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A B S T R A C T

Psychomotor retardation and reduced daily activities are core features of the depressive syndrome including
bipolar disorder (BD). It was the aim of this study to investigate white matter microstructure of the motor system
in BD during depression and its association with motor activity. We hypothesized reduced physical activity,
microstructural alterations of motor tracts and different associations between activity levels and motor tract
microstructure in BD. Nineteen bipolar patients with a current depressive episode (BD) and 19 healthy controls
(HC) underwent diffusion weighted magnetic resonance imaging (DW-MRI)-scans. Quantitative motor activity
was assessed with 24 h actigraphy recordings. Bilateral corticospinal tracts (CST), interhemispheric connections
between the primary motor cortices (M1) and between the pre-supplementary motor areas (pre-SMA) were
reconstructed individually based on anatomical landmarks using Diffusion Tensor Imaging (DTI) based tracto-
graphy. Mean fractional anisotropy (FA) was sampled along the tracts. To enhance specificity of putative
findings a segment of the optic radiation was reconstructed as comparison tract. Analyses were complemented
with Tract Based Spatial Statistics (TBSS) analyses. BD had lower activity levels (AL). There was a sole increase
of fractional anisotropy (FA) in BD in the left CST. Further, there was a significant group x AL interaction for FA
of the left CST pointing to a selective positive association between FA and AL in BD. The comparison tract and
TBSS analyses did not detect significant group differences. Our results point to white matter microstructure
alterations of the left CST in BD. The positive association between motor activity and white matter micro-
structure suggests a compensatory role of the left CST for psychomotor retardation in BD.

1. Introduction

Psychomotor retardation is a core feature of the depressive syn-
drome (Leonpacher et al., 2015). It is associated with loss of interest in
previously enjoyed activities, fatigue or loss of energy (Razavi et al.,
2011), which are diagnostic criteria of depression according to the
Diagnostic and Statistical Manual of mental disorders DSM-IV
(American Psychiatric Association, 2000). Psychomotor retardation
may predict conversion to bipolar disorder (BD) in people at familial
risk for BD (Frankland et al., 2017) and treatment response in depres-
sion including both pharmacological treatments and electroconvulsive
therapy (Bennabi et al., 2013; Buyukdura et al., 2011). It is more pro-
nounced in BD than in unipolar disorder (UD) and may contribute to
distinguish BD from UD (Leonpacher et al., 2015).

There is increasing awareness for the relevance of the motor domain
in depression e.g. (Cantisani et al., 2016; Walther et al., 2012a). Re-
garding diagnostic criteria for BD, DSM-5 criteria go one step beyond
DSM-IV criteria by strictly requiring that during manic episodes mood
changes must be accompanied by persistently increased activity or
energy (Angst, 2013). Further, during depressive episodes engagement
in physical activity constitutes a central and effective element of anti-
depressive treatment (Kvam et al., 2016). Despite the diagnostic and
clinical relevance of motor behavior in BD little is known on associated
neurobiological alterations.

Diffusion weighted Magnetic Resonance Imaging (DW-MRI) enables
the characterization of white matter microstructure of the brain by
indirectly measuring the hindrance of diffusion of water molecules
(Basser et al., 1994). The most commonly used diffusion based measure
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is the fractional anisotropy (FA) (Basser and Pierpaoli, 1996). Auto-
mated whole brain approaches compare diffusion metrics such as FA on
a voxel-by-voxel level (voxel-based analyses, VBA). The most com-
monly whole brain approach is tract based spatial statistics (TBSS) due
to its superior spatial alignment (Smith et al., 2006)– however there is a
loss of information due to the thinning of the applied white matter
skeleton. In contrast, tractography allows the reconstruction of entire
and specific pathways taking individual anatomical variations into ac-
count (Catani et al., 2002). Tractography approaches require a priori
anatomical hypothesis and compare diffusion metrics averaged across
the whole tract (Jones et al., 2013).

Meta-analyses of VBA and TBSS comparing BD with HC suggest
reduced FA in BD in widespread regions of the brain such as the fronto-
limbic network, parietal and temporal brain regions (Bellani et al.,
2016; Nortje et al., 2013; Wise et al., 2016). Findings also include re-
gions being associated with motor planning and execution such as the
right anterior superior longitudinal fasciculus, the left genu of the
corpus callosum, and parts of the corpus callosum that connect the left
and right somatosensory and motor cortices (Wise et al., 2016).

In particular, findings in the corpus callosum (CC) have been re-
peatedly reported. (Lagopoulos et al., 2013) used TBSS and identified
reduced FA in the body of the CC in young patients with BD. (Li et al.,
2014) used a region of interest (ROI) approach to segment distinct re-
gions of the CC. FA was reduced amongst other in in a segment con-
necting interhemispheric supplementary motor areas (SMA). Similarly,
a ROI approach revealed reduced FA in anterior and middle parts of the
CC (Wang et al., 2008). Findings also include tractography studies
being more accurate than VBA and TBSS studies in terms of tract spe-
cificity. For instance (Mahapatra et al., 2017) reported reduced FA in
remitted BD in comparison to healthy controls (HC) and healthy re-
latives in the CC. (Toteja et al., 2015) demonstrated lower FA and age-
associated increases of mean diffusivity in the genu and the splenium of
the CC, whilst (Sarrazin et al., 2014) found reduced FA in the body and
the splenium of the CC.

In the present study we specifically investigate white matter mi-
crostructure of the motor system in a depressed group of BD and HC.
The pre-supplementary motor area (pre-SMA) is in particularly in-
volved in voluntary action (Nachev et al., 2008) while the primary
motor cortex (M1) volitionally controls the motor output which is
executed via the corticospinal tract (CST) (Ebbesen and Brecht, 2017).
Thus we use tractography to specifically reconstruct segments of the CC
connecting bilateral pre-SMA and bilateral M1. In addition, bilateral
CST are reconstructed. To enhance specificity of putative group dif-
ferences we reconstruct a comparison tract (a segment of the optic ra-
diation) where we do not expect any group differences of FA. We
complement our analyses with a whole brain TBSS approach. Motor

activity is quantitatively assessed with actigraphy recordings in line
with previous publications (e.g. (Bracht et al., 2012b; Bracht et al.,
2016; Razavi et al., 2011; Walther et al., 2010; Walther et al., 2012b).
Associations between activity levels and white matter microstructure
are explored.

Based on the current literature we hypothesize (1) general motor
retardation, i.e. reduced activity levels (AL) in BD, (2) alterations of
motor tracts, i.e. reduced FA in motor pathways in BD and (3) differ-
ences in associations between motor behavior and motor tract diffusion
properties, i.e. AL and FA between patients and controls.

2. Methods

2.1. Participants

Nineteen right-handed patients with bipolar disorder (6 males, 13
females; age=47.6 ± 10) meeting criteria for a current depressive
episode according to DSM-IV and 19 right-handed healthy controls (6
males, 13 females; age=47.5 ± 11) matched for age, gender and
years of education were recruited from the inpatient and outpatient
departments of the University Hospital of Psychiatry Bern, Switzerland
(for details see Table 1). The sample includes bipolar patients of a
previous arterial spin labelling study (ASL) (Cantisani et al., 2016).

Diagnoses were given according to DSM-IV following clinical in-
terview by an experienced psychiatrist and review of case files.
Depressive symptoms were assessed with the Beck Depression
Inventory (BDI) (Beck et al., 1961), the Hamilton Depression Rating
Scale (HAMD) (Hamilton, 1960) and the Montgomery–Asberg Depres-
sion Rating Scale (MADRS) (Montgomery and Asberg, 1979).

Inclusion criteria for patients were a diagnosis of a bipolar disorder
and a current depressive episode. Further inclusion criteria for all
participants were age between 18 and 65 years and right-handedness as
assessed with the Edinburgh Handedness Inventory using the conven-
tional cut-off point (Oldfield, 1971). Exclusion criteria for all partici-
pants were psychiatric comorbidities (Mini International Neu-
ropsychiatric Interview (MINI), (Sheehan et al., 1998)) including
personality disorders (Structured Clinical Interview for DSM-IV (SCID),
(Wittchen et al., 1997). For exclusion of motor symptoms due to Par-
kinsonism participants were assessed with the Unified Parkinson's dis-
ease rating scale (Fahn et al., 1987). Furthermore, participants with
neurological disorders, a history of significant head trauma, electro-
convulsive therapy and substance abuse or dependence other than ni-
cotine were excluded from analyses. Exclusion criteria specifically for
controls were a lifetime history of depressive episode and first-degree
relatives with any affective disorders. The study protocol was approved
by the local ethics committee (KEK-BE 196/09) and was in accordance

Table 1
Demographics. a: including lithium, valproic acid, lamotrigine and topiramate; b: including aripiprazole, risperidone, quetiapine, olanzapine; c: including zolpideme;
* significant group differences at p < .05.

Variable Bipolar depressed Healthy Controls Analyses

Gender 13 female, 6 male 13 female, 6 male X2(1)= 0, p=1
Age (years) 47.6 ± 10 47.5 ± 11 T (36)=0.04, p=.996
Handedness

(right, %)
100 100

Duration of education (years) 16.1 ± 5 13.7 ± 4 T(36)= 1.488, p=.145
Annual income (in Swiss Francs) 43,933 ± 37,202 48,306 ± 18,200 T(36)=−0.44, p=.681
Activity levels (counts/h) 14,019 ± 6200 19,718 ± 6576 T(36)=−2.75, p=.009*
Number of depressive episodes 5.16 ± 26 0 T(36)= 5.01, p < .001*
Duration of illness (years) 18.2 ± 11 0 T(36)= 6.94, p < .001*
BDI 22.4 ± 11 2 ± 2.3 T(36)= 6.61, < 0.001*
HAMD 21.9 ± 8 0.47 ± 1.06 T(36)= 10.26, < 0.001*
MADRS 24.2 ± 6 1.07 ± 1.62 T(36)= 13.14, < 0.001*
Antidepressants 12 0
Mood stabilizersa 16 0
Atypical antipsychoticsb 12 0
Benzodiazepinesc 12 0

T. Bracht et al. NeuroImage: Clinical 20 (2018) 939–945

940



with the Declaration of Helsinki. All participants provided written in-
formed consent.

2.2. Actigraphy

Participants wore an actigraph (Actiwatch®, Inc., UK) on the wrist of
their left (non-dominant) arm continuously for 24 h directly subsequent
to the MRI-scan. The actigraph detects acceleration, which corresponds
to whole body spontaneous motor activity (Middelkoop et al., 1997).
Motor activity was analyzed exclusively during wake time. Activity
levels (AL, the cumulated activity counts during wake divided by the
netto recording time in hours) thus provide information on motor ac-
tivity during daytime without interference of manual work. Data were
analyzed using Sleep analysis® 5 software (Cambridge Neuro-
technology, Inc., UK). For detailed information on acquisition and
calculation of AL, we refer to previous publications e.g. (Bracht et al.,
2012a; Walther et al., 2012b).

2.3. Structural MRI scanning

All data were acquired on a 3 T Siemens MR scanner (Siemens
Magnetom Trio, Erlangen, Germany, 12-channel head coil). High-re-
solution T1-weighted data were obtained with the MDEFT sequence
(Deichmann et al., 2004) with parameters as follows: 176 sagittal slices,
256×224 matrix, isotropic resolution of 1mm3, TR/TE=7.92ms/
2.48ms, 16° flip angle, inversion time 910ms, and fat saturation (total
acquisition time=12min). Identical prescription of MR images was
achieved using the Siemens Autoalign sequence, which automatically
sets up consistent slice orientation based on a standard MRI atlas.

2.4. Diffusion MRI scanning

For diffusion MRI measurements, we used a spin-echo EPI sequence
(55 slices, FOV=256×256mm2, sampled on a 128×128 matrix
resulting in 2mm3 voxel size, TR/TE=6000/78ms) covering the
whole brain (40 mT/m gradient, 5/8 partial Fourier, no acceleration
factor). Diffusion-weighted images were positioned in the axial plane
parallel to the AC-PC line and measured along 42 directions with a b-
value=1300 s/mm2. The sequence included four B0 images without
diffusion weighting (the first and every subsequent 12th image). We
used a balanced and rotationally invariant diffusion-encoding scheme
over the unit sphere to generate the DTI data (Hasan et al., 2001).

2.5. Diffusion MRI data pre-processing

Data analyses were performed using ExploreDTI (Leemans et al.,
2009). The data were corrected for distortions and subject motion using
an affine registration to the non-diffusion-weighted images, with ap-
propriate re-orienting of the encoding vectors. Furthermore, an echo
planar imaging (EPI) correction was performed warping the diffusion
images to the MDEFT images resulting in a 1×1×1mm3 resolution
for further processing (Leemans and Jones, 2009). A single diffusion
tensor model was fitted (Basser et al., 1994) to the diffusion data in
order to compute quantitative parameters such as FA. Diffusion prop-
erties (e.g. FA) were sampled along the tracts.

2.6. Tractography

Whole brain tractography was performed using an algorithm similar
to that described by (Basser et al., 1994). Termination criteria were an
angle threshold> 45° and FA < 0.2.

All tracts were reconstructed in horizontal sections using two ana-
tomically defined regions of interest (ROI) per tract (see Fig. 1). For
reconstruction of the CST the precentral gyrus was encircled. A second
ROI was drawn at the height of the pons on colour coded DWI-images,
where fibres of the corticospinal tract descend (Mole et al., 2016). In

addition, bilateral ROIS were drawn for reconstruction of interhemi-
spheric fibres between bilateral M1 and bilateral pre-SMA. The M1
corresponds to the precentral gyrus; the pre-SMA is located anterior of
the precentral gyrus and posterior of the anterior commissure (Habas,
2010) (for ROIS and pathway visualisation see Fig. 1).

ROIs of the comparison tract (a segment of the optic radiation) were
drawn on two coronal sections at the height of the lateral geniculate
nuclei and seven sections posterior (Counsell et al., 2007) where the
optic radiation can be clearly identified on colour coded DWI-images.

Mean-FA was derived for each of the five reconstructed tracts for
each subject. In addition, the average mean diffusion (MD) and the
axial and radial diffusivity (AD and RD) were computed, to facilitate
follow up of any group differences seen in FA, our primary outcome
measure.

2.7. Statistical analyses

Statistical analyses were performed using Statistical Package for
Social Sciences SPSS 24.0® (SPSS Inc., Chicago, IL, USA). Differences of
demographic variables and AL were calculated using Chi-Square-tests
or t-tests as appropriate (see Table 1).

In order to compare white matter microstructure between groups
we calculated a MANOVA with the independent variable group (HC,
BD) and the dependent variable FA for the four respective pathways
(left CST, right CST, interhemispheric M1 connection, interhemispheric
pre-SMA). Likewise, a MANOVA with the dependent variable group
(BD, HC) and FA of the comparison tract (bilateral segments of the optic
radiation) was calculated. Significant main effects of group were fol-
lowed up with independent t-tests with group (HC, BD) as dependent
and FA as independent variable. The p-value of these post-hoc tests was
adjusted using a Bonferroni correction for multiple comparisons (0.05/
4=0.0123). Where significant group differences of FA were found the
effects on mean diffusivity (MD), radial diffusivity (RD), and axial
diffusivity (AD) were explored.

In addition, we explored differences regarding the relationship of
quantitative motor behavior and white matter microstructure.
ANCOVAs with the independent variable group (controls vs. patients)
and the dependent variables mean FA and AL were computed for each
of the pathway to identify significant group x AL interactions.
Correlations were reported separately for groups where there was a
group x AL interaction and across groups for the remaining tracts. In
addition, we report group x hemisphere interaction for the CST.

2.8. Whole brain voxel-wise analysis

Voxel-wise statistical analysis of FA data was performed using FSL
TBSS software (Smith et al., 2006). FA data were projected onto a mean
FA tract skeleton, before applying voxel-wise cross-subjects statistics.
The tract skeleton was thinned using an FA threshold> 0.2. Group
comparisons between BD and HC of FA on this fiber skeleton were then
performed using threshold-free cluster-enhancement (TFCE). Group
comparisons were deemed to be significant at a cluster threshold of
p < .05.

3. Results

3.1. Sample characteristics

Groups did not differ regarding gender, age, handedness and years
of education. BD-had a mean HAMD score of 21.9 ± 8 indicating
moderate to severe depressive episodes and an average of 5 previous
depressive episodes. All patients were on medication at the time of
scanning (for details see Table 1).
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3.2. Group comparisons

BD patients had significantly lower AL than HC indicating reduced
daily physical activity in BD (see Table 1).

The MANOVA revealed a main effect of group on mean-FA across
the four tracts (F (4,33)= 3.87, p= .011). This main effect was fol-
lowed up using separate independent t-tests for each of the four tracts.
We applied a Bonferroni correction for multiple comparisons
(p= .0125 (0.05/4). Post hoc t-tests indicated significant higher FA in
the left CST in BD (BD=0.60 ± 0.02; HC=0.58 ± 0.02, T
(36)= 2.84, p= .007). There were no group differences in the right
CST (BD=0.58 ± 0.02; HC=0.57 ± 0.02, T (36)= 1.495,
p= .144) and in the interhemispheric M1-connection
(BD=0.56 ± 0.02; HC=0.55 ± 0.02, T (36)= 0.721, p= .476).
However, there was a (non-significant) trend for lower FA in BD in
interhemispheric pre-SMA connections (BD=0.57 ± 0.02;
HC=0.59 ± 0.02, T (36)=−1.975, p= .058). Follow up tests for
the left CST comparing mean MD (p= .362), RD (p= .077) and AD
(p= .761) did not show significant differences. Neither were there
differences in FA for the TBSS results nor for the comparison tract (F
4,33=0.33, p= .73).

Motor activity and white matter microstructure in the left CST de-
monstrated an interaction with group, as evidenced by a significant

group x AL interaction (F 1,34)= 5.52, p= .025 (Fig. 2). In patients,
we found a positive association of AL and FA (r=0.533, p= .014),
which was not found in controls (r=−0.164, p= .504). In tracts
where there was no group x AL interaction correlation across groups
correlations were as follows: right CST (r=−0.03, p= .857), inter-
hemispheric M1-connection (r=0.244, p= .139) and interhemi-
spheric pre-SMA connection (r=0.321, p= .05).

There was a main effect of hemisphere (F (1, 36)= 27.21,
p≤ .001), but no group x hemisphere interaction (F (1,36)= 1.565,
p=0,219) for FA of the corticospinal tracts.

4. Discussion

This is the first tractography study in BD relating white matter
microstructure to quantitative motor behavior. Our study has two main
findings. First, we found increased FA in the left CST. In addition, there
was a non-significant (p= .058) trend for reduced FA in a segment of
the CC connecting left and right pre-SMA. Our finding of increased FA
in the left CST complements previous studies mostly reporting reduced
FA in BD (Nortje et al., 2013; Wise et al., 2016). Second, BD but not HC
had a positive correlation between FA and AL. Given that AL was re-
duced in BD this suggests that the left CST may partially compensate for
psychomotor retardation in BD.

Fig. 1. Reconstructed fiber tracts for an individual participant. From left to right: interhemispheric pre-SMA connections (A); interhemispheric M1 connections (B);
left CST (top row), right CST (bottom row) (C) reconstructed for an individual participant. FA metrics are superimposed on the reconstructed pathways. Regions of
interest are displayed in green.

Fig. 2. Association of activity levels and fractional anisotropy in the left corticospinal tract. Red dots indicate BD, blue diamonds HC.
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In unipolar depression psychomotor retardation was repeatedly
associated with reduced blood flow in prefrontal brain regions such as
the dorsolateral prefrontal cortex (dlPFC) and the anterior cingulate
cortex (Mayberg et al., 1994; Narita et al., 2004; Schrijvers et al., 2008;
Videbech et al., 2002) or the orbitofrontal cortex (Walther et al.,
2012a). There is also support from a DTI-tractography-study suggesting
implications of the dlPFC and the ACC for psychomotor retardation
(Bracht et al., 2012a) and from an EEG study linking frontal alpha
asymmetry to impaired physical activity in depression (Cantisani et al.,
2015). Further, selective associations between AL and FA in unipolar
depression have been found in the posterior cingulum, underneath the
left primary motor cortex and in proximity to the left parahippocampal
gyrus (Walther et al., 2012b).

Functional MRI (fMRI) studies in BD have linked deficits of voli-
tional motor activity to interhemispheric asymmetries in activation
patterns located in pre-executive stages of motor production (Caligiuri
et al., 2004; Liberg et al., 2013). For instance, an (fMRI) reaction time
task study (Caligiuri et al., 2004) demonstrated disrupted activation
patterns between the two hemispheres located in the SMA in depressed
BD. These commissural asymmetries may well be associated with
structural impairments of the CC as demonstrated in multiple DTI-stu-
dies (Bellani et al., 2016; Benedetti et al., 2011; Lagopoulos et al., 2013;
Li et al., 2014; Mahapatra et al., 2017; Nenadic et al., 2017; Toteja
et al., 2015; Wang et al., 2008; Wise et al., 2016).

In addition, two fMRI reaction time tasks studies in depressed BD
found increased blood oxygenation dependent levels (BOLD) levels in
the M1 (Caligiuri et al., 2003; Caligiuri et al., 2004). Those fMRI
findings are complemented by a recent ASL study demonstrating in-
creased perfusion in the left precentral gyrus in BD in comparison to
both unipolar depressed patients and healthy controls (Cantisani et al.,
2016). Higher blood flow was associated with higher AL. Thus, in-
creases in blood flow and activation in the M1 (Caligiuri et al., 2003;
Caligiuri et al., 2004; Cantisani et al., 2016) may contribute to com-
pensate for psychomotor retardation in BD. This could very plausibly be
accompanied by compensatory neuroplasticity as suggested by our
findings of increased FA in the left CST. One may speculate if increases
in perfusion and activation induce neuroplasticity in the CST. Alter-
natively, white matter microstructure alterations (such as higher den-
sity of axons, or glia cells (Andreazza et al., 2013; Bellani et al., 2016))
may require higher levels of blood flow for engaging in sufficient ac-
tivation. However, methodologically it is impossible to infer such
causalities based on neuroimaging studies.

Our lateralized finding of the left (but not the right CST) may be due
to the fact that we investigate right handed participants. Given that
neurons of the left CST cross to the right hemisphere at the pyramidal
tract those pathways are likely to be more active and thus neuroplas-
ticity may be induced (Gibson et al., 2014; Sagi et al., 2012). This as-
sumption is also supported by the hemispheric effect demonstrating
higher FA values in the left as compared to the right CST. However,
given the trend for an interaction in the right CST (p= .144) it is also
possible that limited sample size may have obscured an effect in the
right CST.

Psychomotor retardation is a common syndrome in neuropsychia-
tric disorders that may stem from functional and structural alterations
in different pathways. It is of interest that in Parkinson's Disease (a
disorder with basal ganglia dysfunction) similar to our finding increases
in FA have been reported in the CST and suggested to reflect a com-
pensatory mechanism (Mole et al., 2016). In schizophrenia there is
increasing evidence for a role of thalamo-cortical pathways for psy-
chomotor retardation and compensatory mechanisms in the pre-SMA
(Bracht et al., 2013; Walther, 2015; Walther et al., 2012b; Walther
et al., 2017). Thus, disruptions in different (circumscribed) pathways in
different disorders may lead to similar phenomenological behavior such
as reduced daily activity.

Higher FA in the left CST could stem from decreased crossing of
axons, higher axon density or from higher density of glia cells such as

oligodendrocytes (Jones et al., 2013). Indeed increased subcortical
oligodendrocyte density and increased cell clustering of astrocytes have
been reported in BD (Hercher et al., 2014). It has been suggested that
those neuropathological alterations play an important role in re-
myelination processes and compensate for subcortical myelin damages
(Andreazza et al., 2013; Bellani et al., 2016). Thus, neuropathological
studies are in line with our finding of increased FA. However, DTI-based
findings do not allow for conclusions on specific neuropathological al-
terations (Jones et al., 2013) and therefore the neurobiological corre-
late of our finding of increased FA in the left CST remains unclear. This
inherent limitation of DTI may in part be overcome by using advanced
sub-compartment specific sequences such as McDESPOT (Bracht et al.,
2016) or CHARMED (De Santis et al., 2018).

The lack of significant group differences of our TBSS analyses is
consistent with increasing evidence that tractography approaches
averaging diffusion properties such as FA over the whole tract may be
more sensitive than isolated comparisons on a voxel-by-voxel level
(Bracht et al., 2015a; Bracht et al., 2014; Kanaan et al., 2006; Keedwell
et al., 2012). However, it is possible that larger sample sizes would have
detected significant findings using TBSS (Benedetti et al., 2011;
Lagopoulos et al., 2013).

In conclusion this is the first tractography study to link an objective
measure of motor activity to white matter microstructure in bipolar
disorder. In a carefully matched sample for age, gender, handedness
and years of education we identify increased FA in the left CST in BD.
The selective positive association between FA and AL in BD suggests a
compensatory role of the left CST for psychomotor retardation in BD,
which is in line with fMRI and ASL studies (Caligiuri et al., 2004;
Cantisani et al., 2016). Future longitudinal studies may explore if those
alterations represent a trait or a state marker in BD (Bracht et al.,
2015b) and may apply advanced sub-compartment specific approaches
(De Santis et al., 2018) in conjunction with tractography.
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