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Innate immunity in animals including humans encompasses
the complement system, which is considered an important host
defense mechanism against Aspergillus fumigatus, one of the
most ubiquitous opportunistic human fungal pathogens. Previ-
ously, it has been shown that the alkaline protease Alp1p
secreted from A. fumigatus mycelia degrades the complement
components C3, C4, and C5. However, it remains unclear how
the fungal spores (i.e. conidia) defend themselves against the
activities of the complement system immediately after inhala-
tion into the lung. Here, we show that A. fumigatus conidia con-
tain a metalloprotease Mep1p, which is released upon conidial
contact with collagen and inactivates all three complement
pathways. In particular, Mep1p efficiently inactivated the major
complement components C3, C4, and C5 and their activation
products (C3a, C4a, and C5a) as well as the pattern-recognition
molecules MBL and ficolin-1, either by directly cleaving them or
by cleaving them to a form that is further broken down by other
proteases of the complement system. Moreover, incubation of
Mep1p with human serum significantly inhibited the comple-
ment hemolytic activity and conidial opsonization by C3b and
their subsequent phagocytosis by macrophages. Together, these
results indicate that Mep1p associated with and released from
A. fumigatus conidia likely facilitates early immune evasion by
disarming the complement defense in the human host.

The complement system is an important arm of the innate
immunity that is triggered within minutes after the entry of
foreign bodies. Because complement components are present
in ample amount in the tissue fluids and blood, they can effi-
ciently recognize and eliminate the invading microorganisms
(1). The diverse strategies employed by the complement system
for elimination of pathogens are as follows: (i) formation of a
membrane attack complex (MAC)5 on the microbial mem-
brane resulting in their lysis; (ii) promotion of microbial phag-
ocytosis by opsonization and their uptake through complement
receptors; (iii) recruitment of immune cells by anaphylatoxins;
and (iv) enhancement of T and B cell responses (2–6).

In contrast, Aspergillus fumigatus, a saprophytic fungus but
an opportunistic airborne pathogen, is known to cause a spec-
trum of diseases depending on the immune status of an individ-
ual. Hosts with immune hypersensitivity are predisposed to
allergic aspergillosis and aspergilloma (7–9), whereas those
with compromised immune status are susceptible to invasive
aspergillosis (10). Immunocompetent individuals, however,
are capable of efficiently eliminating the inhaled conidia by
innate immune mechanisms (11–13). The last 2 decades have
seen a significant increase in the invasive aspergillosis cases
because of the widespread use of immunosuppressant drugs,
particularly in hemato-oncology patients and transplant recip-
ients (14 –17). This has stimulated a consequential interest in
understanding the virulence factors employed by the fungus to
evade innate immune responses.

A. fumigatus conidia (asexual spores), and sometimes its
hyphal fragments, are known to predominantly enter the lung-
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space through breathing air (18). Earlier studies have shown
that both conidial as well as hyphal morphotypes of this patho-
gen are capable of activating the complement system (19). In
addition, it has also been shown that the binding of activated
complement component C3b per unit surface of conidia
inversely correlates with its virulence. For example, A. fumiga-
tus allows less C3b deposition on its conidia as compared
with the nonpathogenic Aspergillus species (20). Further-
more, complement deficiency correlates with dissemination
of fungal elements and enhanced susceptibility to fatal inva-
sive systemic infection (21). However, because of the pres-
ence of a thick cell wall, it is less likely that the A. fumigatus
conidia/hyphae are lysed by complement attack through
MAC formation. Hence, clearance of A. fumigatus is ex-
pected to be due to complement-mediated opsonization that
facilitates phagocytosis and/or release of anaphylatoxins
that can enhance A. fumigatus killing by the innate immune
cells (22–24).

A successful establishment of Aspergillus infection therefore
would require efficient evasion of the complement system as
both conidia and hyphae come in contact with complement in
the lung. Consistent with this notion, this pathogen has devel-
oped a panoply of evasion strategies that include the following:
avoiding recognition by complement (25, 26); acquisition of
host complement regulators (e.g. factor H (FH), FH-like protein
1 (FHL-1), FH-related protein 1 (FHR-1), and C4b-binding pro-
tein (C4BP) (27, 28)); production of complement regulators/
inhibitors (29); and degradation of complement components
(30).

Secreted proteases from infectious microorganisms are
known to be involved in the evasion of the complement system
(31–33). One of the A. fumigatus alkaline proteases, Alp1p,
secreted by the hyphal morphotype, is known to degrade
the complement components (30); this protease effectively
degrades all the major components of the complement system:
C3, C4, and C5. It is believed that Alp1p plays an important role
during cerebral aspergillosis (34). However, Alp1p is only
secreted by A. fumigatus hyphal morphotype, and therefore, it
is logical to posit that protease(s) other than Alp1p may subvert
complement at the conidial stage, thus avoiding its efficient
opsonization and engulfment by the phagocytes immediately
after its inhalation. In this study, we looked for complement-
degrading protease(s) associated with conidia. We observed
that the culture supernatant collected upon conidial inocu-
lation in the medium containing collagen or albumin (i.e. the
components present in the lung environment) contains
complement-degrading activity. The protease was identified
as a metalloprotease, Mep1p, that showed proteolytic activ-
ity toward the major complement proteins C3, C4, and C5 as
well as the pattern recognition molecules properdin, MBL,
and ficolin-1, which are involved in the activation of com-
plement pathways, leading to inhibition of activation of all
the three complement pathways as well as complement-
dependent phagocytosis. Together, our data indicate that
degradation of complement proteins by Mep1p is one of
the important mechanisms exploited by the A. fumigatus
conidia in evading the early host defense posed by the com-
plement system.

Results

A. fumigatus conidia-associated Mep1p degrades
complement components

The A. fumigatus morphotype that enters the human lungs
and first exposed to the alveolar environment is mainly
A. fumigatus conidia. However, human bronchoalveolar lavage
is reported to contain complement proteins (35), which
prompted us to examine whether A. fumigatus conidia store
protease(s) capable of subverting the complement system in the
lungs. We thus cultured the wildtype (WT) conidia in the
medium containing collagen, to mimic the lung environment,
for less than 2 h and assessed the activity of the culture
supernatant (CS) against human complement proteins C3b
and C4b, which are expected to be generated as a result of
complement activation induced by the conidia. The CS
showed limited cleavage of C3b but efficiently cleaved C4b;
the proteolytic activity was specifically directed against the
��-chain of C4b (Fig. 1, A and B). This indicated that a pro-
tease (or proteases) stored in the conidia, and released early
on, is responsible for cleaving C4b. Next, to determine the
class of conidial protease responsible for cleaving C4b, we
inhibited the protease activity by adding various inhibitors.
Intriguingly, the activity was inhibited only by EDTA apart
from heat inactivation suggesting that C4b is cleaved by a met-
alloprotease (Fig. 1B).

Mep1p and Alp1p are the major endoproteases secreted at
neutral pH by A. fumigatus when grown in the presence of
protein as the nitrogen source (36). We thus next examined
whether conidia release Mep1p after culture in liquid
medium containing collagen. Western blot analysis revealed
that Mep1p, but not Alp1p, was released by the conidia into
the collagen medium early on (Fig. 1C; 30 –120 min CS were
tested, and they were positive for Mep1p but not for Alp1p;
Western blotting for 30 and 60 min CS is presented). Mep1p
was also released into the medium containing albumin but
not into other classical Aspergillus culture media (Aspergil-
lus minimal medium, BRIAN medium, or Sabouraud medi-
um; data not shown), suggesting that the release of Mep1p is
medium-specific. Moreover, permeabilization of conidial
cell wall followed by probing with anti-Mep1p antibody
revealed the presence of Mep1p, suggesting that Mep1p is
indeed stored in the conidial cell wall (Fig. 1D). To ascertain
whether Mep1p is also released in the lung during infection,
we challenged mice with A. fumigatus conidia for 2 h and
collected the bronchoalveolar lavage fluid (BALF). As shown
in Fig. 1E, there was a band corresponding to Mep1p on
Western blotting upon probing SDS-PAGE–separated BALF
using polyclonal anti-Mep1p antibody, suggesting that
Mep1p is also released into the lung environment. These
results were also confirmed by ELISA (Fig. 1F).

Consequently, to ascertain that Mep1p does have com-
plement-degrading activity, we then expressed it using
the Pichia expression system (Fig. S1). We also expressed
Alp1p for comparison purposes and three other major A.
fumigatus-secreted proteases (Pep1p, Pep2p, and DppVp;
Fig. S1) (37). Examination of proteolytic activity of these
recombinant proteases against C3b and C4b showed that,
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unlike Alp1p, Mep1p possesses proteolytic activity only
toward C4b; the other three proteases did not show any
proteolytic activity toward C3b or C4b at the reaction
conditions tested (Fig. 2A). Furthermore, as expected,
the C4b-degrading activity of Mep1p could be inhibited
by EDTA (Fig. 2B and Fig. S2) but not by other protease
inhibitors.

To determine the efficiency, different concentrations of
Mep1p were incubated with C4b. The ��-chain of C4b was
completely degraded by 580 nM Mep1p (Fig. 3, A and B). To

examine whether the proteolytic activity of Mep1p is speci-
fic toward C4b, or is directed against other complement
components as well, Mep1p was incubated with different
complement components: C1q, C2, factor B, factor D, pro-
perdin, MBL, ficolins (-1, -2, and -3); complement regulators
like C4BP and factor H (FH); and IgG. Mep1p efficiently
cleaved properdin (FP), MBL, ficolin-1, and C4BP and
showed limited activity toward ficolin-2, -3, IgG, and FH
suggesting Mep1p targets multiple complement compo-
nents (Fig. 4).
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Mep1p cleaves C3, C4, and C5 into C3b-, C4b-,and C5b-like
fragments, which are further inactivated either directly by
Mep1p or indirectly by the physiological regulators

Earlier studies with Staphylococcus aureus (32), Tannerella
forsythia (38) and snake venom (39) metalloproteases, and a
serine protease from Neisseria meningitidis (40) have shown
that they convert complement components C3, C4, or C5 into
C3b-, C4b-, and C5b-like cleaved products. Hence, we pro-
ceeded to determine whether Mep1p also has the ability to
cleave C3, C4, and C5. It is clear from Fig. 5A that incubation of
Mep1p with these major complement components results in
conversion of their �-chains into ��-like chains leading to gen-
eration of C3b-, C4b-, and C5b-like fragments. N-terminal
sequence analyses of the Mep1p-generated ��-chains of C3b-
and C4b-like fragments revealed that the Mep1p cleavage sites
on these proteins are 1–3 residues away from the physiological
convertase-cleaving sites; the ��-chain of the C5b-like fragment
could not be sequenced (Fig. 5B).

Because cleavage of C3, C4, and C5 would result in better
clearance of conidia (41, 42), we asked whether the generated
C3b-, C4b-, and C5b-like fragments are stable or are further
cleaved and inactivated by Mep1p. Mep1p efficiently cleaved
the generated C4b-like and C5b-like fragments; ��-chains of
C4b- and C5b-like fragments were completely degraded upon
prolonged incubation with Mep1p. However, Mep1p was
unable to cleave the ��-chain of the C3b-like fragment (Fig. 6A).
Nevertheless, such generation of a C3b-like fragment would
occur in the fluid phase away from the conidial surface, and
hence we tested whether the Mep1p-generated C3b-like frag-
ment is cleaved by the physiological complement regulators FH
and factor I (FI). But, of note, we did observe that Mep1p is also
capable of cleaving FH (Fig. 4), which raised the following ques-
tion: does cleaved FH possess the cofactor activity? Our results
demonstrated that the Mep1p-cleaved FH does retain this
activity. In this experiment, Mep1p was first incubated with FH,
and then C3 and FI were added to the same reaction mixture.
During incubation, Mep1p cleaved C3 into a C3b-like frag-
ment, which was further degraded indicating that even though
FH is cleaved by Mep1p it retains the cofactor activity (Fig. 6B).
FH supports FI-mediated cleavage of C3b into inactivated C3b
or iC3b, which possesses cleaved ��-chain (��-chain is cleaved
into N-terminal �-68-kDa and C-terminal �-43-kDa frag-

ments; Fig. 6B, lane 6). Because we did not observe cleaved
�-chain fragment (�-68-kDa and C-terminal �-43-kDa frag-
ments) in the presence of Mep1p (Fig. 6B, lane 5), we examined
whether these fragments are unstable in the presence of
Mep1p. Incubation of purified iC3b with Mep1p resulted in
cleavage of both these fragments (Fig. 6B, lane 7), suggesting
that iC3b is further cleaved by Mep1p to a C3d-like fragment.

Physiological activation of C3, C4, and C5 into C3b, C4b, and
C5b results in generation of anaphylatoxins C3a, C4a, and C5a.
We therefore also examined whether Mep1p inactivates
C3a, C4a, and C5a. Incubation of C3a, C4a, and C5a with
Mep1p resulted in the cleavage of these anaphylatoxins into
smaller fragments (Fig. 6C). Following N-terminal sequenc-
ing and high-resolution Orbitrap MS analysis of the Mep1p-
cleaved C3a, C4a, and C5a, it was observed that all three
anaphylatoxins were cleaved at the C terminus, which re-
moved the C-terminal arginine, suggesting that Mep1p inac-
tivates the anaphylatoxins (Table 1 and Fig. S3). Moreover,
C3a and C4a were also trimmed at their respective N termini
(Table 1).

Mep1p inhibits all three major pathways of the complement
system

The results presented above using purified complement
components suggest that Mep1p targets the early complement
components like properdin, MBL, ficolins, C3, and C4 as well as
one of the terminal components C5. It therefore suggested that
such Mep1p-mediated inactivation of complement would
result in inhibition of all three major pathways of complement
activation. Hence, we next determined whether Mep1p is capa-
ble of inhibiting complement pathways when whole human
serum is used as a source of complement. For this, we employed
hemolytic assays as well as the Wieslab complement screen
ELISA.

To measure the effect of Mep1p on complement using hemo-
lytic assays, Mep1p was first incubated with 10% normal human
serum (NHS) in the presence of Ca2�, and then the hemolytic
activity of the treated sera was examined for the classical and
alternative pathways under appropriate conditions. Mep1p
showed significant inhibitory effects on both classical as well as
alternative pathway-mediated lysis of erythrocytes. The addi-
tion of 0.6 �M Mep1p to NHS completely blocked the activation

Figure 1. Cleavage of complement proteins by A. fumigatus culture supernatant and secretion of proteases from A. fumigatus conidia in collagen-
containing medium. A, cleavage of C3b by A. fumigatus culture supernatant (CS). C3b (2 �g) was incubated for 60 min at 37 °C with the CS (1 �g of protein)
obtained after 60 min of conidial inoculation in Tris buffer, pH 7.4 (total reaction volume of 30 �l). The reaction mixtures were then run on 10% SDS-PAGE, and
the cleaved fragments of C3b were visualized by staining the gel with Coomassie Blue (left panel). The middle panel shows the % cleavage of C3b ��-chain by
CS. Data represent mean � S.D. of three experiments (**, p � 0.005). The right panel shows the CS collected at 30 and 60 min. B, cleavage of C4b by A. fumigatus
CS and its inhibition by various protease inhibitors. C4b (2 �g) was incubated for 30 min at 37 °C with the CS (1 �g of protein) obtained after 60 min of conidial
inoculation in Tris buffer, pH 7.4 (total reaction volume of 30 �l). The reaction mixtures were then run on 10% SDS-PAGE, and cleaved fragments of C4b were
visualized by staining the gel with Coomassie Blue (left panel). The splice line between the lanes 8 and 9 indicates that the gel was spliced at this point. Inhibitors
used are as follows: PMSF, phenylmethylsulfonyl fluoride (1 mM); TLCK, tosyl-L-lysyl-chloromethane hydrochloride (1 mM); Pep, pepstatin (11 �g/ml); Iodo,
iodoacetamide (1 mM); Uni Inhi, universal inhibitor without EDTA (1�); EDTA, (10 mM). HI indicates heat-inactivated. CS effectively cleaved C4b, which could be
inhibited by EDTA suggesting the involvement on metalloprotease in C4b cleavage. The right panel shows the % cleavage of C4b ��-chain by CS in the presence
of the indicated inhibitor (**, p � 0.005). Data represent mean � S.D. of three experiments. C, A. fumigatus conidia were cultured in collagen-containing
medium for 30 min or 60 min. The CS was then collected, and the conidia were broken open to collect the intracellular fraction (ICF) and the cell wall autolysate
(CWA). The intracellular fraction contained Mep1p in the pro-form (70 kDa), and the cell wall fraction and the culture supernatant contained Mep1p in the
activated form (42 kDa); none of the fractions contained Alp1p (left panels). The right panels show % release of Mep1p and Alp1p compared with the control lane
(1 �g of Mep1p or Alp1p). Data represent mean � S.D. of three experiments. D, detection of Mep1p in the permeabilized conidia by immunofluorescence. E,
Mep1p in BALF of mice after exposure to WT conidia for 2 h. Released Mep1p was detected by Western blot analysis using polyclonal anti-Mep1p antibody. F,
Mep1p in BALF is also quantified by ELISA (mean � S.D. of three experiments; values represent the Mep1p concentration in 5 ml of BALF collected from each
mouse; *, p � 0.05).
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of both the pathways (Fig. 7A), indicating that it is a potent
inactivator of the classical as well as alternative complement
pathways.

To further validate these results and obtain a quantitative
estimate of the inhibitory effect of Mep1p on the individual
complement pathways, we used the commercially available
ELISA-based functional Wieslab assay kit. Mep1p showed inhi-
bition of the classical, alternative, and lectin pathways with IC50

values of about 0.9, 0.7, and 0.7 �M, respectively (Fig. 7B). Thus,
the order of inhibition was lectin pathway � alternative path-
way � classical pathway.

Mep1p inhibits C3b deposition on conidia and consequently
their phagocytosis

Phagocytosis is an essential step in clearing inhaled
A. fumigatus conidia and is suggested to be dependent on the
conidial opsonization by complement components that are rec-
ognized by the complement receptors on the phagocytes (43).
As Mep1p showed inactivation of different complement path-
ways, we also investigated whether it inhibits C3b deposition on
the conidial surface when serum is used as a source of comple-
ment. Herein, heat-inactivated dormant conidia were incu-
bated with NHS or NHS pretreated with Mep1p, and the

B

C4b � ’
C4b �

C4b �

Co
ck

ta
il 1

 
 E

DT
A 

PM
SF

 
 C

hy
 

 L
eu

 P
ep

 

 C
oc

kt
ai

l 2
 

-

- + + + + +Inhibitor -

++ ++ + + +

+ +
-

-
+ - - - - - - -

+-
-

-

- + + + + +-

++ ++ + + +

+ +
-

-
+ - - - - - - -

+-
-

 C4b + ++ ++ + + + ++ + ++ ++ + + + ++
Co

ck
ta

il 1
 

 E
DT

A 
PM

SF
 

 C
hy

 
 L

eu
 P

ep
 

 C
oc

kt
ai

l 2
 

1  2        1   

 Mep1p/Alp1p

HI Mep1p/Alp1p

 Mep1p  Alp1p 

1 2 3 4 5 6 7
0
20
40
60
80
100
120

8 9 10 11 12

%
 C

4b
 �

’-c
ha

in

- + + + + + +
+ + + ++

Alp1p   Pep1p  Pep2p  

- 5 5 560 60 60

DppVp 

- + + + +
+ + +

Mep1p   

- 5 560 60

+ + + +

Lane

***
***

**
***�’

�

- + + + + + +
+ + + ++

Alp1p   Pep1p  Pep2p  

�   

- 5 5 560 60 60

DppVp 

- + + + +
+ + +

Mep1p   

- 5 560 60

Alp1p   

DppVp 

Mep1p

 Pep2p 
Pep1p 

+ + + +

Time (min)

C4b
Protease

C4b 
C4b 

C4b 

/

1  2    3   4   5   6   7    8      9    10   11     12

DppVp 

- + + + +

Mep1p   

- 5 560 60
Protease

�’

C3b                                                                             

�

- + + + + + +

Alp1p   Pep1p  Pep2p  

Time (min) - 5 5 560 60 60

Pep1p 

Alp1p   

DppVp

Mep1p 

+ + + + ++ + + + + + +

Pep2p 
/

C3b 
C3b 

1 2 3 4 5 6 7 8  9   10 11 121  2    3   4   5   6   7    8     9   10   11     12 0
20
40
60
80
100
120

%
 C

3b
 �

’-c
ha

in

DppVp 

- + + + +

Mep1p   

- 5 560 60
- + + + + + +

Alp1p   Pep1p  Pep2p  

- 5 5 560 60 60

+ + + + ++ + + + + + +

Lane

LaneLane

A

Lane

  ****
***

3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
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amount of C3b deposited on the conidial surface was detected
by FITC-labeled anti-C3 antibody using flow cytometry. Incu-
bation of conidia with NHS resulted in considerable deposition
of C3b molecules on the conidial surface, and this deposition
was inhibited by EDTA, which blocks complement activation.
Importantly, pretreatment of NHS with Mep1p resulted in sig-

nificant reduction in C3b deposition on conidia (Fig. 8A), sug-
gesting that Mep1p indeed depletes C3 from the serum.

To determine whether the deposited C3b molecules are
linked to the conidial surface via covalent linkage, we treated
opsonized conidia with NH2OH, NaSCN, or PBS/SDS and esti-
mated the released protein by Bradford assay and ELISA using
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anti-C3b antibody. The majority of protein bound to conidia
was released by NH2OH, but not NaSCN or PBS/SDS (Fig. 8B),
and this NH2OH-releasable protein fraction was anti-C3b anti-
body-positive on ELISA, indicating that C3b molecules are
indeed attached to the conidial surface by the ester linkage.
However, preincubation of NHS with Mep1p followed by
conidial opsonization resulted in a significant decrease in the
NH2OH-releasable C3b from the opsonized conidial surface
(p � 0.01; Fig. 8B).

Furthermore, to study the effect of Mep1p on complement-
dependent phagocytosis, conidia were first opsonized with
NHS in the presence or absence of Mep1p followed by feeding
them to human monocyte-derived macrophages. There was a
significant decrease in the phagocytosis upon opsonizing
conidia with NHS in the presence of Mep1p, indicating that the

complement-depleting role of Mep1p adversely affects conidial
opsonization and phagocytosis (Fig. 8, C and D).

In vivo study using a murine model

An in vivo experiment was performed using a cyclophosph-
amide-immunosuppressed mouse model. However, there was
no significant difference between the body weight and survival
curves of the mice intranasally challenged with the WT and
Mep1p-deficient conidia (Fig. 9A). Nevertheless, when SDS-
PAGE was performed with the Mep1p-deficient conidial colla-
gen culture supernatant, the protein profile was different from
that of the WT collagen culture supernatant (Fig. 9B). More-
over, unlike the WT conidial collagen culture supernatant that
could not degrade C3, at least not beyond the C3b stage, the
mutant conidial collagen culture supernatant produced sub-
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stantial degradation of C3 (both �- and �-chains) (Fig. 9C). This
could be because of the stress due to MEP1 deletion altering the
released protein composition, which is still capable of degrad-
ing the complement proteins but in a different manner, and
hence obscuring the effect of MEP1 deletion in the in vivo
mouse model.

Discussion
A. fumigatus is known to secrete proteases that include ser-

ine proteases, metalloproteases, aspartic proteases, and dipep-
tidyl-peptidases, and the abundance of each protease varies
depending on the surrounding medium. The primary function
of A. fumigatus secreted proteases is to degrade organic matter
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Figure 7. Mep1p inhibits activation of all the three major complement pathways. A, examination of the effect of Mep1p on the classical and
alternative pathways by employing hemolytic assays. Normal human serum (NHS; 10%) was incubated with Mep1p (1.5 �g) in appropriate buffer
conditions (see “Experimental procedures”) for 60 min at 37 °C and then the graded concentration of this mixture was further incubated with the
sensitized sheep erythrocytes (EA) for CP activation or rabbit erythrocytes (Er) for the AP activation. The percentage of lysis of erythrocytes indicate the
percentage activity of CP (left panel) and AP (right panel). Results are expressed as mean � S.D. of three individual experiments. Mep1p inhibited both
CP and AP. (*, p � 0.05; **, p � 0.005; ***, p � 0.001). B, examination of the effect of Mep1p on the classical, alternative, and lectin pathways by employing
ELISA assays. NHS (	30%) was incubated with the indicated concentration of Mep1p for 60 min at 37 °C, and then the effect on the activation of various
pathways was measured by the Wieslab ELISA kit. The IC50 of Mep1p for the inhibition of CP, AP, and LP were 0.9, 0.7, and 0.7 �M, respectively. Mep1p
effectively inhibited all the three complement pathways.

Table 1
Mep1p cleavage site on C3a, C4a, and C5a as determined by N-terminal sequencing and mass spectrometry

Peptide Sequence
N-terminal
sequence

Molecular mass
Expecteda Observedb

C3a 650SVQLTEKRMDKVGKYPKELRKCCEDGMRENPMRFSCQRRTRFISLGEACK
KVFLDCCNYITELRRQHARASHLGLAR726

SVQLT 9094.65 9082.5102

Mep1p-cleaved C3ac LTEKRMDKVGKYPKELRKCCEDGMRENPMRFSCQRRTRFISLGEACKKVFLD
CCNYITELRRQHARASH

LTEKR 8258.0335

C4a 661NVNFQKAINEKLGQYASPTAKRCCQDGVTRLPMMRSCEQRAARVQQPD
CREPFLSCCQFAESLRKKSRDKGQAGLQR737

NVNFQ 8764.07 8752.2559

Mep1p-cleaved C4ac FQKAINEKLGQYASPTAKRCCQDGVTRLPMMRSCEQRAARVQQPDCREPFL
SCCQFAESLRKKSRDKGQAG

FQKAI 8355.0326

C5a 660TLQKKIEEIAAKYKHSVVKKCCYDGACVNNDETCEQRAARISLGPRCIKAF
TECCVVASQLRANISHKDMQLGR733

TLQKK 8273.63 10585.8926

Mep1p-cleaved C5ac TLQKKIEEIAAKYKHSVVKKCCYDGACVNNDETCEQRAARISLGPRCIKAFTE
CCVVASQLRANISHKD

TLQKK 10000.5840

a Data are based on the primary sequence.
b Data are based on mass spectrometry.
c The Mep1p-cleaved C3a, C4a, and C5a obtained as described in Fig. 6C were subjected to N-terminal sequencing and mass spectrometry analysis by Orbitrap. Mep1p

cleaved and inactivated all the anaphylatoxins by removing the C-terminal arginine.

Figure 6. Inactivation of C3, C4, C5, and the anaphylatoxins by Mep1p and demonstration that Mep1p-cleaved factor H retains its cofactor activity.
A, 3 �g of purified native C3, C4, or C5 were incubated with Mep1p (0.5 �g) in Tris buffer for 30 or 60 min at 37 °C. The cleaved products were analyzed by 10%
SDS-PAGE under reducing conditions, and the gel was stained with Coomassie Blue. For both time points, the �-chain of C3 was only partially cleaved by
Mep1p, whereas the �-chains of C4 and C5 were completely cleaved by Mep1p. The �-chain of C5 was also partially cleaved by Mep1p. The right panel shows
the % cleavage of C3, C4, and C5 �-chains. Data represent mean � S.D. of three experiments (***, p � 0.0005). B, Mep1p-cleaved factor H retains its cofactor
activity. Lane 1, C3b (3 �g) alone; lane 2, C3b (3 �g) was degraded when incubated with factor H (FH) (1 �g) and factor I (FI) (150 ng); lane 3, C3 (3 �g) was
converted to its C3b-like fragment when incubated with Mep1p (0.5 �g); lane 4, FH (1 �g) was cleaved by Mep1p (0.5 �g). Lane 5, in the presence of Mep1p (0.5
�g) and FI (0.15 �g), both C3 (5 �g) and FH (1 �g) were cleaved suggesting Mep1p cleaved FH retains the cofactor activity; lane 6, iC3b (3 �g) alone; lane 7, iC3b
(3 �g) was further cleaved to C3d-like fragment when incubated with Mep1p (0.5 �g); lane 8, Mep1p (0.5 �g) alone. The right panel shows the % C3 �-chain
cleavage (mean � S.D. of three experiments; **, p � 0.005; ***, p � 0.0005). C, cleavage of C3a, C4a, and C5a by Mep1p. One microgram of purified C3a, C4a, or
C5a was incubated with 0.5 �g of Mep1p in Tris buffer for 60 min at 37 °C and analyzed on a 16% Tricine gel under reducing condition. The right panel shows
the percent cleavage of C3a, C4a, and C5a by Mep1p (mean � S.D. of three experiments; ***, p � 0.0005). Mep1p cleaved all the anaphylatoxins. Molecular
weights: C3 �-chain, 110,000; C3 �-chain, 75,000; C4 �-chain, 97,000; C4 �-chain, 75,000; C4 �-chain, 33,000; C5 �-chain, 115,000; C5 �-chain, 75,000; C3b
��-chain, 105,000; C3b �-chain, 75,000; FH, 155,000; C3a, 9,083; C4a, 8,757; C5a glycosylated, 10,400.
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with NHS (50%; 200 �l) for 60 min at 37 °C in the presence or absence of Mep1p (1 �g/200 �l 50% NHS), and the treated conidia were incubated with
macrophages. Opsonizing conidia with NHS in the presence of Mep1p significantly decreased the conidial uptake by human monocyte-derived macrophages
by at least 60% (***, p � 0.001). D, arrowheads indicate phagocytosed and arrows indicate adherent/nonphagocytosed conidia. The adherent/nonphagocy-
tosed conidia were detected by calcofluor white staining. Mep1p treatment reduced the number of phagocytosed conidia.
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from the environment or the host tissue either to obtain nutri-
ents or for invasion (14, 44). In this study, we show that Mep1p,
a metalloprotease released from A. fumigatus conidia, is capa-
ble of cleaving several complement molecules, thus inactivating
the complement system, an integral part of the host innate
immunity. We demonstrate that Mep1p directly cleaves MBL,
ficolins, properdin, and C4 and C5 molecules. It also inactivates
C3, the central component of the complement system, never-
theless, indirectly. It first generates the C3b-like fragment, but
in fluid phase, which is further degraded by the host regulators
FH and FI. Additionally, we show that Mep1p is proficient in
inactivating the anaphylatoxins/chemoattractants C3a, C4a,
and C5a, which are generated during the activation of C3, C4,
and C5, respectively. Together, this study demonstrates that
Mep1p inhibits activation of all three complement pathways as
well as effector functions of the complement system by cleaving
and inactivating the complement components.

A. fumigatus was shown to down-regulate complement acti-
vation on its surface by recruiting FH and C4BP, the host com-

plement regulators, and by secreting Alp1p, an alkaline prote-
ase that degrades host complement components present in the
surrounding milieu (27, 28, 30). The possible primary function
of Alp1p is degradation of the host structural proteins collagen/
elastin, facilitating fungal invasion and acquisition of nutrients
(45). In support of this role, Alp1p was found to be secreted into
the in vitro culture medium containing collagen or albumin. Of
note, Alp1p was found to be secreted by the mycelial morpho-
type. However, it was shown that Mep1p is secreted in a sub-
stantial amount from ALP1 deletion mutant mycelia, which is
sufficient for proteolytic degradation of collagen (36). More-
over, antibodies against Mep1p were detected in the sera from
patients suffering from aspergilloma as compared with healthy
individuals, suggesting that Mep1p is potentially secreted dur-
ing infection (36). Interestingly, we observed that Mep1p is
released into in vitro culture medium, specifically containing
collagen or albumin, during the early growth phase (i.e. within
30 – 60 min of conidial contact with the culture medium mim-
icking the lung environment). These data along with immuno-
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Figure 9. Virulence of Mep1p-deficient and WT strain in cyclophosphamide-treated murine infection model. A, weight loss and survival of cyclophos-
phamide-immunosuppressed mice challenged with WT or Mep1p-deficient conidia (10 mice per group and two replications; totally 20 mice per group). Mice
with weight loss of more than 30% of its original weight were sacrificed and considered dead for calculations of mortality. Although the survival was higher in
the mouse group challenged by Mep1p-deficient (50%) compared with the mouse group challenged by WT (10%) conidia, the difference was not statistically
significant (p � 0.28; log-rank test). B, SDS-PAGE showing secreted protein profiles of WT and Mep1p-deficient mutant in the collagen culture supernatant. The
gel was stained using Coomassie Blue. C, SDS-PAGE showing degradation of C3 �- as well as �-chain by WT and Mep1p-deficient conidial collagen culture
supernatant. In this experiment, C3 was incubated with culture supernatant for 1 h at 37 °C. The right panels show the percent cleavage of C3 �- and �-chains
by WT and Mep1p-deficient culture sup (mean � S.D. of three experiments; **, p � 0.005; ***, p � 0.0005).
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labeling assay that showed positive fluorescence for dormant
conidial cell wall with anti-Mep1p antibody suggest that Mep1p
is associated with A. fumigatus conidia and is likely to play a
specific role in conidial survival.

We show that Mep1p blocks the alternative complement
pathway (AP) by two different ways: 1) by generating C3b-like
fragment in the fluid phase, facilitating its degradation by FH
and FI; and 2) by cleaving properdin, which is a positive regu-
lator of the AP C3-convertase (C3bBb) capable of stabilizing AP
C3-convertase (46). Igs also contribute to AP activation by
binding to the pathogen surface and facilitating the recruitment
and activation of C3 (47, 48); however, Mep1p showed limited
IgG-cleavage activity. Furthermore, we show that Mep1p also
restricts the lectin pathway (LP) activation by two different
ways: by targeting MBL, which initiates the pathway, and by
degrading the �-chain of C4. Both the AP and LP are activated
immediately within minutes after sensing the pathogens and do
not require the presence of antibodies. A recent report has
shown that in the absence of antibodies, MBL is the key initiator
of complement on the resting conidia, whereas AP amplifies the
complement activation initiated by MBL (49). Thus, the release
of Mep1p from conidia is expected to protect this morphotype
from these complement pathways. We observed that in addi-
tion to AP and LP, Mep1p also targets the CP by degrading C4.
Earlier studies have shown that in normal human serum, initi-
ation of complement activation on conidia primarily comes
from the classical pathway (22, 49). Thus, Mep1p is expected to
subvert the complement system even in immunocompetent
individuals.

The mechanism of Mep1p in degrading the major comple-
ment components C3, C4, and C5 was found to be divergent
from that of Alp1p. There was a complete degradation of C3,
C4, and C5 by Alp1p, whereas Mep1p initially cleaved C3, C4,
and C5 close to physiological convertase cleavage sites and thus
generated C3a-/C3b-like, C4a-/C4b-like, and C5a-/C5b-like
fragments. It further degraded the C4b-like and C5b-like frag-
ments, dampening the activation of complement pathways
directly, particularly the CP and LP, as well as the terminal
pathway by inhibiting the MAC formation. The cleavage of C3,
C4, and/or C5 into C3b-, C4b-, and C5b-like forms is also
known to be mediated by metalloproteases of multiple patho-
gens such as S. aureus (aureolysin (32)), T. forsythia (karilysin
(50)), T. forsythia (mirolysin (31)), Pseudomonas aeruginosa
(elastase (51)), Leptospira strains (thermolysin (52)), as well as
snake venom (39). However, the exact site of cleavage is not
known in most cases except aurolysin, which cleaves C3 at the
identical site as Mep1p. Apparently, these proteases seemed to
convert C3, C4, and C5 into their active forms, but the conver-
sion occurs in the fluid phase, facilitating their further degrada-
tion by host factors, as only pathogen-bound forms of these
active components are likely to be protected (53).

Mep1p could also cleave and inactivate C3a, C4a, and C5a
released during activation of C3, C4, and C5, respectively. This
concurred with an earlier report that showed that gelatinase E,
a metalloprotease from Enterococcus faecalis, could degrade
C3a and dampen the chemoattractant response. Unlike gelatin-
ase E, aureolysin from S. aureus was unable to cleave C3a
directly; however, in the presence of human serum and with the

help of host components aureolysin could inactivate C3a (32).
Thus, direct inactivation of C3a/C5a by Mep1p may restrict
migration of neutrophils and macrophages, leading to ineffi-
cient phagocytosis, clearance, and adaptive immune responses,
hence creating favorable conditions for the germination of
conidia.

A central question is whether Mep1p functions as a virulence
factor of A. fumigatus? Earlier studies have demonstrated that
there was no difference in the pathogenicity of the WT strain
and the MEP1-ALP1 double-deficient mutant in the immuno-
compromised murine model (54). We also observed similar
results; Mep1p-deficient A. fumigatus showed virulence similar
to that of the WT strain in the immunosuppressed murine
model. To determine whether Mep1p deletion induces a stress
that alters the secretome, we examined the protein profiles of
collagen culture supernatants of the WT and Mep1p-deficient
A. fumigatus mutant by SDS-PAGE. Indeed, the protein profile
of the mutant conidial collagen culture supernatant was more
abundant and slightly different from that of the WT collagen
culture supernatant. Moreover, unlike the WT conidial colla-
gen culture supernatant that converted C3 �-chain into
��-form, the MEP1-deletion mutant conidial collagen culture
supernatant completely degraded the C3 �-chain. Thus,
A. fumigatus seems to have built protease redundancy to take
care of the adverse changes in the environmental conditions.

In summary, our study suggests that complement proteins,
also found in the alveolar environment, facilitate A. fumigatus
conidial opsonization and thereby their phagocytosis, as unop-
sonized conidial phagocytosis was significantly lower com-
pared with the opsonized conidia. At the same time, A. fumiga-
tus conidium is endowed with a metalloprotease, Mep1p, which
is efficient in inhibiting all three major complement activation
pathways, and as a consequence, complement-mediated
opsonization and phagocytosis of conidia and generation of
C5a (Fig. 10), a potent chemoattractant for neutrophils and
macrophages (41). Furthermore, consistent with the earlier
observations (55, 56), we show that Mep1p is secreted into the
medium containing albumin/collagen, the constituents of the
lung matrix (57–59). We thus propose that the release of
Mep1p from conidia in the lung environment is likely to subvert
the complement system and consequently inhibit the conidial
clearance by phagocytes (Fig. 10). Our study thus adds to the
understanding of early evasion mechanisms exploited by
A. fumigatus conidia against host complement defense.

Experimental procedures

A. fumigatus strains, culture media, growth conditions, and
cell fractionation

A. fumigatus clinical isolate CBS 144-89 and G10 (a nitrate
reductase mutant of CBS 144-89) were used as the WT strains;
MEP1 deletion was performed on the G10 background (36, 60,
61). These fungal strains were maintained on 2% malt agar
slants at ambient temperature. Liquid culture media used were
Aspergillus minimal, BRIAN, Sabouraud, collagen (0.1% insol-
uble collagen in water), and BSA (0.1% in water). To obtain
culture supernatant, 10-day-old conidia (1 � 108) were har-
vested from the malt-agar slants using Tween/water (0.05%
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Tween 80), inoculated into 5 ml of culture medium, and incu-
bated at 37 °C in a shaken condition for different time intervals.
Culture in the collagen medium was passed through 0.45-�m
mesh-size filters; thus, the collagen medium filtrate as well as
the cultures in other media were subjected to centrifugation
(4500 rpm, 10 min) to obtain the supernatant. Pelleted conidia
from the above cultures were washed and broken using 0.5-mm
glass beads in a FastPrep (MP Biomedicals); the contents were
centrifuged (4000 rpm, 10 min), and the supernatant (intracel-
lular fraction) was collected. The pellet (cell wall) was incubated
with sodium acetate buffer (20 mM, pH 5.5) to obtain cell wall
autolysate.

Serum, antibodies, proteins, and buffers

To obtain normal human serum (NHS), blood was collected
from a healthy donor, allowed to clot at 37 °C for 30 min, cen-
trifuged, and stored in aliquots at 
80 °C until use. Polyclonal
rabbit antibodies against Alp1p and Mep1p were raised as
described earlier (54, 62). FITC-conjugated goat anti-C3 IgG
F(ab�)

2
antibody was purchased from MP Biomedicals (Santa

Ana, CA). Complement components C5 and C1q were pur-
chased from Calbiochem, and C2, C4, C4b, C4BP, and factor D
were purchased from Complement Technology, Inc. (Tyler,
TX). Human C3 (63), C3b (64), factor B (65), factor H (63), and
CVF (66) were purified as described. Cyclophosphamide was
purchased from Sigma. Buffers used were as follows: Tris buffer
(50 mM Tris, 100 mM NaCl, and 2 mM MgCl2, pH 7.4); HEPES
buffer (20 mM HEPES, 140 mM NaCl, 5 mM CaCl2, and 2.5 mM

MgCl2, pH 7.4); acetate buffer (20 mM acetate, pH 4.5); veronal-
buffered saline (VBS) (5 mM barbital, 145 mM NaCl, and 0.02%
sodium azide, pH 7.4); VBS2� (VBS with 0.5 mM MgCl2, and
0.15 mM CaCl2); gelatin veronal buffer (GVB) (VBS with 0.1%

gelatin); GVB2� (GVB with 0.5 mM MgCl2 and 0.15 mM CaCl2);
GVB/EDTA (GVB with 10 mM EDTA); Mg-EGTA (0.1 M

MgCl2 and 0.1 M EGTA); PBS/Tween (PBS-T) (10 mM sodium
phosphate, 145 mM NaCl, and 0.05% (v/v) Tween 20, pH 7.4);
and TBS/Tween (TBS-T) (20 mM Tris-HCl, 150 mM NaCl, and
0.05% (v/v) Tween 20, pH 7.5).

Expression and purification of A. fumigatus proteases

A. fumigatus complementary DNAs (cDNAs) encoding the
proteins of interest were obtained by polymerase chain reaction
(PCR) using DNA prepared from 106 clones of a �gt11 cDNA
library previously constructed (60). Primers were derived from
genomic DNA sequences of the genes. Two hundred nano-
grams of the target DNA, 10 �l of each sense and antisense
oligonucleotides at a concentration of 42 mmol/liter, and 8 �l
of deoxynucleotide mix (containing 10 mmol/liter of each
dNTP) were dissolved in 100 �l of PCR buffer (10 mmol/liter
Tris-HCl, pH 8.3, 50 mmol/liter KCl, and 1.5 mmol/liter
MgCl2). To each reaction, 2.5 units of AmpliTAQ DNA poly-
merase (PerkinElmer Life Sciences) were added. The reaction
mixtures were incubated 5 min at 94 °C, subjected to 25 cycles
of 0.5 min at 94 °C, 0.5 min at 55 °C, 0.5 min at 72 °C, and finally
incubated 10 min at 72 °C. Expression plasmids (pHIL-S1) were
constructed by cloning the cDNA PCR products in Pichia pas-
toris expression vectors. The PCR products were purified using
PCR purification kit (Roche Diagnostics, Germany) and
digested by restriction enzymes for which a site was previously
designed at the 5� end of the primers. P. pastoris transforma-
tion, selection of transformants, and production of recombi-
nant enzymes in methanol medium were performed as
described previously (67, 68). All His6-tagged proteins bound to
a Probond column (Invitrogen); after washing the column with
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in reduced opsonization of conidia (Fig. 8) as well as the MAC formation on their surface. Inhibition of opsonization by Mep1p results in decreased phagocytosis
of conidia by macrophages (M�) (Fig. 8) and is also expected to result in decreased phagocytosis by neutrophils. Mep1p also inactivates C5a (Fig. 6 and Table
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a 20 mmol/liter phosphate buffer, pH 6.0, containing 0.5 mol/
NaCl, proteins were eluted from the Ni2� column with 50
mmol/liter histidine. Identity of purified proteases was verified
by sequencing them by MS using AB-Sciex 4800 MALDI-TOF/
TOF analyzer. Purity of the proteases was examined by densi-
tometry of the Coomassie Blue-stained SDS-PAGE (Fig. S1).
The purity of all the proteins exceeded 92%, except Mep1p,
which was 	80%; the 	18-kDa band in Mep1p is the auto-pro-
teolysis degradation fragment of the protease as determined by
sequencing of the fragment by Orbitrap MS.

Complement degradation assay

To assess complement-degrading activity, culture superna-
tant (the volume corresponding to 1 �g of proteins) was incu-
bated with 2 �g of C3b/C4b for 30 or 60 min at 37 °C in a total
volume of 30 �l. The reaction was then stopped by adding SDS-
PAGE sample buffer containing �-mercaptoethanol, incubated
at 95 °C for 5 min, and subjected to 10% SDS-PAGE. To exam-
ine the proteolytic activity of various purified A. fumigatus pro-
teases, 1 �g of the protease (Alp1p, Mep1p, Pep1p, Pep2p, or
DPPV) was incubated with 3 �g of the complement protein for
5 or 60 min at 37 °C in 20 �l of Tris buffer. The reaction then
was stopped by adding SDS-PAGE sample buffer containing
DTT and resolved on 10% SDS-PAGE. To examine the inhibi-
tion of proteases with various inhibitors, the above reaction was
performed upon preincubating proteases with various inhibi-
tors: leupeptin (2.5 �g/ml), chymostatin (100 �g/ml), pepstatin
(11 �g/ml), phenylmethylsulfonyl fluoride (1 mM), EDTA (10
mM), complete mini mixture (1�) (Roche Applied Science);
complete mini-mixture, EDTA-free (1�) (Roche Applied Sci-
ence). Heat-inactivated (95 °C for 10 min) proteases were
included as negative controls. The percent cleavage of proteins
was quantitated by densitometric analysis and presented as
mean � S.D. of three experiments. Data were normalized con-
sidering the uncleaved protein as 100%.

C3, C4, and C5 cleavage assay

To study the cleavage of C3, C4, and C5 by Mep1p, 500 ng of
Mep1p was incubated with 3 �g of native C3, C4, or C5 in 20 �l
of Tris buffer at 37 °C for the indicated time points. The reac-
tion was stopped by adding SDS-PAGE sample buffer contain-
ing DTT, and samples were resolved in 10% SDS-PAGE. For
N-terminal sequencing of the cleaved fragments, samples run
on SDS-PAGE were transferred onto polyvinylidene difluoride
membranes (ProBlott, ABI) and sequenced. Positive controls
for cleavage of C3, C4, and C5 to C3b, C4b, and C5b, respec-
tively, were formed as described below. For C3, 3 �g of C3 was
incubated with 3 ng of trypsin in 20 �l of 80 mM ammonium
bicarbonate buffer, pH 8, for 5 min at 37 °C. For C4, 3 �g of C4
was incubated with 1 �g of activated C1s in 20 �l of VBS2� for
60 min at 37 °C. For C5, 3 �g of C5 was incubated with the C5
convertase (formed by incubating 3 �g of CVF with 2.5 �g of
factor B, 80 ng of factor D in a total volume of 20 �l for 60 min
at 37 °C) in 20 �l of VBS for 60 min at 37 °C. The cleavage of the
complement components was analyzed using 10% SDS-PAGE
under reducing conditions. The gel was stained with Coomassie
Blue. The percentage of cleavage was quantitated by densito-
metric analysis and presented as mean � S.D. of three experi-

ments. Data were normalized considering the uncleaved pro-
tein as 100%.

Hemolytic assays and ELISA

Hemolytic assays were performed as described (64). In brief,
to determine the effect of Mep1p on the classical pathway, 10%
NHS in GVB2� was pretreated with 0.6 �M Mep1p for 60 min at
37 °C. Thereafter, graded concentrations of this reaction were
mixed with 5 �l of antibody-coated sheep erythrocytes (1 �
109/ml) and incubated for 60 min at 37 °C after adjusting the
volume to 250 �l. The reactions were stopped by keeping the
samples on ice and centrifuged. The percentage of lysis was
determined by measuring the absorbance of the supernatant at
405 nm. To determine the effect on the alternative pathway,
10% NHS in GVB was preincubated with 0.6 �M Mep1p in the
presence of 1.5 mM CaCl2 for 60 min at 37 °C. The reaction was
then stopped by adding 1.5 mM EGTA. Various concentrations
of this reaction mix were then added to 10 �l of rabbit erythro-
cytes (1 � 109/ml in GVB) in 100 �l of GVB containing 5 mM

each of MgCl2 and EGTA and incubated for 20 min at 37 °C.
The reaction was stopped by adding 200 �l of GVBE and cen-
trifuged. The absorbance of the supernatant was read at 405 nm
to determine the percentage of lysis.

To determine the effect of Mep1p on various pathways using
the commercially available Wieslab complement system screen
kit (Euro-Diagnostica, Malmo, Sweden), 4 �l of NHS was pre-
incubated at 37 °C for 60 min with graded concentrations of
Mep1p in the presence of 1.5 mM CaCl2 in a total volume of 13
�l of reaction mixture in GVB. These reaction mixtures were
then diluted as per the manufacturer’s instructions and
added to wells precoated with IgM, mannan, or LPS to deter-
mine the effect on classical, lectin, or alternative pathways.
The ELISA plate was then developed following the manufa-
cturer’s instructions.

C3b deposition on dormant conidia

Flow cytometry—In this assay, 50% NHS in GVB2� was pre-
incubated with 1.5 �M Mep1p for 60 min at 37 °C in a 50 �l of
reaction mixture. Thereafter, 25 �l of Mep1p-pretreated NHS
was mixed with 1 � 106 heat-inactivated conidia in 50 �l in
GVB2� and incubated at 37 °C for 60 min. The conidia were
washed three times with GVBE containing 0.05% Tween 20,
and the C3b deposited was detected by FITC-conjugated
F(ab�)2 anti-C3 goat IgG (dilution 1:1000) on FACSCalibur (BD
Biosciences). Data were analyzed using CellQuestPro software
(BD Biosciences).

Biochemical assay—Conidia (5 � 108) harvested from malt-
agar slants after 10 days of growth were washed twice with
0.05% Tween/water and five times with phosphate-buffered
saline/SDS (PBS/SDS (0.1%)) solution before C3b opsonization
by incubation with 50 �l of 40% normal human serum (NHS) in
HEPES buffer, pH 7.4, for 30 min at 37 °C, and in the absence or
presence of recombinant Mep1p of concentration (1 �g/50 �l),
with intermittent mixing every 5 min. Afterward, the conidia
were washed for five times with PBS/SDS and incubated with 1
M hydroxylamine (NH2OH; 1 h at 37 °C) in 0.2 M sodium bicar-
bonate (NaHCO3, pH 10.0), 3.5 M sodium thiocyanate (NaSCN,
pH 7.0), or PBS/SDS (each volume, 200 �l). The contents were
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centrifuged, and the supernatants were collected for protein
quantification by the Bradford assay, and C3b was quantified by
ELISA. Briefly, a standard curve for C3b was obtained by coat-
ing fold-dilutions of C3b followed by adding anti-C3b antibody
conjugated to horseradish peroxidase (HRP), and then coated
C3b was estimated using ortho-phenylenediamine (OPD) as
HRP substrate. Furthermore, C3b content in the NH2OH,
NaSCN, and PBS/SDS released material was estimated simi-
larly by coating them on an ELISA plate, using HRP-conjugated
anti-C3b antibody and OPD. Supernatant obtained from unop-
sonized conidia incubated with NH2OH-NaHCO3 reagent was
treated as the control.

Conidial phagocytosis in the absence or presence of Mep1p

Conidial opsonization—Conidia (1 � 106) were opsonized
with 12.5% NHS in HEPES buffer, in the absence or presence
of Mep1p (1 �g) at 37 °C for 20 min, with intermittent mix-
ing every 3 min. Conidia were also treated with heat-inacti-
vated NHS or with NHS in the presence of EDTA (20 mM).
As a negative control, conidia were incubated with HEPES
buffer alone. Following that, the reaction was arrested by
adding EDTA; the contents were centrifuged; and conidia
were separated, washed twice with HEPES buffer, resus-
pended in 50 �l of HEPES buffer, and then added to macro-
phage culture.

Phagocytosis—Human peripheral blood mononuclear cells
(PBMCs) were utilized to generate monocyte-derived macro-
phages. These were isolated from the whole-blood samples col-
lected from anonymous healthy donors after written consent
were obtained from Hôpital Saint-Louis (Paris, France),
through the Etablissement Français du Sang (Paris, France).
The use of this material was approved by the ethics committees
of Institut Pasteur and the Etablissement Français du Sang
(convention 12/EFS/023). To generate monocyte-derived
macrophages, human PBMCs were isolated from blood, and
2 � 106 PBMCs were seeded in 12-well culture plates and incu-
bated in RPMI medium overnight at 37 °C in a CO2 incubator.
The medium was aspirated, and adherent monocytes were
washed twice with medium. The differentiation of monocytes
into macrophages was facilitated by culturing with GM-CSF
(10 ng/ml) in complete RPMI (RPMI, heat-inactivated fetal calf
serum, antibiotics, and HEPES) for 6 days at 37 °C in a CO2
incubator. The medium was aspirated, and the monocyte-de-
rived macrophages were washed with medium. Opsonized
conidia resuspended in HEPES buffer were then added to the
macrophages (1 � 106 conidia per well) and incubated in a CO2
incubator for 60 min at 37 °C. Thereafter, medium was aspi-
rated, and macrophages were washed twice with RPMI and
lysed upon the addition of 100 �l of 1% Triton X-100 for 30 min
at 4 °C. The lysate, which contained the phagocytosed conidia,
was collected, and the volume was made up to 1 ml with water.
After appropriate dilution, 25 �l of lysate was spread over malt
agar. The agar plates were incubated at 37 °C for 24 h followed
by counting the colony-forming units. Simultaneously, in a
duplicate experiment, culture plate wells were observed under
microscope (bright-field microscopy) every minute for 60 min.
At 60 min, the nonphagocytosed conidia were observed by
labeling with calcofluor white.

C3a, C4a, and C5a cleavage by Mep1p

For SDS-PAGE analysis, 1 �g each of C3a, C4a, or C5a was
incubated with Mep1p (0.5 �g) in Tris buffer for 15 min at 37 °C
in a total volume of 20 �l. The reaction was then stopped by
adding the sample buffer, and samples were loaded onto 16%
Tricine gel. The cleavage of the anaphylatoxin was analyzed by
staining the gel with Coomassie Blue. The uncleaved and
cleaved anaphylatoxins were also subjected to N-terminal
sequencing as described above for C3, C4, and C5. For determi-
nation of the intact molecular mass by MS, 3 �g of C3a, C4a, or
C5a was incubated with Mep1p (0.5 �g) in Tris buffer for 60
min at 37 °C in a total reaction volume of 10 �l. The samples
were then diluted in acetonitrile/H2O solution (1:1) so that
their final concentration was 20 ng/�l. The mass analysis was
performed as described below.

Intact mass analysis of uncleaved and Mep1p-cleaved C3a,
C4a, and C5a using LC-Q-Exactive Plus mass spectrometer

Molecular mass measurement of uncleaved and Mep1p-
cleaved C3a, C4a, and C5a was achieved using the Q-Exactive
Plus MS coupled to Dionex Vanquish UHPLC system (Ther-
moFisher Scientific). Briefly, 5 �l of the sample was injected
into UHPLC system equipped with a C18 reverse phase column
(100 � 2.1 mm, 1.9 �m). Reverse phase separation of the pro-
tein sample was attained with solvent A (0.1% formic acid in
100% LC-MS grade water) and solvent B (0.1% formic acid in
100% LC-MS grade acetonitrile) using a 15-min gradient
(5–70% B for 11 min followed by 5% B for 4 min) at a flow rate
of 0.3 ml/min. The reverse-phase eluent was nebulized into the
MS through the HESI-Source (Heated Electrospray Ionization).
The MS acquisition parameters were as follows: the instrument
was operated in the positive mode with an electrospray voltage
of 4.2 kV, capillary temperature 275 °C, source temperature
200 °C, sheath gas 25, auxiliary gas 10, resolution 70,000, IT 100
ms, AGC 1.00E6, 10-�m scans, and m/z range of 500 –2000.
The acquisition parameters were fed into the instrument using
the Tune Plus software version 2.8, and sample acquisitions
were attained using the Xcalibur software version 4.0 (Thermo-
Fisher Scientific). Acquired spectra were deconvoluted, and the
intact mass analysis was attained using the BioPharma Finder
software version 2.0 (ThermoFisher Scientific).

Virulence of Mep1p-deficient mutant in murine model of
invasive pulmonary aspergillosis

Animal experiments performed in this study were approved
by the ethical committee for animal experimentation Comité
d’Éthique en Experimentation Animale (CETEA Project license
number 2013-0020). A total of 40 male 8-week-old BALB/c
mice with 	25 g original weight (Janvier, France) were ran-
domly divided into two even groups. The mice were immuno-
suppressed by intraperitoneal injections of 200 mg/kg cyclo-
phosphamide (Sigma) on day 
4 and day 
1. Prior to infection
on day 0, conidial suspensions of WT strain and Mep1p-defi-
cient mutant strain were prepared fresh in PBS supplemented
with 0.1% Tween 20. Each mouse was anesthetized by an intra-
muscular injection of a volume of 150 �l containing 10 mg/ml
ketamine and 10 mg/ml xylazine. The anesthetized mice were
then intranasally inoculated with a 25-�l volume containing

AfMep1p cleaves complement proteins

15552 J. Biol. Chem. (2018) 293(40) 15538 –15555



5 � 105 WT conidia (control group) or the Mep1p-deficient
mutant conidia (test group). The weight and survival of the
mice were monitored daily.

In vivo secretion of Mep1p from conidia in the lungs of murine
model

A total of six male 8-week-old BALB/c mice were used in this
assay (three mice per set, two biological replicates). Mice of the
test group and the control group were intranasally inoculated
with A. fumigatus conidial suspension of WT strain (2.5 � 108)
or PBS, respectively. The BALF was collected using sterile PBS
from each mouse 2 h post-challenge (total BALF volume was 5
ml). The BALF was centrifuged to remove the debris and sub-
jected to albumin depletion (Thermo Scientific albumin deple-
tion kit). Bradford assay was performed to determine the pro-
tein concentration of the BALF. To examine the presence of
Mep1p in the BALF, each BALF sample (2.5 �g of protein) was
mixed with the sample buffer, incubated at 95 °C for 5 min, and
resolved in 10% SDS-PAGE. The separated proteins were trans-
ferred to a nitrocellulose membrane, and the presence of
Mep1p was probed by polyclonal anti-Mep1p antibody. In par-
allel, BALF samples from both control and conidia inoculated
mice were coated on the ELISA plates, followed by addition of
rabbit anti-Mep1p antibody (1:2000 diluted in PBS/BSA) and
incubation at room temperature for 1 h, and then addition of
secondary anti-rabbit IgG (whole molecules; Sigma) conju-
gated to HRP and again incubation at room temperature for 1 h.
Between each step, ELISA plate wells were washed three times
with PBS containing 0.5% Tween 20. Then, using OPD as the
HRP-substrate, bound peroxidase activity was measured, and
the reaction was arrested by adding 4% H2SO4. These peroxi-
dase activities were converted into metalloprotease released by
performing ELISA upon coating fold-dilutions of rMep1p
instead of BALF and thus obtaining a standard curve.

Statistical analysis

Data are presented as mean � S.D., and statistical evaluation
was performed using Student’s t test (SigmaStat, Systat Soft-
ware, Inc., San Jose, CA).
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