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AIMS
To predict the probability of a seizure-free (SF) state in patients with epilepsy (PWEs) after treatment with levetiracetam and to
identify the clinical and electroencephalographic (EEG) factors that affect outcomes.

METHODS
Retrospective analysis of PWEs treated with levetiracetam for 3 years identified 22 patients who were SF and 24 who were not.
Before starting levetiracetam, 11 clinical factors and four EEG features (sample entropy of α, β, θ, δ) were identified. Overall, 80% of
each the two groups were chosen to establish a support vector machine (SVM) model with 5-fold cross-validation, hold-out
validation and jack-knife validation. The other 20% were used to predict the efficacy of levetiracetam. The mean impact value
(MIV) algorithm was used to rank the relativity between factors and outcomes.

RESULTS
Compared with SF patients, not SF patients displayed a specific decrease in EEG sample entropy in α band from the F4 channel, β
band from Fp2 and F8 channels, θ band from C3 channel (P < 0.05). The SVM model based on the clinical and EEG features
yielded 72.2% accuracy of 5-fold cross-validation, 75.0% accuracy of jack-knife validation, 67.7% accuracy of hold-out validation
in the training set and had a high prediction accuracy of 90% in test set (sensitivity was 100%, area under the receiver operating
characteristic curve was 0.96). The feature of β band from Fp2 weighs heavily in the prediction model according to the mean
impact value algorithm.

CONCLUSIONS
The efficacy of levetiracetam on newly diagnosed PWEs could be predicted using an SVM model, which could guide antiepileptic
drug selection.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT

• Effectiveness of the approved first-line antiepileptic drugs does not differ substantially.
• Failure of the first attempted antiepileptic drugs could be a risk factor for refractory epilepsy, but the drugs selection is still
an expert-based clinical decision.

• The model of support vector machine can predict epilepsy surgery outcome.

WHAT THIS STUDY ADDS
• The efficacy of levetiracetam on newly diagnosed patients with epilepsy could be predicted using a support vector
machine model.

• The clinical and electroencephalographic factors that affect therapy outcomes could also be identified.
• The new method of efficacy analysis in clinical pharmacology could guide antiepileptic drug selection and contribute to
truly personalized therapy.

Introduction
Antiepileptic drugs (AEDs), with an effectiveness of about
60%, are the first treatment choice for most patients with ep-
ilepsy (PWEs) [1]. Significantly, the efficacy of drugs in the
early stages of the disease is particularly important because
early efficacy is closely related to the long-term prognosis.
Thus, failure of the first attempted AED could be a risk factor
for refractory epilepsy [2]. In addition, selecting an effective
AED could reduce the cost, shorten the course of treatment,
and relieve the pain of seizures. Currently, however, only
about 40% of newly diagnosed PWEs become seizure-free af-
ter the first drug [3], so more than half of the patients must
try a second or even a third AED. Even so, 30–40% of patients
still suffer from the consequences of refractory epilepsy [4].
Truly personalized therapy to control seizures is still in the
future.

Selecting a personalized AED for a newly diagnosed
PWE is essential but challenging, particularly as the effec-
tiveness of the approved first-line agents does not differ
substantially [5]. In addition to the drug’s side effects and
mechanisms, when choosing an AED, doctors often need
to consider numerous clinical features, including the pa-
tients’ age, sex, seizure type [3, 4, 6–10] and electroenceph-
alographic (EEG) features, such as the duration of the EEG
seizure and the power spectrum of the δ band [11, 12],
which have been deemed closely related to the prognosis.
Therefore, we hypothesized that the efficacy of a drug
could be predicted using an algorithm to analyse compre-
hensively the clinical and EEG features before prescribing
that AED.

The support vector machine (SVM) is a machine-learning
algorithm that has shownmany advantages in solving classic
classification and regression cases [13]. The SVM has been ap-
plied to seizure prediction [14], detection [15] and patient
classification [16]. He et al. [17] successfully predicted recur-
rence preoperatively by establishing an SVM model, proving
that the model could predict the probable outcome. An effi-
cacy prediction model for AED outcomes, however, is still
lacking.

Levetiracetam (LEV) is one of the most commonly used
AEDs. In this study, we aimed to extract the relative clinical
and EEG features of PWEs before they took LEV and then
evaluate, via the SVM, the data relative to the goal of
predicting seizure outcome.

Methods
The proposed algorithm consists of feature extraction, SVM
classification using 5-fold cross-validation, hold-out valida-
tion, jack-knife validation and model evaluation (Figure 1).

Patient database
Forty-six newly diagnosed PWEs at the Epilepsy Center of He-
nan Provincial People’s Hospital between 2014 and 2016 were
studied retrospectively. Inclusion criteria included the follow-
ing: (i) presence of an epileptic syndrome, epilepsy and/or epi-
leptic seizures as defined according to the guidelines of the
International League against Epilepsy [18, 19]; (ii) LEV accepted
as themedication after taking themedical history, neurological
examination, scalp EEG and magnetic resonance imaging
(MRI); (iii) regular follow-up for after 1 month, 3 months, 6
months 12 months. Exclusion criteria were as follows: (i) acute
symptom onset; (ii) follow-up for <1 year; (iii) seizures during
pregnancy; (iv) neuropsychiatric drugs were taken before LEV;
(v) poor compliance (Figure A1 in the Appendices).

TheHenanProvincial People’sHospital forResearchwithHu-
man Subjects approved the study (Ethical Approval 2015 Round
No.13). All participants provided written informed consent.

Based on the last outpatient or telephone follow-up re-
cords, patients meeting the criteria for Engel class I [20] were
classified as SF. Patients who met criteria for Engel class II, III,
or IV [20] were classified as not SF (NSF).

Features extraction
Clinical features. After MRI, EEG and neurological
examination, we recorded the following clinical features: (i)
age; (ii) duration of epilepsy; (iii) family history of epilepsy;
(iv) seizure type (generalized, focal, or unknown onset); (v)
seizure frequency before LEV (mean number of partial and
generalized seizures per month over the past 12 months
[21]); (vi) with or without comorbidities (psychiatric
disorders such as depression, anxiety disorder, psychosis
[22]); (vii) seizure circadian rhythm (increased seizure
occurrence during the day, night, or both [23]); (viii)
presence (or not) of temporal lobe epilepsy; (ix) time
between LEV initiation to the last seizure before LEV; (x)
with or without interictal spikes; (xi) with or without MRI
findings.
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EEG features. Different EEG devices can have different
parameters such as the number of electrodes, sample rate,
amplifier specs and sampling time. To eliminate any bias
caused by differing EEG devices and parameters, we need to
use strictly uniform standards for signal acquisition to make
the model more accurate. EEG recordings from the same
digital EEG machine (Nation 9128 W; NCC Medical Co.,
Ltd, Shanghai, China) were evaluated internally. Eighteen
electrodes were placed according to the international 10–20
system – specifically, Fp1, Fp2, F7, F8, F3, F4, C3, C4, T3, T4,
T5, T6, P3, P4, O1, O2 – with two placed in the bilateral ears
as reference electrodes. EEG signals were collected for at least
30 min and the sampling rate was 128 Hz.

For this study, we used Sample Entropy (SampEn) of δ, θ, α,
β to represent the EEG features. SampEn [24] is a well-defined
statistical concept used to measure complexity within dy-
namic processes and is also a non-linear feature of EEG,
which can be calculated as follows.

1. Denote a time series of length N by X(1),X(2),X(3) ⋯ X(N)
and construct an embedding vector with m consecutive
data points:

X ið Þ ¼ X ið Þ;X iþ 1ð Þ; ⋯;X iþm� 1ð Þ½ �; i ¼ 1eN �mþ 1:

2. The expression (b) d[X(i),X(j)] presents the Chebyshev
distance and defines for each i (1 ≤ i ≤ N � m):

d X ið Þ;X jð Þ½ � ¼ max X iþ kð Þ � X jþ kð Þj j½ �; k ¼ 0em� 1:

3. The expression (c) r specifies a tolerance value, and
r > d[X(i),X(j)].

4. The expression (d) Bm
r rð Þ represents the proportion of X(j)

whose distance to X(i) is less than r. Bm rð Þ ¼
N �mþ 1ð Þ�1·∑N�m

i¼1 Bm
r rð Þ.

5. Similarly, for each i ≤ N � m + 1, we also define Bm+1(r) =
Nm+1(i)/(N�m� 1), where Bm+1 represents the proportion
corresponding to the dimension of m + 1.

6. SampEn is calculated as:

SampleEn m; r;Nð Þ ¼ � ln Bmþ1 rð Þ=Bm rð Þ� �
;where m

¼ embedding dimension; r
¼ threshold value;N ¼ data length:

The process of extracting SampEn includes data prepro-
cessing, wavelet decomposition, wavelet reconstruction,
and SampEn production. For one EEG, 100 s of signal
(12 800 epochs) were quantitatively processed using
MATLAB. Epochs were selected from EEGs taken in awake sta-
tus, with eyes open and without any epileptiform discharges
or obvious artefacts. Artefacts were further eliminated by
independent component analysis [25]. Coefficients were
obtained after three-layer wavelet decomposition, and then
were used to reconstruct the bands of δ (0.5–4.0 Hz), θ (4–
8 Hz), α (8–13 Hz) and β (13–30 Hz). Finally, we use SampEn
to calculate the four bands in every channel for each patient.

Statistical analysis
SVM model. Finally, we tested whether clinical and EEG
features could successfully predict seizure outcome using
the SVM model. SVM is a classic machine-learning model

Figure 1
Architecture of the support vector machine (SVM)-based outcome prediction system. Various stages of the algorithm such as feature extraction,
classification and post-processing are schematically shown. The detailed process of electroencephalography (EEG) features extraction is present in
dashed box which includes converting raw EEG outputs to Sample entropy. LEV, levetiracetam

Efficacy prediction model for levetiracetam based on SVM
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that has an advantage in solving the problem of small
samples [26, 27]. Theoretically, without considering
computational cost, learning speed, or other factors [28],
some empirical dependence models such as the neural
network model need larger samples to avoid over-fitting and
under-fitting. However, for structural dependence models
such as SVM, the special principle and algorithm is only to
find a hyper-plane in high dimensional space with feature
vectors (clinical and EEG features in this study) from the
samples. For prediction, new samples are then projected
into the same space and assigned to belong to a class based
on which side of the margin they fall. It means that when
the data and feature distribution are good, increasing
training data will not have any impact on the classification
because of the perfect hyper-plane. Therefore, we used the
SVM as the efficacy prediction model to solve the limited
sample.

The performance of SVM relies upon the kernel selection.
Radial basis function (RBF) was used as it is the most com-
monly kernel function used to map data into a space [29].
The general modelling process was to divide the samples ran-
domly into training and test sets to check the generalization
of the model. The 80% : 20% ratio for training:prediction
for an SVM model can ensure suitable parameters.

To prevent interference from invalid EEG features, only
the band that had significant differences in the two groups
were extracted to represent the EEG features. In consideration
of the actual AEDs selection in clinic, every clinical feature in
the study was also regarded as important factors in model. So
we tested three models separately for their: (i) selected EEG
features; (ii) clinical features only; and (iii) variable sets of (i)
and (ii) combined. In our algorithm, the binary classification
is performed in two steps: establishing the model and
examining its function.

For the first step, we randomly selected about 80% (total
36 patients) of patients from each of the SF and NSF groups
as training sets to build the model. The exacted features from
these patients were conducted by a Lib-SVM classifier [30]. A
Lib-SVMmodel requires two parameters: a kernel and a regular-
ization parameter (Cost and γ). Cost (C parameter) can control
the smoothness of the decision boundary in the transformed
space. The γ parameter is set in kernel function and determin-
ing the distribution of data mapped to a new feature space.

In this study, we used an RBF kernel [k (x, x’) = exp (γ|x-x’|2)],
and the regularization parameter (Cost and γ) was identified
using a grid searchmethod within a 5-fold cross-validation pro-
cedure. For this procedure, the data set was randomly divided
into five subsets, with each subset used as a validation set and
the remaining four used as the training set to create the
model. This process was repeated five times such that every
portion was used to assess the performance of the models.
The tunable model parameters were iterated to minimize abso-
lute mean errors, i.e. differences between predicted and mea-
sured output values on the validation set. The performance
of the models was the average scores of the model trained on
each fold. The tuning model parameters were optimized
from the training data using the cross validation method.

At present, besides the k-fold validation, the most fre-
quently used parameters to evaluate the generalization are
hold-out validation and resampling validation (bootstrapping
and jack-knife). In the jack-knife validation, each patient is

singled out in turn as a test set and the remaining patients are
used as training set. In the hold-out validation, the validation
set was equally divided into two subsets, with each subset used
as a test set and the remaining one used as the training set to
create themodel. So we also used themethods of jack-knife val-
idation, hold-out validation to show the feasibility of themodel
further in classifying and predicting the two groups of patients.

In the second step, the remaining about 20% (totally 10
patients) of patients in each group were utilized as a test set
to validate the function. The prediction performance of the
SVM was evaluated using the statistical measures of accuracy
(= TPþTN

TPþTNþFPþFNð Þ), sensitivity (= TP
TPþFNð Þ), specificity (= TN

TNþFPð Þ),

positive predictive value (= TP
TPþFPð Þ ) and negative predictive

value (= TN
TNþFNð Þ), where true positive (TP) is the number of seg-

ments recognized as NSF both by the algorithm and by the
neurologist; false positive (FP) denotes the number of seg-
ments differentiated as SF by classifier but their true labels
are NSF; true negative (TN) is the number of patients classified
as SF both by the algorithm and by the EEG experts; false neg-
ative (FN) is the number of SF patients misclassified as NSF by
the algorithm. Additionally, a receiver operating characteris-
tic curve and the area under the receiver operating character-
istic curve (AUC) were generated.

Feature evaluation. The mean impact value (MIV) in this
study is an important index used to select the independent
features that have a great impact on the model. To date, it
has been considered one of the best indexes to assess
assigned coefficient values [31]. In this study, after training
the SVM model, two new training sets were obtained each
time an independent feature increased or decreased 10%
that were used for simulation according to the fitting
model. Thus, the mean of the difference in the features of
the two simulation results was calculated according to the
number of samples (i.e. the MIV). Finally, the sequence of
the features was sorted according to their absolute MIVs,
and the related compounds were identified as the potential
lead constituents. Although the selected features may not
have significance determined by a t-test, they can have a
classification value in the model.

Statistical methods. SPSS software was used for statistical data
analysis. The clinical data and the SampEn of the EEG signals
were compared between the SF and NSF groups.
Mean ± standard deviation together with independent sample
t tests were used to describe and compare quantitative data
with a normal distribution, and the Mann–Whitney U test was
applied for abnormal distributions, as appropriate. The χ2 test
was used for qualitative data. For all measures, a value of
P < 0.05 was considered to indicate statistical significance. No
adjustment of the α-level for multiplicity has been made.

Results

Clinical characteristics
A total of 46 PWEs were enrolled, 22 of whom showed remis-
sion of their seizures (SF group), and the other 24 PWEs were
in the NSF group. Maintenance dose of LEV in SF group was
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less than NSF group (P = 0.004), but there were no significant
differences in the 11 selected clinical characteristics used in
SVM between the SF and NSF groups (P ≥ 0.05; Table 1).

EEG features
The SF and NSF groups showed no differences in the Fp1, C4,
F3, P3, P4, O1, O2, T3, T4, T5, T6 regions (P ≥ 0.05). Com-
pared with the NSF group, however, the SF group produced
significantly higher SampEN in the α band from the F4 chan-
nel (P < 0.001), β band from the Fp2 channel (P = 0.008), β
band from the F8 channel (P = 0.011) and θ band from the
C3 channel (P < 0.001; Figure 2).

Personalized prediction model for SF
The lib-SVMmodel with RBF kernel (γ = 0.04 and Cost = 16.0)
using clinical and EEG features successfully predicted the effi-
cacy of LEV with a 91.7% accuracy, a 72.2% 5-fold cross-
validation, 75.0% accuracy of jack-knife validation, 67.7% ac-
curacy of hold-out validation and a 0.95 (AUC) in the training
set. Importantly, it could also predict the efficacy in 10 cases
that were not used to train the model. Specifically, drug

efficacy for the test data was predicted with 90.0% accuracy
and had a 0.96 AUC. Thus, the success of the model was not
because of a bias in sample ratios. The cross-validation and
AUC results of the individual models (EEG: cross-validations,
75%; AUC, 0.84; clinical features: cross-validation, 63.9%;
AUC, 0.72) indicated that the model established using only
EEG features was more generalizable than that established
by clinical features, but that neither was as good as the com-
bined model. This means that the combined model is more
suitable for AED selection (Table 2). The predictions for the
training and test sets are listed in Table 3.

Feature evaluation
After terminating the MIV algorithm, we chose features with
higher absolute MIV values as the features potentially affecting
the efficacy of LEV. Age, seizure type, interictal spikes and sei-
zure frequency before LEV did not have a significant effect on
the model. The detailed sort exercise is shown in Table 4.

Discussion
This study represents our first attempt to use the SVM algo-
rithm to predict whether PWEs could achieve an SF state by
taking LEV, which could provide guidance for the selection
of LEV in newly diagnosed PWEs.

LEV is an effective AED and has beenwidely used in various
patient groups, such as those with seizures, syndromes, or re-
fractory epilepsy. Perry and Benatar [32] had demonstrated that
57% of epileptic children aged <4 years could achieve seizure
remission after LEV treatment. Wu et al. [21] found that, for
adult patients, the responder rate (patients with ≥50% reduc-
tion in seizure frequency) was 68% and the control rate (for
SF patients) was 39%. Ben-Menachem and Falter’s study [33],
with a high dose of LEV (3000 mg day–1) to treat refractory ep-
ilepsy proved that the responder rate of this LEVmonotherapy
was 59.2% and the control rate 18.4%, whereas with
polytherapy the responder rate was 42.1% and the control rate
8.2%. Berkovic et al.’s study [34] on idiopathic generalized epi-
lepsy found that 72.2% of the subjects responded, and 34.2%
achieved an SF state. In summary, when selecting LEV by de-
pending on clinical experience alone, the responder rate was
42.1–72.2% and the control rate only 8.2–57.0%. Hence, this
model offers prediction strength of 90% accuracy regarding
the outcome, which could improve the efficacy of LEV and
avoid refractory epilepsy.

Themodel used to predict the efficacy of an AED in PWEs in
this study conforms to the principle of SVM. First, SVM is a
machine-learning model that can be used to predict efficiency.
Vidyasagar [35] proposed that SVM can extract a small number
of features among tens of thousands of measured features and
then accurately predict a tumour’s response to the drug. He
et al. [17] established an SVMmodel through preoperative func-
tionalMRI and successfully predicted the recurrence rate of tem-
poral lobe epilepsy: the 76% rate of prediction accuracy they
reported was similar to that achieved with expert-based clinical
decisions. Colic et al. [12] established an SVM model through
the EEG δ band in mice to predict the efficacy of midazolam
for treatingRett syndrome. Their predictive ratewas 77%,which
proved that the efficacy of AED could be predicted by SVM.

Table 1
Sample demographic and clinical characteristic

Sample group
SF
(n = 22)

NSF
(n = 24)

Age, mean ± SD, years 19.5 ± 9.5 24.0 ± 12.1

Age at epilepsy onset, mean ± SD, years 15.2 ± 6.2 20.5 ± 13.0

Duration of epilepsy, mean ± SD, years 4.4 ± 6.1 3.8 ± 5.6

Interictal spike (Y/N), n 12/10 13/11

Seizure frequency before LEV, times/
month

3.0 ± 5.9 3.4 ± 4.3

MRI findings (Y/N), n 6/16 12/12

Seizure circadian rhythm
(day/night/both), n

8/8/6 8/5/11

Temporal lobe epilepsy
(Y/N), n

5/17 11/13

Comorbidity (Y/N), n 8/14 7/17

Family history (Y/N), n 2/20 0/24

LEV initiation to the last seizure, days 6.5 ± 5.3 8.1 ± 7.8

Seizure type, n

Focal 10 7

Generalized 11 15

Combined two types 1 2

Maintenance dose of LEV, mg BID* 568.2 ±
290.5

760.4 ±
260.4

Follow-up time, month 20.2 ± 6.5 20.2 ± 6.7

BID, twice daily; LEV, levetiracetam; MRI, magnetic resonance im-
aging; N, No; NSF, Not seizure-free group; SD, standard deviation;
SF, Seizure-free group; Y, Yes
*vs. control, P < 0.05. For continuous variables, independent-
sample t tests or Mann–Whitney U test was carried out. For cate-
gorical variables, χ2 tests were carried out

Efficacy prediction model for levetiracetam based on SVM
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Second, the features extracted in this study are closely
related to the efficacy of the AED. Lamberink et al.’s study
[36], which focused on seizure recurrence after withdrawal
of AEDs, affirmed that the duration of epilepsy, seizure fre-
quency, family history, seizure type and interictal spikes
were factors affecting the efficacy. It was also determined
that age [7], temporal lobe epilepsy [9], comorbidities
[10], seizure circadian rhythm [23] and MRI findings [37]
might be related to the prognosis. Therefore, the good per-
formance of the model established by these features is
reasonable.

Finally, validation—assessment of how well a prediction
works on data other than those on which the model was
built—is deemed the most important issue in prognostic
modelling [38] In this study, a 5-fold cross-validation method
was used to verify the generalization of the classifier, the
results of which are similar to those of He et al. [17],
indicating that it is feasible that the model could predict the
efficacy of LEV.

Another observation is the effects of various features on
the efficacy calculated by the MIV. The SampEn of the β band
from Fp2 channel contributes most to the model, which,

Figure 2
Sample entropy of the bands with a significant difference between seizure-free (SF) and not seizure-free (NSF) groups. Graphic presentation (box-
plot diagrams) of relative sample entropy within each frequency band in channels FP2, F4, C3, and F8, which are significantly different between
the SF and NSF patients. The lower and upper borders of the rectangular box correspond to the 25% and 75% percentiles of the data, with the
median indicated by the black line. The red box represents the SF group, and the blue box represents the NSF group. *indicate statistically signif-
icant results. Compared with SF patients, the NSF patients had significantly decreased Sample Entropy in the β frequency band of Fp2, α frequency
band of F4, θ frequency band of C3, and β frequency band of F8 (Mann–Whitney U test, P < 0.05)
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together with other EEG features, proves that the background
rhythm of interictal EEG, instead of interictal discharges, has
predictive value regarding the efficacy of LEV. In fact, the
prognosis of interictal discharges is still debatable. EEG abnor-
malities were significantly associated with outcomes [39]; in
the absence of other predictive factors, however, they only
slightly increased the risks [36]. In contrast, rhythm has been
thought to be related to outcome. For example, the prognosis
of generalized slow waves after trauma and subarachnoid
haemorrhage is often poor [40]. The δ band can also serve as
a predictor to evaluate the efficacy ofmidazolam in themouse
SVMmodel [12].Moreover, the presence of a focal β frequency
discharge is considered highly predictive of excellent postsur-
gical seizure control [41], although there is no clear explana-
tion of the relation between the specific region or band and
efficacy. Further studies are therefore needed to explore these
phenomena.

EEG features weigh heavily on the outcome, but the results
of the three models in the study show that it is inaccurate to
predict the prognosis by EEG alone (i.e. without considering
clinical features). Many clinical features are closely related to
prognosis, but their degree of influence had not been studied
previously. The MIV algorithm in this study showed that the
outcome could vary because of changes in the identified

features, especiallyMRI findings, family history and seizure cir-
cadian rhythm. Although age, seizure type, interictal spikes
and seizure frequency before LEV had no influence on the out-
come, the reasonable explanation is that LEV may have an
efficacy that is similar in patients with different ages, seizure
types, seizure frequencies, or with or without interictal spikes,
which has been confirmed in previous research [42–44].

Our study has several limitations. First, the limited
amount of data could bias their representativeness. Although
fixed standards do not yet exist for the number of samples
needed for SVM models, measures to improve the model will
be rich by processing large samples, such as optimizing pa-
rameters, kernel function or even exchanging to other ma-
chine learning models with higher complexity. However, the
sample size inmedical researches is often limited and the sam-
ple size in other SVMmodel research on disease classification,
prediction etc. is also not always large. Additionally, the estab-
lishment of the model success is not only related to the sam-
ple size, but also to the kernel function, dimension.
Optimizing the SVM model is the current focus in the field
of algorithms, so a model with more valuable features of
SF/NSF samples and a faster processing time and higher accu-
racy could be established in another prospective study. Fur-
thermore, the follow-up time of this study may be too short

Table 2
Treatment outcome prediction summary

ACC SEN SPE PPV NPV ROC-AUC Cross-validations Jack- knife Hold-out Validation

EEG + Clinical characteristics

Training (n = 36) 91.7% 90.0% 93.8% 94.7% 88.2% 0.95 72.2% 75.0% 67.7%

Test (n = 10) 90.0% 100% 80.0% 83.3% 100% 0.96

EEG characteristics

Training (n = 36) 77.8% 79.0% 76.5% 79.0% 76.5% 0.89 75.0% 76.5% 70.6%

Test (n = 10) 70.0% 80.0% 60.0% 66.7% 75.0% 0.84

Clinical characteristics

Training (n = 36) 80.6% 83.3% 77.8% 79.0% 82.4% 0.83 63.9% 58.3% 61.1%

Test (n = 10) 70.0% 80.0% 60.0% 66.7% 75.0% 0.72

ACC, accuracy; EEG, electroencephalography; NPV, negative predictive value; PPV, positive predictive value; ROC-AUC, area under the receiver-
operating-characteristic curve; SEN, sensitivity; SPE, specificity

Table 3
Treatment outcome prediction summary

Model TP FP TN FN All (NSF/SF)

EEG + Clinical characteristics Training set 18 1 15 2 36 (19/17)

Test set 5 1 4 0 10 (5/5)

EEG characteristics Training set 15 4 13 4 36 (19/17)

Test set 4 2 3 1 10 (5/5)

Clinical characteristics Training set 15 4 14 3 36 (19/17)

Test set 4 2 3 1 10 (5/5)

EEG, electroencephalography; FN (false negative), the number of SF patients who were misclassified as NSF by the algorithm; FP (false positive), the
number of patients who were categorized as SF by the classifier but were actually NSF; NSF, Not seizure-free group; SF, seizure-free group; TN (true
negative), the number of patients classified as SF by both the algorithm and the neurologist; TP (true positive), the number of patients who were
recognized as NSF by both support vector machine and the neurologist
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to represent the final outcome of therapy. Thus, amulticentre,
prospective study to expand the sample size is still necessary.
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Appendix ATable 4
Input variables and sorting of mean impact values (MIVs)

Sequence Features MIV

1 F2 - β 0.1111

2 F4 - α 0.0833

3 C3 - θ 0.0556

4 MRI findings 0.0556

5 Family history 0.0556

6 Seizure circadian rhythm 0.0556

7 F8 - β 0.0278

8 LEV initiation to the last seizure, days 0.0278

9 Comorbidity 0.0278

10 Duration of epilepsy 0.0278

11 Temporal lobe epilepsy 0.1111

12 Age 0

13 Seizure type 0

14 Interictal spike 0

15 Seizure frequency
before LEV

0

F2 - β, β bands from F2 region according to the International
10–20 system. Correspondingly, F4 - α, α bands from F4 region.
C3 - θ, θ bands from C3 region. F8 - β, β bands from F8 region;
LEV, levetiracetam; MRI, magnetic resonance imaging

Figure A1
Diagram of patients across the study period. PWEs, patients with ep-
ilepsy; AED, antiepileptic drug.

Figure A2
The result of prediction outcome with decrease of sample size. Blue
line = training set; red line = test set; green line = 5-fold cross
validation. With the decrease of sample size, the gap of accuracy be-
tween the training set and the test set is obvious widening, the result
of 5-fold cross-validation become lower and lower.
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