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Cannabis, from plant to pill
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The therapeutic application of cannabis is attracting substantial public and clinical interest. The cannabis plant has been described
as a veritable ‘treasure trove’, producing more than 100 different cannabinoids, although the focus to date has been on the
psychoactive molecule delta-9-tetraydrocannabinol (THC) and cannabidiol (CBD). Other numerous secondary metabolites of
cannabis, the terpenes, some of which share the common intermediary geranyl diphosphate (GPP) with the cannabinoids, are
hypothesized to contribute synergistically to their therapeutic benefits, an attribute that has been described as the ‘entourage
effect’. The effective delivery of such a complex multicomponent pharmaceutical relies upon the stable genetic background and
standardized growth of the plant material, particularly if the raw botanical product in the form of the dried pistillate inflorescence
(flos) is the source. Following supercritical CO2 extraction of the inflorescence (and possibly bracts), the secondary metabolites
can be blended to provide a specific ratio of major cannabinoids (THC : CBD) or individual cannabinoids can be isolated, purified
and supplied as the pharmaceutical. Intensive breeding strategies will provide novel cultivars of cannabis possessing elevated
levels of specific cannabinoids or other secondary metabolites.

Cannabis, a single species?

The earliest physical evidence of Cannabis possessing an el-
evated level of delta-9- tetrahydrocannabinol (THC1),
believed to have been cultivated in Eurasia for its psycho-
active or pharmacological properties, was unearthed in an
excavation of a 2700-year-old grave of a Caucasoid shaman
[1]. There is ongoing debate as to whether the Cannabis ge-
nus is made up of one highly variable species (Cannabis
sativa L.), two or three species based upon morphological,
geographical, ecotypic or chemotypic differences [2–5].
Four evolutionarily distinct ‘groups’ can be recognized,
and this more flexible taxonomic terminology [derived
from the International Code of Nomenclature for Culti-
vated Plants (ICNCP) [6]] provides a relatively simple and

suitable means of labelling domesticated forms of a genus
such as Cannabis [5] (Figure 1). Although a construct of
strict multiple taxonomic divisions is not supported by em-
pirical evidence of any genetic or physiological barriers im-
peding cross-fertilization and subsequent gene flow
between accessions or varieties, a single-nucleotide poly-
morphism (SNP) analysis of 81 ‘marijuana’ and 43 hemp
samples revealed that hemp and ‘marijuana’ lines can in
fact be significantly differentiated at a genome-wide level
and not exclusively upon variation in major alleles associ-
ated with THC content [7].

Extraction of the pharmacological
cornucopia
Plant secondary metabolites including cannabinoids and
terpenoids, so called as they are not critical for plant
growth, development and reproduction, are synthesized
and stored predominantly in glandular trichomes, hair-like

1The major cannabinoids are predominantly found as the acid
form in plants, although they are often described in their neutral
form, hence ‘cannabidiol’ rather than ‘cannabidiolic acid’.
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epidermal protrusions densely concentrated in the bracts
and flowers of Cannabis plants. Various strategies have
been pursued to extract and deliver the pharmacological
agents from Cannabis. The use of chemical solvents such
as petroleum ether, ethanol or naptha are likely to leave
unwanted residues, whereas extractants such as olive or
coconut oil provide a more organic alternative [8].

Cannabinoids and terpenoids contained in the concen-
trated extract often referred to as ‘oil’ are generally deliv-
ered as a medicinal tincture for treatment, although food
prepared with the ‘oil’ presents another mode of delivery.
The replacement of organic solvents with supercritical
CO2 (liquid CO2 under very high pressure) is the method
of cannabinoid extraction used to produce the pharmaceu-
tical Sativex®, administered as an oral mucosal spray and li-
censed in more than 27 countries as a formulation
delivering a consistent concentration and at a one-to-one
ratio of THC : cannabidiol (CBD) [9, 10]. Pharmaceutical
industry and licensing bodies demand a reliable and robust
product, more easily achieved by extraction of secondary
metabolites from the botanical material and subsequent for-
mulation by blending [10]. Cannador® is another such
product delivering THC : CBD within a narrow concentra-
tion range and at a two-to-one ratio, in the form of an
orally administered capsule [11]. Bedrocan BV, however,
the sole supplier of medicinal cannabis to the Dutch gov-
ernment, provides dried, unfertilized female flowers, ‘flos’,
as the pharmaceutical product. Heating of the ‘flos’ in a
proprietary device at a specific temperature for a defined
length of time volatilizes and decarboxylates the cannabi-
noids, making them available for inhalation. The highly
regulated methods of preparation and delivery of Sativex®,
Cannador® and Bedrocan materials are also likely to deliver

terpenoids as an ancillary and adjunct medicinal product.
An ‘entourage effect’, whereby the whole is greater than
the sum of the parts, has been hypothesized, in that greater
medicinal efficacy results from the delivery of a combina-
tion of the cannabinoids and terpenoids [12]. However,
double-blind clinical trials have not been conducted on
the combination of cannabinoids and terpenes, so evidence
remains anecdotal.

The extraction and purification of the single naturally oc-
curring trans isomer of THC is available as Dronabinol, the in-
ternational nonproprietary name (INN), whereas a synthetic
version, Marinol® (Solvay Pharmaceuticals, Brussels,
Belgium), is also available, with both pharmaceuticals deliv-
ered as a capsule.Nabilone® (Valeant Pharmaceuticals Inter-
national, Costa Mesa, CA, USA), a synthetic version of THC
marketed as binding to the cannabinoid type 1 receptor, is
available in a number of countries under the trade name
Cesamet® [13]. A purified extract of CBD, to be marketed as
Epidiolex® (GWPharmaceuticals, Cambridge, UK), is the sub-
ject of a submission to the US Food and Drug Administration.

The medicinal focus to date has been directed at two
principal cannabinoids, THC and CBD, although 100 ormore
are reportedly present in Cannabis [14–16] and have been
described as belonging to 11 different classes, namely:
(�)-delta-9-trans-tetrahydrocannabinol (Δ9-THC), (�)-delta-
8-trans-tetrahydrocannabinol (Δ8-THC), cannabigerol
(CBG), cannabichromene (CBC), CBD, cannabinodiol
(CBND), cannabielsoin (CBE), cannabicyclol (CBL), canna-
binol (CBN), cannabitriol (CBT) and miscellaneous-type
cannabinoids (Figure 2). Many of these may only be pres-
ent in low concentrations, at least in the Cannabis acces-
sions characterized to date, or some may in fact be an
artefact of storage, extraction or analysis.

Figure 1
Geographical distribution of the four major domesticated groups [1–4] of Cannabis sativa, with the centre of origin and ancestral genotype illus-
trated to be in Central Asia. Significant hybridization, predominantly during the last century, has given rise to two additional groups, hemp and
marijuana hybrids (reproduced from [5]; ©Government of Canada)
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Creation of novel Cannabis varieties
The introduction of novel traits into commercial cultivars of
Cannabis, or other agricultural crops, is reliant upon forward
or reverse genetic strategies. Untapped natural genetic diver-
sity harboured in wild accessions and landraces (geographi-
cally adapted lines which have not been intensively selected
by humans) can be introgressed into elite varieties and repre-
sents a forward genetics approach. The reverse genetics ap-
proach invokes the use of ionizing radiation or chemical
agents to introduce random mutagenic lesions in DNA,
thereby creating phenotypic changes. Directed anthropo-
genic selection and breeding of Cannabis has favoured traits
associated with industrial hemp fibre, hemp seed and illicit
drug uses. A focused breeding programme, undertaken by
GW Pharmaceuticals, UK, has created a series of
chemotypes with elevated levels of key cannabinoids
including CBD, CBG, CBC as well as the propyl cannabinoids

Δ9-tetrahydrocannabivarin (THCV), Cannabidivarin (CBDV),
Cannabigerovarin (CBGV) and Cannabichromevarin (CBCV)
[16].

Information about the fragmented global Cannabis
germplasm collections is limited, with three major Euro-
pean and a Chinese collection described in published
peer-reviewed literature [17]. With a primary focus on the
two major cannabinoids, THC and CBD, publicly available
information on the range of other cannabinoids and terpe-
noids in these collections is lacking. Although the sophisti-
cation and accuracy of instrumentation required for the
measurement of secondary plant metabolites has advanced
considerably in recent years, high throughput analysis has
been impeded by the lack of purified standards, for the
broad array of cannabinoids at least. A recent report has
described the positive identification of eight cannabinoids
and 36 terpenoids in a single gas chromatographic run
[18]. A robust, validated method aiming to establish the

Figure 2
Schematic depiction of cannabinoid and exemplar mono-, sesqui-, and diterpenoid biosynthesis. The isoprenoid and prenyl precursors for
cannabigerolic acid (CBGA), are provided by the hexanoate and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, respectively. Geranyl di-
phosphate (GPP), is a key intermediate metabolite and building block for both cannabinoid and terpenoid biosynthesis. The seven-step
mevalonate (MVA) pathway converts pyruvate and glyceraldehyde-3-phosphate (G-3-P) into isopentenyl diphosphate (IPP) and dimethylallyl di-
phosphate (DMAPP). Key catalytic enzymes controlling flux through this pathway include the first two steps, 1-deoxy-D-xylulose 5-phosphate
synthase (DXS) and 1-deoxy-D-xylulose 5-phosphate reductase (DXR). In the six-step MEP pathway, three units of acetyl coenzyme A (CoA)
are converted to IPP, which is isomerized with DMAPP by IPP isomerase. The enzyme catalysing the synthesis of MEV, 3-hydroxy-3-methylgluta-
ryl-CoA reductase (HMGR), is considered to control flux through this pathway. The number of consecutive condensations of the five-carbon
monomer isopentenyl diphosphate (IPP) to its isomer, dimethylallyl diphosphate (DMAPP) is indicated by 1x, 2x, 3x. Longer-chain isoprenoids,
GPP, farnesyl diphosphate (FPP) and geranyl geranyl diphosphate (GGPP), are the products of IPP and DMAPP condensation catalysed by GPP
synthase, FPP synthase and GGPP synthase, respectively. GPP, FPP and geranyl-geranyl diphosphate (GGPP) are the precursors for mono-,
sequi-, and di-terpines, respectively. The final steps catalysing the synthesis of major active cannabinoids, cannabichromenic acid (CBCA),
cannabidiolic acid (CBDA) and Δ9-tetrahydrocannabinolic acid (THCA), are oxidocyclases, CBCA synthase (CBCAS), CBDA synthase (CBDAS)
and THCA synthase (THCAS). Components of Figure 2 are derived from [29]. AAE, acyl-activating enzyme; CBD: cannabidiol; CYP76F39, α/β-
santalene monooxygenase; GPP synthase small subunit; OLS, olivetol synthase; P450: haemoprotein cytochrome P450; PT, prenyltransferase;
STS, santalene synthase; TS, gamma-terpinene synthase; TXS, taxadiene synthase

Cannabis, from plant to pill

Br J Clin Pharmacol (2018) 84 2463–2467 2465



benchmark for cannabinoid and terpenoid measurement in
the USA describes a single-sample procedure suitable for
the extraction and subsequent analysis of cannabinoid and
terpenoids by high-performance liquid chromatography–
diode array detector (DAD) and GC-flame ionization
detector (FID), respectively [19].

A mutagenesis strategy employing ethyl methanesulfonate
(EMS) has been successfully utilized to modify the seed oil pro-
file of industrial hemp [20], indicating the possible success of a
reverse genetics strategy tomanipulate the cannabinoid and ter-
penoid profiles of Cannabis. However, as C. sativa is predomi-
nantly a dioecious species, although a small number of hemp
accessions or varieties are monoecious, the path towards the
generation of a successful commercial variety can be somewhat
protracted, as it relies upon the crossing of female lines
harbouring superior traits with elite male siblings.

A draft of the complete genome sequence, 534 Mb in size,
has been reported for the elevated THC cultivar ‘Purple Kush’.
Transcriptome sequences derived from Purple Kush and the
hemp cultivar Finola (low THC) exhibit clear expression dif-
ferences in genes encoding key proteins involved in cannabi-
noid and precursor biosynthesis [21]. Particularly notable was
the elevated transcript abundance of the enzyme catalysing
Δ9-tetrahydrocannabinolic acid (THCA) production in all
stages of female flower development, THCA synthase
(THCAS), in Purple Kush. Finola, characteristically possessing
elevated levels of CBD, exhibited elevated transcript levels of
cannabidiolic acid (CBDA) synthase and few THCAS tran-
scripts. Although the correlation between synthase transcript
and cannabinoid product is not always close [22, 23], the
THC : CBD cannabinoid ratio is inherited in accordance with
Mendelian principles [24]. However, rather than THCA syn-
thase and CBDA synthase being allelic variants of the same
locus, it has been proposed that they are linked loci [21, 25].

Impact of growth environment upon
secondary metabolism
The overarching and paramount feature of the botanical raw
material that constitutes the medicinal Cannabis drug itself,
in the form of flos, or fromwhich the standardizedmulticom-
ponent drug is extracted, is uniformity of the cannabinoid,
terpenoid and flavonoid profile. The fundamental driver of
the secondary metabolite profile and uniformity is plant ge-
netic makeup, although the growth environment also plays
a significant role. The scientific literature addressing the envi-
ronmental impact upon secondary metabolism and, in par-
ticular, the cannabinoids THC and CBD in Cannabis is,
unsurprisingly, very limited. The strong likelihood of fungal
contamination of the plant or the harvestable inflorescence
largely eliminates the possibility of outdoor cultivation if
the dried pistillate flower is the principal pharmaceutical
product. Hence, glasshouse or indoor cultivation are the pre-
ferred options and provide the opportunity for controlling
light, temperature and humidity conditions. Furthermore,
the ingress of pests and diseases can be controlled by
restricting access to the growth facility. However, field-grown
Cannabismay be a suitable source of pharmaceutical cannabi-
noids if they are extracted using high-pressure CO2, for

example, and good agricultural and manufacturing practices
are both observed [26].

Uniformity of plant growth and consistency of cannabi-
noid and terpenoid profiles are best achieved by vegetatively
propagating select cultivars, rather than germinating seed
[10]. Once established and grown under long-day conditions
to generate a substantial vegetative plant body, flowering is
initiated by reducing the day length. The yield of botanical
raw material produced per unit area was reported to be line-
arly proportional to the average irradiance level of the grow-
ing environment [10]. However, the partitioning of
carbohydrate towards primary or secondary metabolites is
more likely to be dependent upon the sum total of light en-
ergy falling upon the leaf canopy over a defined period of
time, rather than the energy level expressed as irradiance
per unit area per unit time. Although light is a key factor, nu-
trient composition and a host of other manipulable environ-
mental factors will influence secondary metabolite
concentration and profile in a cultivar-specific manner.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.
org, the common portal for data from the IUPHAR/BPS Guide
to PHARMACOLOGY [27].
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