its increased expression correlates with poor
prognosis in OC patients (38 –41); however, the mechanisms
that regulate the PD-L1 expression in OC cells are not known.

Here, we show that Bcl3 expression is increased in human
EOC tissues, and Bcl3 overexpression promotes survival, pro-
liferation, and migration of OC cells. Remarkably, however, our
results show that in addition to promoting survival and prolif-
eration, Bcl3 induces both constitutive and IFN-induced PD-L1
expression in OC cells. The mechanism consists of Bcl3- and
p300-mediated recruitment of Lys-314/315 acetylated p65
NF-�B to the PD-L1 promoter in IFN-treated cells. In OC cells
overexpressing Bcl3, neutralization of the induced PD-L1
decreases cell proliferation, indicating that the pro-prolifera-
tive effect of Bcl3 is partly mediated by PD-L1. These data iden-
tify PD-L1 as a novel target of Bcl3, and suggest that in addition
to promoting cell proliferation, Bcl3 regulates immune escape
in cancer cells.

Results

Bcl3 expression is increased in human OC tissues, and
promotes survival, proliferation, and migration of OC cells

Expression of miR-125b, which targets Bcl3, is down-regu-
lated in OC tissues (25, 26). However, it is not known whether
Bcl3 gene expression is increased in ovarian cancer. To evaluate
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the Bcl3 expression in OC tissues, we analyzed Bcl3 levels using
the Oncomine database (https://www.oncomine.org/resource/
login.html).3 Analysis of the TCGA dataset containing 586
ovarian serous cystadenocarcinoma, the most common type of
EOC, revealed a significantly (fold-change � 1.131, p � 0.016)
increased Bcl3 expression compared with normal ovary tissues
(Fig. 1A). In addition, analysis of Hendrix dataset (42) showed a
significantly increased Bcl3 expression in ovarian clear cell ade-
nocarcinoma (n � 8, fold-change � 1.123, p � 0.001), ovarian
endometrioid adenocarcinoma (n � 37, fold-change � 1.060,
p � 0.016), ovarian mucinous adenocarcinoma (n � 13, fold-
change � 1.095, p � 0.004), and ovarian serous adenocarci-
noma (n � 41, fold-change � 1.565 p � 0.009), compared with
normal ovary tissues (Fig. 1B). Interestingly, there was a dra-
matic increase in the Bcl3 expression in ovarian serous surface
papillary carcinoma (n � 28, fold-change � 23.955, p � 6 �
10�8) in the Welsh (43) dataset (Fig. 1C). In addition, Bcl3 was
increased in ovarian carcinoma in the Bonome (n � 185, fold-
change � 1.361, p � 0.009; Fig. 1D) (44) dataset. Together,
analysis of four different public datasets containing 26 control
ovarian tissues and 898 OC samples has shown a statistically
increased Bcl3 gene expression in OC tissues (p � 0.016).

To explore the functional significance of Bcl3 in OC cells, we
first examined the effect of Bcl3 suppression on OC cell apo-
ptosis, proliferation, and migration. Suppression of Bcl3 by
siRNA decreased Bcl3 mRNA (Fig. 2A) and protein (Fig. 2, B
and C) levels in SKOV3 and OVCAR3 cells by about 50% com-
pared with control scramble siRNA. Of note, in whole cell
extracts (WCE) of OC cells, Bcl3 runs as a doublet of an approx-
imate 50 kDa on SDS gels (Fig. 2B), consistent with previous
reports demonstrating Bcl3 phosphorylation (24, 45– 47).
Importantly, Bcl3 suppression significantly increased apopto-
sis, evaluated by nucleosome release into the cytoplasm (Fig.
2D) (48) and by caspase-3 assay (Fig. 2E), and decreased prolif-
eration of SKOV3 (Fig. 2F) and OVCAR3 (Fig. 2G) cells. Fur-
thermore, Bcl3 suppression by siRNA significantly reduced
migration of OC cells (Fig. 3).

To validate the above data, we suppressed and overexpressed
Bcl3 in SKOV3 cells using CRISPR knockout and activation
plasmids. Suppression of Bcl3 by CRISPR/Cas9 reduced both
Bcl3 mRNA (Fig. 4A) and protein levels (Fig. 4, B and C). Impor-
tantly, Bcl3 suppression significantly increased apoptosis (Fig.
4D) and decreased proliferation (Fig. 4E) in SKOV3 cells. Con-
versely, Bcl3 overexpression decreased apoptosis (Fig. 4D) and
increased cell proliferation (Fig. 4F). To confirm these data, we
generated SKOV3 cells stably transfected with Bcl3 shRNA.
Compared with the control SKOV3 cell line transfected with

3 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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Figure 1. Bcl3 gene expression is increased in human OC tissues. A, expression of Bcl3 mRNA in normal ovary tissues (column 1) and ovarian serous
cystadenocarcinoma (column 2). Data were retrieved from The Cancer Genome Atlas (TCGA) Oncomine data set. B, Bcl3 mRNA levels in normal ovary tissues
(column 1), ovarian clear cell adenocarcinoma (column 2), ovarian endometrioid adenocarcinoma (column 3), ovarian mucinous adenocarcinoma (column 4),
and ovarian serous adenocarcinoma (column 5). Data were retrieved from the Hendrix Ovarian Statistics (42) dataset. C, Bcl3 expression in normal ovary tissues
(column 1) and ovarian serous surface papillary carcinoma tissues (column 2) retrieved from the Welsh dataset (43). D, Bcl3 expression in normal ovary tissues
(column 1) and in ovarian carcinoma (column 2) retrieved from the Bonome dataset (44).
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empty expression vector, SKOV3 cells stably transfected
with Bcl3 shRNA express significantly decreased Bcl3 mRNA
(Fig. 4A) and protein (Fig. 4, B and C) levels. Importantly, these
cells exhibit increased apoptosis (Fig. 4D) and reduced prolif-
eration (Fig. 4G) compared with control SKOV3 cells. These
data demonstrate that Bcl3 promotes OC cell survival, migra-
tion, and proliferation.

Bcl3 mediates constitutive PD-L1 expression in OC cells

Because Bcl3 regulates NF-�B-dependent transcription, we
analyzed expression of NF-�B-dependent genes cIAP1, BclxL,
TGF�1, and I�B� in SKOV3 and OVCAR3 cells transfected
with Bcl3 siRNA. In addition, because PD-L1 promotes OC
growth and cell proliferation (38, 49), and is regulated by NF-�B
(30 –35), we wondered whether Bcl3 might regulate PD-L1
expression in OC cells. Remarkably, whereas Bcl3 suppres-
sion by siRNA did not have a substantial effect on cIAP1,
BclxL, TGF�1, and I�B� mRNA levels, it significantly
reduced PD-L1 expression in SKOV3 and OVCAR3 cells
(Fig. 5A). In addition, Bcl3 suppression by siRNA signifi-

cantly decreased the intracellular PD-L1 protein levels in
both cell types (Fig. 5, B and C).

To confirm these results, we analyzed PD-L1 expression in
SKOV3 cells transfected with Bcl3 CRISPR knockout and acti-
vation plasmids. Although Bcl3 suppression by CRISPR knock-
out did not have a significant effect on cIAP1, BclxL, TGF�1,
and I�B� mRNA levels, it significantly reduced PD-L1 mRNA
(Fig. 5D). Conversely, Bcl3 overexpression increased PD-L1
mRNA in SKOV3 cells, but not expression of cIAP1, BclxL,
TGF�1, or I�B� (Fig. 5D). Bcl3 suppression by CRISPR knockout
also significantly decreased the intracellular PD-L1 levels, whereas
Bcl3 overexpression increased the PD-L1 protein expression in
SKOV3 cells (Fig. 5, E and F). Importantly, SKOV3 cells stably
transfected with Bcl3 shRNA express significantly reduced PD-L1
protein levels (Fig. 5, E and F). Together, these results indicate that
Bcl3 promotes constitutive PD-L1 expression in OC cells.

IFN induces Bcl3 expression in OC cells

PD-L1 expression on tumor cells, including OC cells, is
induced by IFN produced by CD8 T cells (50 –52). Because our
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Figure 2. Bcl3 suppression induces apoptosis and reduces proliferation of OC cells. A, Bcl3 mRNA analyzed by quantitative RT-PCR in SKOV3 and
OVCAR3 cells transfected with control and Bcl3 siRNA (n � 4). B, Bcl3 Western blotting in WCE prepared from SKOV3 and OVCAR3 cells transfected with
control and Bcl3 siRNA. C, densitometric evaluation of Bcl3 protein levels shown in B. The Bcl3 densities were normalized to actin. Apoptosis measured by
cytoplasmic nucleosome enrichment assay (D), and caspase-3 activity (E) in SKOV3 and OVCAR3 cells transfected with control or Bcl3 siRNA. Cell proliferation was
measured by CellTiter 96 One Solution cell proliferation assay in SKOV3 (F) and OVCAR3 (G) cells transfected with control or Bcl3 siRNA. The values represent the
mean � S.E. of four experiments; *, p � 0.05; **, p � 0.01; ***, p � 0.001 compared with cells transfected with the corresponding control siRNA.
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data showed that Bcl3 promotes PD-L1 expression in OC cells
(Fig. 5), we asked whether IFN might regulate the Bcl3 expres-
sion. In this regard, Bcl3 expression was reported to be up-reg-
ulated by pro-inflammatory cytokines including TNF�, IL-1�,
and IL-6 (20). However, to our knowledge, there is no available
evidence showing that IFN induces Bcl3 expression. Indeed,
human recombinant IFN significantly increased Bcl3 mRNA
levels in SKOV3 and OVCAR3 cells (Fig. 6A). In addition, in
agreement with a previous study demonstrating increased sur-
face expression of PD-L1 in IFN-treated OC cells (52), IFN sig-
nificantly increased PD-L1 mRNA levels in both OC cell lines
(Fig. 6B). Importantly, IFN also increased intracellular Bcl3 and
PD-L1 protein levels in SKOV3 and OVCAR3 cells (Fig. 6, C
and D). Together, these data demonstrated that IFN induces
Bcl3 expression in OC cells, and suggested a link between IFN,
Bcl3, and PD-L1 signaling.

Bcl3 mediates IFN-induced PD-L1 expression in OC cells

Having shown that Bcl3 promotes the basal PD-L1 expres-
sion in OC cells (Fig. 5), and that IFN increases the intracellular
levels of Bcl3 and PD-L1 (Fig. 6, A–D), we wanted to determine
whether Bcl3 mediates also the IFN-induced PD-L1 expression
in OC cells. To this end, we analyzed PD-L1 expression in IFN-
treated SKOV3 and OVCAR3 cells transfected with control and
Bcl3 siRNA. Bcl3 suppression (Fig. 6E) significantly attenuated
the IFN-induced PD-L1 expression in SKOV3 and OVCAR3
cells (Fig. 6F), indicating that Bcl3 mediates the IFN-induced
PD-L1 expression in OC cells.

IFN induces PD-L1 promoter occupancy by p65, Lys-314/315
acetylated p65, and p300

Because recent studies have shown that PD-L1 expression is
regulated by p65 NF-�B (30 –35), we wanted to determine
whether the Bcl3-mediated PD-L1 expression in IFN-treated
OC cells is associated with an increased p65 promoter occu-
pancy. Furthermore, because Lys-314/315 acetylation of p65
regulates its transcriptional activity in OC cells (53), we ana-
lyzed the PD-L1 promoter occupancy by Lys-314/315 ac-p65.
The human PD-L1 promoter contains several putative NF-�B–
binding sites: �B1 site (GGAAAGTCCA) (30) located at posi-
tion �65 upstream from the transcription start site (TSS), �B2
site (GGGGGACGCC) (34) located �358 from TSS, �B3 site
(GGGAAGTTCT) located �600 from TSS (30), and �B4/�B5
sites containing an identical putative NF-�B binding sequence
(GGGAAGTCAC) located �1256 and �1283 from TSS (Fig.
7A). So far, p65 recruitment to the �B2 site has been demon-
strated in non-small cell lung cancer and triple negative breast
cancer cells (34, 35), and p65 was also recruited to the �B3 site
in lipopolysaccharide-stimulated macrophages (30). However,
it is not known whether NF-�B binds to the �B1 and/or �B4/
�B5 sites, or whether NF-�B occupies the PD-L1 promoter in
OC cells.

Thus, we first analyzed using chromatin immunoprecipita-
tion (ChIP) whether p65 and Lys-314/315 ac-p65 are recruited
to the PD-L1 �B1, �B2, �B3, and �B4/�B5 sites (Fig. 7A) in
IFN-treated SKOV3 cells. Compared with ChIP using control
IgG, we detected a statistically significant recruitment of p65 to
�B1 (Fig. 7B) and �B2 (Fig. 7C) sites in 6-h IFN-treated cells,
even though this occupancy was relatively low. We did not
observe any significant recruitment of p65 to �B3 (Fig. 7D) and
�B4/�B5 (Fig. 7E) sites. Intriguingly, however, IFN induced a
robust recruitment of Lys-314/315 ac-p65, which regulates the
specificity of NF-�B-dependent transcription (54, 55), to all �B
sites in the PD-L1 promoter (Fig. 7, B–E).

To determine whether the increased PD-L1 promoter occu-
pancy by Lys-314/315 ac-p65 is associated with an increased
occupancy of a histone acetyltransferase (HAT), we analyzed
recruitment of the HATs cAMP-response element-binding
protein (CBP) and p300, known to acetylate p65 (56). Although
CBP was not significantly recruited, p300 was heavily recruited
to all �B sites in the PD-L1 promoter, and this recruitment was
further enhanced by IFN treatment (Fig. 7, B–E). In addition,
we tested whether the PD-L1 promoter is occupied by Bcl3;
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however, we did not observe any significant recruitment (Fig. 7,
B–E).

Bcl3 and p300 mediate IFN-induced Lys-314/315 ac-p65
recruitment to PD-L1 promoter

Even though Bcl3 was not directly recruited to PD-L1 pro-
moter, we wanted to test whether it might mediate the IFN-
induced Lys-314/315 ac-p65, p65, and p300 occupancy. In
addition, because p300 was recruited to the PD-L1 promoter,
we analyzed whether it might facilitate the Lys-314/315 ac-p65
promoter occupancy. To this end, we measured Lys-314/315
ac-p65, p65, and p300 recruitment to PD-L1 promoter in
SKOV3 cells transfected with control, Bcl3, and p300 siRNA
and treated with IFN (0 and 50 ng/ml) for 6 h. Interestingly,
both Bcl3 and p300 silencing significantly suppressed the IFN-
induced PD-L1 promoter occupancy by Lys-314/315 ac-p65
(Fig. 8A). In contrast, p65 recruitment to PD-L1 promoter was
not Bcl3- or p300-dependent (Fig. 8B); however, given the rel-
atively low occupancy of p65 at the PD-L1 promoter, it was

difficult to accurately assess the role of Bcl3 and p300 in p65
recruitment. The occupancy of p300 at the PD-L1 promoter in
both untreated and IFN-treated cells was also not suppressed
by Bcl3 silencing (Fig. 8C), indicating that p300 resides on the
PD-L1 promoter even in the absence of Bcl3. Together, these
data suggest that the PD-L1 promoter in OC cells is perma-
nently occupied by p300, and upon IFN stimulation, Bcl3 facil-
itates Lys-314/315 p65 acetylation and promoter occupancy,
resulting in increased PD-L1 transcription.

PD-L1 mediates Bcl3 pro-proliferative effect in OC cells

Because in addition to suppressing the anti-tumor activity of
cytotoxic T cells, tumor PD-L1 has tumor-intrinsic effects (36 –
38), we asked whether the Bcl3 pro-proliferative effect in OC
cells might be mediated by PD-L1. To address this question, we
analyzed proliferation of SKOV3 and OVCAR3 cells trans-
fected with Bcl3 overexpression or control plasmids, in the
presence of PD-L1 neutralizing antibody, or isotype-matched
control IgG. The results demonstrated that compared with
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control IgG, PD-L1 neutralizing antibody significantly reduced
proliferation of SKOV3 cells, both in cells transfected with con-
trol plasmid, and in cells transfected with Bcl3 overexpression
plasmid (Fig. 9A). Similar results were observed in OVCAR3
cells (Fig. 9B), indicating that the pro-proliferative effect of Bcl3
in OC cells is partly mediated by PD-L1.

Because IFN increases the Bcl3 expression in OC cells (Fig.
6), and promotes OC tumor growth in mice (52), we tested
whether OC cell proliferation in IFN-treated cells also depends
on PD-L1. Incubation of SKOV3 (Fig. 9C) and OVCAR3 (Fig.
9D) cells with IFN in the presence of control IgG increased cell
proliferation, but this effect was observed only during later
incubation times. Importantly, the OC cell proliferation in IFN-
treated cells was significantly reduced in the presence of PD-L1
neutralizing antibody. These data are consistent with the recent
in vivo study by Abiko et al. (52) demonstrating that the

IFN-induced OC tumor growth is PD-L1 dependent. Together,
these results indicate that IFN induces Bcl3 expression, result-
ing in the increased PD-L1 transcription and OC cell prolifera-
tion (Fig. 10).

Discussion

Our study shows, rather surprisingly, that in addition to pro-
moting cell survival and proliferation, the proto-oncogene Bcl3
induces expression of PD-L1 in ovarian cancer cells. In addi-
tion, our findings demonstrate that Bcl3 expression is increased
in OC tissues, and is induced by IFN in OC cells. The mecha-
nism of how Bcl3 induces PD-L1 transcription in IFN-stimu-
lated cells involves an increased, Bcl3- and p300-dependent
recruitment of Lys-314/315 ac-p65 to PD-L1 promoter.
Because blocking PD-L1 with neutralizing antibody reduces
proliferation of OC cells overexpressing Bcl3 or treated with
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IFN, these results suggest that the pro-proliferative effect of
Bcl3 in OC cells is partly mediated by PD-L1. Together, these
data link Bcl3 to IFN� and PD-L1 signaling, and suggest that in
addition to mediating cell survival and proliferation, Bcl3 pro-
motes immune escape in cancer cells (Fig. 10).

Bcl-3 was originally identified as a candidate proto-oncogene
up-regulated in B-cell chronic lymphocytic leukemia (1, 2);
later studies demonstrated its increased expression also in
other hematological malignancies, as well as in several types of
solid cancer (10 –23). The link between Bcl3 overexpression
and malignant transformation was suggested to stem from its
transcriptional up-regulation of cyclin D1 (57), increased
expression of HDM2, the main negative regulator of p53 (58),

and regulation of DNA damage response (59). In addition,
recent studies have shown that Bcl3 induces expression of pro-
inflammatory cytokines IL-8 and IL-17 in cutaneous T cell lym-
phoma cells (16), and TGF� signaling in breast cancer (60). Our
present findings demonstrate that Bcl3 promotes expression
of PD-L1, indicating that in addition to regulating NF-�B-
dependent genes involved in cell survival and proliferation,
Bcl3 controls genes involved in immune escape. However,
the regulation of NF-�B-dependent transcription by Bcl3 is
gene specific; whereas Bcl3 induces transcription of PD-L1,
it does not have a significant effect on the expression of
NF-�B-regulated genes cIAP1, BclxL, TGF�1, or I�B�, in OC
cells (Fig. 5).
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What determines the specificity of the transcriptional regu-
lation by Bcl3? Because Bcl3 contains a transactivation domain,
it can modulate transcription depending on the transcription
factors and co-regulators present in the transcription com-
plexes (6 –9, 16, 61, 62). In this context, Bcl3 was shown to
interact with the NF-�B subunits p50 and p52, the AP-1 tran-
scription factors c-Jun and c-Fos, STAT1, STAT3, PPAR�, class
I histone deacetylases, and the HATs CBP and p300 (6 –9, 16,
22, 24, 57, 62– 66). Our results demonstrate that even though
Bcl3 is not directly recruited to the PD-L1 promoter, it
mediates, together with the HAT p300 present at the PD-L1

promoter (Fig. 7), the promoter occupancy by Lys-314/315
acetylated p65 NF-�B in IFN-treated OC cells (Fig. 8A). Inter-
estingly, previous studies have reported that acetylation of p65
at Lys-314/315 is mediated by p300, and results in a gene-
specific regulation of NF-�B-dependent genes in TNF-stim-
ulated cells (54, 55). Together, our data support a model in
which the PD-L1 promoter in OC cells is occupied by p300,
and upon IFN stimulation, Bcl3 promotes PD-L1 transcrip-
tion by facilitating the promoter-specific occupancy by Lys-
314/315 ac-p65. Future studies should determine whether
IFN induces p65 acetylation on Lys-314/315 by p300, and/or

Figure 7. IFN induces PD-L1 promoter occupancy by p65, Lys-314/315 acetylated p65, and p300 in OC cells. A, schematic illustration of NF-�B– binding
sites in human PD-L1 promoter, and ChIP primers used in the ChIP assay. B–E, recruitment of p65, Lys-314/315 ac-p65, CBP, p300, and Bcl3 to PD-L1 �B1
(B), �B2 (C), �B3 (D), and �B4/�B5 sites (E) in IFN (50 ng/ml)-treated SKOV3 cells was analyzed by ChIP and quantified by real-time PCR; ChIP using control
IgG is also shown. Each condition (antibody used at each time point) represents �1.25 � 105 cells. The data are presented as fold-difference in
occupancy of the particular protein at the particular locus compared with the human IGX1A (SA Biosciences) locus, and represent the mean � S.E. of
three experiments. Asterisks denote a statistically significant (*, p � 0.05; **, p � 0.01; ***, p � 0.001) change compared with ChIP using control IgG at
the corresponding time.
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whether it induces histone deacetylases’s removal. In addi-
tion, it will be interesting to determine whether the high
promoter occupancy by Lys-314/315 ac-p65 in IFN-treated
OC cells is unique for PD-L1, or whether IFN induces Lys-
314/315 ac-p65 recruitment to other NF-�B-dependent pro-
moters as well.

Little is known about the signaling pathways inducing Bcl3
expression in cancer cells. In line with the reported induction of
Bcl3 by p65 NF-�B (68), Bcl3 expression was shown to be up-
regulated by pro-inflammatory cytokines including TNF�,
IL-1, and IL-6 (20). Our study is the first to demonstrate that the
Bcl3 expression is induced also by IFN� (Fig. 6). The induction
of Bcl3 by IFN is intriguing, especially because our data also
show that the IFN-induced Bcl3 expression promotes expres-

sion of PD-L1 in IFN-stimulated cells (Fig. 6), thus linking Bcl3
to IFN and PD-L1 signaling.

Increased PD-L1 expression in OC tissues promotes tumor
growth (39 –41), but the regulation of PD-L1 expression in OC
cells is little understood. Our study demonstrates that the
PD-L1 expression in OC cells is regulated by the proto-onco-
gene Bcl3. Analysis of four different public datasets, together
containing 26 control ovarian tissues and 898 OC samples, has
revealed that the Bcl3 gene expression is statistically increased
in OC tissues (p � 0.016; Fig. 1). Interestingly, the Bcl3 expres-
sion was most significantly increased in ovarian serous surface
papillary carcinoma (Fig. 1C) (43). Even though the sample size
was relatively small, these data suggest that this type of OC has
a significantly higher Bcl3 expression compared with other
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types of OC. Alternatively, as the tumor samples are often het-
erogeneous, a subset of cancer cells may express higher levels of
Bcl3. It will be important to correlate these data in future with
Bcl3 protein levels in individual cells. In addition, because the
Bcl3 transcriptional activity is regulated by phosphorylation
(24, 45– 47), future studies should analyze the phosphorylation
status of nuclear Bcl3 in OC tissues.

In addition to inhibiting anti-tumor cytotoxic T cells, the
tumor-expressed PD-L1 has tumor-intrinsic effects that in-
clude the regulation of cancer cell survival and proliferation,
autophagy, and regulation of glucose metabolism and mTOR
signaling (36 –38). Our results show that Bcl3 has prosurvival
and pro-proliferative effects in OC cells (Figs. 2– 4). However,
because blocking the Bcl3-induced PD-L1 by neutralizing anti-
body decreases proliferation in Bcl3-overexpressing cells (Fig.
9), these data indicate that the Bcl3 prosurvival effect in OC
cells is, at least partly, mediated by the Bcl3-up-regulated
PD-L1. In summary, our study identifies PD-L1 as a novel target
of Bcl3, indicating that Bcl3 regulates not only cancer cell pro-
liferation and survival, but also immune escape.

Experimental procedures

Cell culture

Human ovarian cancer SKOV3 and OVCAR3 cells were
obtained from the American Type Culture Collection (ATCC,
Rockville, MD). Cells were cultured (5 � 105 cells/ml) in 6-well
plates in RPMI 1640 medium (Invitrogen) supplemented with
10% heat-inactivated fetal bovine serum (FBS; Invitrogen) and
antibiotics at 37 °C with 5% CO2 as described (53). For treat-
ment with IFN�, human recombinant IFN� (285-IF-100; R&D
Systems, Minneapolis, MN) was reconstituted in sterile water.
Cell viability was measured by using trypan blue exclusion.

Transfection with siRNA and CRISPR knockout and
overexpression plasmids

Human Bcl3 (sc-29789) and nonsilencing (sc-37007) siRNAs
were obtained from Santa Cruz Biotechnology (Santa Cruz,
CA). Prior to transfection, 2 � 105 cells were seeded into a
6-well plate and incubated in a humidified 5% CO2 atmosphere
at 37 °C in antibiotic-free RPMI medium supplement with 10%
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FBS for 24 h to about 80% confluence. For each transfection, 80
pmol of either nonsilencing siRNA control or Bcl3 siRNA were
used. Cells were transfected 7 h in transfection medium with
siRNA transfection reagent according to the manufacturer’s
instructions (Santa Cruz Biotechnology). After transfection,
fresh medium with antibiotics was added, and cells were grown
for 24 h before treatment.

Bcl3 CRISPR/Cas9 knockout (KO) plasmid (sc-400740), con-
trol CRISPR/Cas9 plasmid (sc-418922), Bcl-3 CRISPR activa-
tion plasmid (sc-400740-ACT), and control CRISPR activation
plasmid (sc-437275) were obtained from Santa Cruz Biotech-
nology. Prior to transfections, 2 � 105 cells were seeded into a
6-well plate and incubated in antibiotic-free RPMI medium
supplement with 10% FBS for 24 h to 80% confluence. For each
transfection, 3 �g of Bcl3 CRISPR/Cas9 KO or activation plas-
mids, or the corresponding control plasmids were used. Cells
were transfected 24 h in plasmid transfection medium accord-
ing to the manufacturer’s instructions (Santa Cruz Biotechnol-
ogy). After transfection, fresh medium with antibiotics was
added, and cells were grown for 24 h before treatment.

For stable transfection, Bcl3 shRNA (sc-29789-SH) and con-
trol shRNA (sc-108060) plasmids were obtained from Santa
Cruz Biotechnology. For each transfection, 2 �g of Bcl3 shRNA
or control shRNA plasmid were used, and cells were transfected
using shRNA plasmid transfection medium (sc-108062) and
transfection reagent (sc-108061) according to the manufactu-
rer’s instructions (Santa Cruz Biotechnology). Transfected col-
onies were selected using 3 �g/ml of puromycin.

Apoptosis, cell proliferation, and PD-L1 neutralization assays

Apoptosis was evaluated using a cell death detection ELISA
kit that quantifies release of nucleosomes into the cytoplasm
(Cell Death Detection ELISAPLUS, Roche Applied Science)
(48), and by measuring caspase 3 activity using a human active
caspase 3 ELISA kit (ab181418, Abcam, Cambridge, MA).

Cell proliferation was measured by CellTiter 96 One Solution
Cell Proliferation Assay (Promega, Madison, WI). Transfected
cells were seeded into 96-well plates at a density of 5000 cells/
100 �l of medium, and incubated at 37 °C. At the indicated time
points, 20 �l of CellTiter 96 One Solution Reagent was added to
each well, incubated for 4 h at 37 °C, and absorbance at 490 nm
was measured.

For PD-L1 neutralization experiments, transfected cells were
incubated in the presence of 500 nM anti-PD-L1 (CD274)
neutralizing IgG1� antibody (catalog 71213; BPS Bioscience,
San Diego, CA) or isotype control IgG1� antibody (catalog
14-4714-82; Thermo Fisher Scientific), and cell proliferation
was measured as described above.

Wound healing assay

SKOV3 cells were seeded in 6-well plates (2 � 105 cells/well)
and transfected with control or Bcl3 siRNA as described above.
Once the cells became confluent, a wound area was created
by scraping the cell monolayer with a sterile 200-�l pipette
tip. After washing twice with PBS, RPMI medium without
FBS was added to the wells. The scratch area was monitored
under a phase-contrast microscope at 0, 24, and 48 h after
transfection. The wound width was measured in five random
fields using ImageJ software. All samples were tested in
triplicates.

Real-time RT-PCR

Total RNA was isolated using RNeasy mini-kit (Qiagen,
Valencia, CA). The iScript one-step RT-PCR kit with SYBR
Green (Bio-Rad) was used as a Supermix and 20 ng/�l of RNA
was used as template on a Bio-Rad MyIQ Single Color Real-
Time PCR Detection System (Bio-Rad). The primers used for
quantification of human Bcl3, PD-L1, cIAP1, BclxL, TGF�1,
I�B�, p65, and actin mRNA were purchased from SA Biosci-
ences (Frederick, MD). The mRNA values are expressed as a
percentage of control or untreated samples, which were arbi-
trarily set as 100%.

Western blot analysis

WCE were prepared as described previously (48, 53). Dena-
tured proteins were separated on 12% denaturing polyacryl-
amide gels and transferred to nitrocellulose membrane
(Hybond C; Amersham Biosciences). Membranes were blocked
with a 5% (w/v) nonfat dried milk solution containing 10 mM

Tris-Cl, pH 7.5, 140 mM NaCl, 1.5 mM MgCl2, and 0.1% Tween
20 (TBSTM), and incubated with Bcl3 (23959 –1-AP; Protein-
tech, Rosemont, IL) or PD-L1 (E1L3N; Cell Signaling, Danvers,
MA) antibodies diluted in TBSTM. After washing, the mem-
branes were incubated with horseradish peroxidase-labeled
secondary antibodies and the labeled proteins were detected
using the ECL detection system (Amersham Biosciences). To
confirm equivalent amounts of loaded proteins, the mem-
branes were stripped and re-probed with control anti-actin
antibody as described (48, 53).

Chromatin immunoprecipitation (ChIP)

ChIP analysis was performed as described (67). Briefly, pro-
teins and DNA were cross-linked by formaldehyde, and cells

Figure 10. Proposed model of IFN-induced Bcl3 expression, resulting in
increased PD-L1 promoter occupancy by Lys-314/315 ac-p65, and
increased PD-L1 expression and proliferation in OC cells. Findings from
this study are indicated by red arrows.
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were washed and sonicated. The lysates were centrifuged
(15,000 � g, 10 min, 4 °C), and the supernatant extracts were
diluted with ChIP dilution buffer and pre-cleared with Protein
A/G-agarose (Santa Cruz Biotechnology) for 2 h at 4 °C. Immu-
noprecipitations were performed overnight at 4 °C, using p65
(MAB3026; Sigma), Lys-314/315 acetylated p65 (HW136; Sig-
nalway Antibody, College Park, MD), CBP (sc-7300; Santa
Cruz Biotechnology), p300 (sc-585; Santa Cruz Biotechnol-
ogy), Bcl3 (23959 –1-AP; Proteintech), and control IgG (sc-
2025) antibodies that were pre-incubated (6 h, 4 °C) with
Protein A/G-agarose, and the immune complexes were col-
lected by centrifugation (150 � g, 5 min, 4 °C), washed, and
extracted with 1% SDS, 0.1 M NaHCO3. After reversing the
cross-linking, proteins were digested with proteinase K, and
the samples were extracted with phenol/chloroform, fol-
lowed by precipitation with ethanol. Immunoprecipitated
DNA was analyzed by real-time PCR (25 �l reaction mix-
ture) using the iQ SYBR Green Supermix and the Bio-Rad
MyIQ Single Color Real-Time PCR Detection System (Bio-
Rad). Each immunoprecipitation was performed at least
three times using different chromatin samples, and the occu-
pancy was calculated by using the human IGX1A negative
control primers (SA Biosciences, Frederick, MD), which
detect specific genomic ORF-free DNA sequence that does
not contain a binding site for any known transcription fac-
tors. The results were calculated as fold-difference in occu-
pancy of the particular protein at the particular locus com-
pared with the IGX1A locus.

The PD-L1 primers used for real-time PCR were as follows:
PDL1-�B1: forward, 5�-CTTTATTCCTAGGACACCAAC-
ACT-3� and reverse, 5�-CAAGGCAGCAAATCCAGTTT-3�;
PDL1-�B2: forward, 5�-TGGGTCTGCTGCTGACTTT-
TTA-3� and reverse, 5�-AGAGGGGTAAGAGCTTAAGGT-
TAC-3�; PDL1-�B3: forward, 5�-TTCCGCAGCCTTAATCC-
TTA-3� and reverse 5�-ACTTCCTCAAAGTTCCTCGACA-
3�; PDL1-�B4/�B5: forward, 5�-TGCCACATAATGTCTATA-
TTTTCC-3� and reverse 5�-CCAGCTCAGATGTTCCT-
TCTTT-3�.

Statistical analysis

The results represent at least three independent experi-
ments. Numerical results are presented as mean � S.E. Data
were analyzed by using InStat software package (GraphPad, San
Diego, CA). Statistical significance was evaluated by using
Mann-Whitney U test, and p � 0.05 was considered significant.
Levels of significance are indicated as *, p � 0.05; **, p � 0.01;
and ***, p � 0.001.
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