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There is increasing interest in the use of cannabinoids for disease and symptom management, but limited information available
regarding their pharmacokinetics and pharmacodynamics to guide prescribers. Cannabis medicines contain a wide variety of
chemical compounds, including the cannabinoids delta-9-tetrahydrocannabinol (THC), which is psychoactive, and the
nonpsychoactive cannabidiol (CBD). Cannabis use is associated with both pathological and behavioural toxicity and, accordingly,
is contraindicated in the context of significant psychiatric, cardiovascular, renal or hepatic illness. The pharmacokinetics of
cannabinoids and the effects observed depend on the formulation and route of administration, which should be tailored to
individual patient requirements. As both THC and CBD are hepatically metabolized, the potential exists for pharmacokinetic drug
interactions via inhibition or induction of enzymes or transporters. An important example is the CBD-mediated inhibition of
clobazam metabolism. Pharmacodynamic interactions may occur if cannabis is administered with other central nervous system
depressant drugs, and cardiac toxicity may occur via additive hypertension and tachycardia with sympathomimetic agents. More
vulnerable populations, such as older patients, may benefit from the potential symptomatic and palliative benefits of
cannabinoids but are at increased risk of adverse effects. The limited availability of applicable pharmacokinetic and
pharmacodynamic information highlights the need to initiate prescribing cannabis medicines using a ʻstart low and go slowʼ
approach, carefully observing the patient for desired and adverse effects. Further clinical studies in the actual patient populations
for whom prescribing may be considered are needed, to derive a better understanding of these drugs and enhance safe and
optimal prescribing.

There is increasing clinical and public interest in using exog-
enous cannabinoids for disease and symptom management.
However, unlike most clinically available drugs, little infor-
mation on the pharmacokinetics and pharmacodynamics of
cannabinoids is available to guide prescribers, and further
research is needed to address themajor gaps in the knowledge
required for optimal prescribing of these medicines.

Most cannabis medicines contain a wide variety of chem-
ical compounds. The primary psychoactive cannabinoid
constituent is delta-9-tetrahydrocannabinol (THC) [1, 2],
which produces many of the adverse effects reported with
cannabis use [3, 4]. Formulationsmay also contain a high per-
centage of cannabidiol (CBD), a nonpsychoactive cannabi-
noid [5, 6] reported to have analgesic [7], neuroprotective

[8], anticonvulsant [1, 6], antiemetic [9], antispasmodic [10]
and anti-inflammatory [1, 6, 11] properties.

A variety of standardized, medical-grade cannabis plant-
derived or synthetically produced cannabinoid products
(ʻcannabis medicinesʼ) have been developed for medicinal
use. By contrast, nonmedical-grade products arenonstandard-
ized and contain unknown amounts of THC and CBD [12].

Whereas THC is a partial agonist at the CB1 and CB2
receptors in the endogenous cannabinoid system and exerts
its psychoactive and pain modulatory effects via CB1
agonism, CBD has relatively little affinity for the orthostatic
sites of these receptors [6, 13] and may inhibit THC binding
at CB1 receptors via another mechanism. CBD is also
reported to bind to other noncannabinoid receptors [13].
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CB1 receptors are mainly located in the central nervous
system (CNS) [6, 14] but are also present in the peripheral ner-
vous system, peripheral organs and tissues [6]. CB2 receptors
are predominantly expressed in immune tissues [6], and may
additionally occur in the CNS [15].

Pharmacokinetics
The pharmacokinetics and the effects observed with cannabis
medicines depend on the formulation and route of adminis-
tration [16–19].

Absorption
Cannabinoids administered via inhalation exhibit similar
pharmacokinetics to those administered intravenously
[20]. After inhalation, peak plasma concentrations of both
THC and CBD are attained rapidly (within 3–10 min) [20,
21] and maximum concentrations are higher relative to oral
ingestion [16, 22]. The bioavailability of THC after inhala-
tion reportedly ranges from 10% to 35% [20], attributable
to variability (both intra- and intersubject) in inhalational
characteristics (number, duration and interval of puffs,
breath hold time, inhalation volume), inhalational device
[17, 23], size of inhaled particles and site of deposition
within the respiratory system [17]. Inhaled CBD was
reported to have an average systemic bioavailability of
31%, and a plasma concentration–time profile similar to
that of THC [20, 21].

Smoking is the most common route of administration of
recreational cannabis [16]. Maximum THC concentration
and area under the curve (AUC) were observed to be greater
in frequent smokers relative to occasional smokers, which is
likely to be due to more efficient smoking by frequent
smokers [16, 18].

Using a vaporizer to administer cannabinoid compounds
avoids the respiratory risks associated with smoking
cannabis, and exposure to toxic pyrolytic compounds formed
via combustion [24]. The pharmacokinetics of vaporized and
smoked cannabinoids are comparable [16].

Inhalational or oromucosal delivery of cannabinoids
avoids or reduces the extensive first-pass metabolism
observed following oral cannabinoid administration.

Oromucosal preparations [e.g. Sativex® (nabiximols)
oromucosal spray] undergo rapid absorption via the oral
mucosa (and hence are useful for symptoms requiring rapid
relief), producing plasma drug concentrations higher relative
to oral, but reduced relative to inhaled THC [25]. However,
part of the dose may be swallowed and orally absorbed [25].

THC and CBD are both highly lipophilic and have poor
oral bioavailability (estimated to be as low as 6%) [26, 27].
Oral THC formulations exhibit variable absorption and un-
dergo extensive hepatic first-pass metabolism [28], resulting
in lower peak plasma THC concentration relative to inhala-
tion [29] and a longer delay (~120min) to reach peak concen-
tration [20, 30]. Following oral administration of CBD, a
similar plasma concentration–time profile to that of oral
THC has been observed [20]. Based on this profile, oral formu-
lations may be useful for patients requiring symptomatic
relief over a longer period.

Transdermal administration of cannabinoids avoids first-
pass metabolism but their extremely hydrophobic nature
limits diffusion across the aqueous layer of the skin [31]. Ef-
fective skin transport can only be obtained by permeation en-
hancement [32].

In vitro studies with human skin have determined the per-
meability of CBD to be 10-fold higher than that of delta-9-
THC and delta-8-THC (less potent but more stable relative
to delta-9-THC) [31, 33], consistent with CBD being relatively
less lipophilic [33].

Following the application of a transdermal patch to hair-
less guinea pigs (with a permeability coefficient of delta-8-
THC comparable with that of human skin), the delta-8-THC
steady-state plasma concentration reached 4.4 ngml–1 within
1.4 h and was maintained for ≤48 h [34]. Absorption from
patches, influenced by factors including local blood flow
and skin permeability, may be impaired in cachectic relative
to normal-weight subjects [35]. Although transdermal admin-
istration is currently not used clinically, it is of potential fu-
ture utility in the context of nausea, vomiting and anorexia.

Distribution
Cannabinoids rapidly distribute into well-vascularized or-
gans (e.g. lung, heart, brain, liver) [26, 29, 36], with subse-
quent equilibration into less vascularized tissue [36].
Distribution may be affected by body size and composition,
and disease states influencing the permeability of blood–tis-
sue barriers [37].

With chronic use, cannabinoids may accumulate in
adipose tissues [22, 38]. Subsequent release and redistribution
[22] (e.g. in the context of weight loss) [39] may result in the
persistence of cannabinoid activity for several weeks post-ad-
ministration [23, 26, 40, 41].

The volumes of distribution (Vd) of CBD and THC are
high [respectively, Vdβ ~32 l kg–1 (calculated following intra-
venous administration) [21] and Vdss 3.4 l kg–1 (calculated
following inhaled administration)] [22].

Metabolism
The metabolism of THC is predominantly hepatic, via
cytochrome P450 (CYP 450) isozymes CYP2C9, CYP2C19
and CYP3A4. THC is mainly metabolized to 11-hydroxy-
THC (11-OH-THC) and 11-carboxy-THC (11-COOH-THC),
which undergoes glucuronidation [42] and is subsequently
excreted in the faeces and urine [26, 28]. Metabolism also oc-
curs in extra-hepatic tissues that express CYP450, including
the small intestine and brain [22]. The metabolite 11-OH-
THC is reported to have psychoactive activity [43].

Importantly, lipohilic THC is able to cross the placenta
[30] and is excreted in human breast milk [44] – raising
concern for toxicity to the developing brain.

CBD is also hepatically metabolized, primarily by iso-
zymes CYP2C19 and CYP3A4 and additionally, CYP1A1,
CYP1A2, CYP2C9 and CYP2D6 [45]. After hydroxylation to
7-hydroxy cannabidiol (7-OH-CBD), there is further hepatic
metabolism and subsequent faecal, and, to a lesser extent,
urinary, excretion of those metabolites [26].

Little is known about the pharmacological activity of the
metabolites of CBD in humans [46].
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Elimination
Estimates of the elimination half-life of THC vary [20]. A
population pharmacokinetic model has described a fast
initial half-life (approximately 6 min) and long terminal
half-life (22 h) [47], the latter influenced by equilibration
between lipid storage compartments and the blood [37].

A relatively longer elimination half-life is observed in
heavy users [18], attributable to slow redistribution from deep
compartments such as fatty tissues [18, 19]. Consequently,
THC concentrations >1 μg l–1 may be measurable in the
blood of heavy users more than 24 h following the last canna-
bis use [18, 48, 49].

CBD has also been reported to have a long terminal elim-
ination half-life, with the average half-life following intrave-
nous dosing observed to be 24 ± 6 h and post-inhalation to
be 31 ± 4 h [21]. An investigation of repeated daily oral
administration of CBD elicited an elimination half-life
ranging from 2 to 5 days [50].

Potential interactions
Dose–response and drug–drug interaction information is
lacking [23].

Potential exists for pharmacokinetic interactions between
both THC and CBD and other drugs, via inhibition or induc-
tion of enzymes [26, 38, 40, 51] or transporters and addition-
ally, pharmacodynamic drug–drug interactions.

Both cannabis and tobacco smoking induce CYP1A2, and
the induction is additive when they are smoked together [52].
This may be significant in a patient coadministered a drug
metabolized by CYP1A2.

There are case reports of mania resulting from coadminis-
tration of cannabis with fluoxetine [53] (potentially CYP2D6
mediated), and of delirium and hypomania with disulfiram
[54, 55] (mechanism unelucidated).

An in vitro study reported that CBD significantly inhibits
P-glycoprotein-mediated drug transport, suggesting that
CBD could potentially influence the absorption and disposi-
tion of other coadministered drugs [56]. Coadministration
of rifampicin (a CYP3A4 inducer) significantly reduced peak
plasma concentrations of CBD, while coadministration of
the CYP3A4 inhibitor ketoconazole nearly doubled peak
plasma drug concentrations [57].

In vitro, CBD was observed to be a potent inhibitor of
CYP2C19 enzymes [58]. Accordingly, clinicians should bear
in mind the potential for drug interactions to occur. For
example, clobazam is converted by CYP3A4 to its active
metabolite, N-desmethylclobazam, which is subsequently
converted by CYP2C19 to an inactive metabolite [59]. The
causal benefit of CBD in reducing convulsive seizure
frequency, reported in a randomized controlled trial of
cannabidiol for Dravet syndrome [60], is difficult to ascertain,
given that CBD-mediated inhibition of clobazammetabolism
has been demonstrated to result in an up to eight-fold
increase in clobazam concentration [61]. Adverse events
increased in the CBD vs. placebo group (including
somnolence, lethargy and fatigue) [60] could potentially be
attributable to increased concentrations of clobazam and
N-desmethylclobazam [23].

Pharmacodynamics
Cannabis produces sedation, and significant pharmacody-
namic interactions may occur if it is administered with other
CNS depressant drugs (such as sedatives or hypnotics), via
potentiation of central effects [62]. In human volunteers,
ethanol was found to increase plasma THC levels and the sub-
jective effect of smoked cannabis [63].

Cannabis use is associated with both pathological and
behavioural toxicity [64–66]. Contraindications to cannabi-
noid therapies include significant psychiatric, cardiovascular,
renal or hepatic illness [25]. THC produces dose-dependent
performance impairment [18]. Following a single inhaled
dose of THC, impairment was greatest during the first hour
postdose and declined over the following 2–4 h [19]. Substan-
tial cognitive and psychomotor impairment is associated
with blood THC concentrations in excess of 5 ng ml–1 [67].
In healthy volunteers, administration of THC produced psy-
chotic symptoms, altered perception, increased anxiety and
cognitive deficits [68]. Cannabinoids may induce tachycardia
[69], probably via direct agonism of CB1 receptors in cardiac
tissue [70]. Cardiac toxicity may occur via additive hyperten-
sion and tachycardia with amphetamines, cocaine, atropine
or other sympathomimetic agents [71, 72].

Coadministration of CBD has been reported to reduce
THC-associated adverse psychotropic and cardiovascular
effects (tachycardia) [73].

CBD has been reportedly associated with fatigue and som-
nolence [60], potentially compounded by coadministration
with CNS-active medications.

Cannabis with high THC content is associated with a
greater severity of addiction relative to cannabis with low
THC content [74].

A large, nationally representative sample of US adults de-
termined that the lifetime cumulative probability of
transitioning from cannabis use to dependence was 8.9%,
with increased risk of transition to dependence conferred
by history of psychiatric or substance dependence comor-
bidity [75].

In general, currently available pharmacokinetic and
pharmacodynamic data were obtained from studies in
healthy volunteers, or cannabis users. Pharmacokinetic data
derived from such studies cannot simply be extrapolated to
more vulnerable patient groups or the cannabis-naïve popu-
lation. Patient-specific variables influencing cannabinoid
pharmacokinetics may include history of cannabis use,
pharmacogenetics, body size and composition, disease state,
diet, microbiome and additional unknown factors [23].

There are limited data regarding the efficacy and safety of
cannabis use in older subjects [1]. This population may bene-
fit from its potential symptomatic and palliative benefits but,
in the context of comorbidity, polypharmacy and increased
cognitive vulnerability, is predisposed to more severe mani-
festations of adverse effects such as sedation, with a resultant
increased risk of falls [1]. Pharmacokinetic parameters influ-
enced by age, such as reduced hepatic and renal clearance,
and relative increases in body fat [76] and, consequently,
Vd, can result in an increased bioavailability of THC and pro-
longation of half-life [1].

Formost cannabinoid formulations, there are limited data
pertaining to their pharmacokinetic profiles, which are likely
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to demonstrate both inter- and intrapatient variability [23].
Caution must be exercised in extrapolating data between dif-
ferent routes of administration and formulations, the selec-
tion of which should be tailored depending on individual
patient requirements.

The limited availability of applicable pharmacokinetic
and pharmacodynamic information highlights the need to
initiate the prescription of cannabis medicines using a ʻstart
low and go slowʼ approach, carefully observing the patient
for desired and adverse effects. It is only through further clin-
ical studies, collecting pharmacokinetic and pharmacody-
namic data in the actual patient population for whom
prescribing may be considered, that a better understanding
of these drugs will be achieved, enhancing safe and optimal
prescribing.
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