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A B S T R A C T

Altered brain development is a common feature of the neurological sequelae of complex congenital heart disease
(CHD). These alterations include abnormalities in brain size and growth that begin prenatally and persist
postnatally. However, the longitudinal trajectory of changes in brain volume from the prenatal to postnatal
environment have not been investigated. We aimed to evaluate the trajectory of brain growth in a cohort of
patients with complex CHD (n = 16) and healthy controls (n = 15) to test the hypothesis that patients with
complex CHD would have smaller total brain volume (TBV) prenatally, which would become increasingly
prominent by three months of age. Participants underwent fetal magnetic resonance imaging (MRI) at a mean of
32 weeks gestation, a preoperative/neonatal MRI shortly after birth, a postoperative MRI (CHD only), and a 3-
month MRI to evaluate the trajectory of brain growth. Three-dimensional volumetric analysis was applied to the
MRI data to measure TBV, as well as tissue-specific volumes of the cortical gray matter (CGM), white matter
(WM), subcortical (deep nuclear) gray matter (SCGM), cerebellum, and cerebrospinal fluid (CSF). A random
coefficients model was used to investigate longitudinal changes in TBV and demonstrated an altered trajectory of
brain growth in the CHD population. The estimated slope for TBV from fetal to 3-month MRI was 11.5 cm3 per
week for CHD infants compared to 16.7 cm3 per week for controls (p = 0.0002). Brain growth followed a similar
trajectory for the CGM (p < 0.0001), SCGM (p = 0.002), and cerebellum (p = 0.005). There was no difference
in growth of the WM (p = 0.30) or CSF (p = 0.085). Brain injury was associated with reduced TBV at 3-month
MRI (p = 0.02). After removing infants with brain injury from the model, an altered trajectory of brain growth
persisted in CHD infants (p = 0.006). These findings extend the existing literature by demonstrating longitudinal
impairments in brain development in the CHD population and emphasize the global nature of disrupted brain
growth from the prenatal environment through early infancy.

1. Introduction

The key pathways to adverse neurological outcomes in infants with
congenital heart disease (CHD) continue to be investigated in order to

frame approaches for neuroprotection. Such insights require an un-
derstanding of the nature, timing, and neurobiological underpinnings of
not only brain injury, but also alterations in brain development. To
date, cohort studies have identified that alterations in brain
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development begin prenatally and include impairments in brain volume
(Limperopoulos et al., 2010; Sun et al., 2015). These volumetric deficits
exist before cardiac surgery, persist postoperatively, and are even pre-
sent into adolescence and adulthood (Cordina et al., 2014; Rollins et al.,
2017; von Rhein et al., 2015; 2014; Heye et al., 2018). Importantly,
reductions in tissue- and region-specific brain volumes have been as-
sociated with adverse neurodevelopmental outcomes in cognitive,
motor, language, and executive function domains (Rollins et al., 2017;
von Rhein et al., 2014; Heye et al., 2018; Latal et al., 2016).

Despite evidence of reduced brain volume in CHD patients across
multiple stages of childhood development, there are limited data in-
vestigating longitudinal brain growth within a single cohort. This type
of analysis may provide information regarding the timing of total and
tissue-specific alterations in brain volume, which may lend insight to
the underlying pathophysiologic processes and/or critical period(s) for
neurologic risk. Our laboratory has previously performed repeated two-
dimensional (2D) MRI measures of brain size in infants with CHD and
identified preoperative deficits across multiple regions, which persisted
at three months of age (Ortinau et al., 2012a; 2012b). While these
biometric methods can be readily applied at the bedside, they are
limited to 2D global brain region measurements, as opposed to three-
dimensional (3D) volumetric methods, which can also generate specific
tissue-type measures (Gholipour et al., 2011). Furthermore, 2D bio-
metry has variable correlation with 3D volumetry, depending on whe-
ther global or tissue-specific measures are being evaluated
(Kyriakopoulou et al., 2017; Nguyen The Tich et al., 2009). Thus, ap-
plication of 3D volumetric methods provide more detailed tissue as-
sessments that may be more relevant for untangling the neurobiological
processes of altered brain development in CHD.

The only studies to date that have investigated longitudinal 3D
brain volumes in infants with CHD have focused on postnatal com-
parisons. These data have demonstrated diminished total brain growth
perioperatively, over two weeks, in infants with hypoplastic left heart
syndrome (HLHS) compared to infants with transposition of the great
arteries (TGA) (Peyvandi et al., 2018a). MRI at approximately one year
of age demonstrated smaller total brain volume (TBV) in children with
single ventricle physiology or TGA when compared to controls. At three
years of age, these deficits only persisted in those children with single
ventricle physiology (Ibuki et al., 2012). While fetal imaging in CHD
has clearly suggested a disruption in brain development prenatally, no
data have evaluated the progression of brain volume from the fetal to
postnatal environment. Additionally, the interplay between brain de-
velopment and brain injury pre- and post-natally has yet to be fully
defined.

This study was a pilot investigation that aimed to extend the ex-
isting literature by determining the trajectory of brain growth in pa-
tients with complex CHD, beginning during pregnancy and continuing
through the perioperative period and into early infancy. We hypothe-
sized that the CHD population would have smaller TBV than the control
population, that the volume difference would exist prenatally, and that
volume reduction would become more prominent by three months of
age. We also hypothesized that brain injury would be associated with
smaller TBV by three months of age.

2. Materials and methods

2.1. Patient population

Pregnant women with a known diagnosis of fetal complex CHD were
recruited from the Fetal Care Center at Barnes Jewish Hospital/St. Louis
Children's Hospital from 2012 to 2015. Specific lesions targeted for
recruitment included HLHS, dextro-transposition of the great arteries
(d-TGA), pulmonary atresia (PA), tetralogy of Fallot (TOF), double
outlet right ventricle (DORV), truncus arteriosus, and complex single
ventricle physiology. The control population included pregnant women
cared for in the Obstetrics Clinic at Barnes Jewish Hospital who had an

otherwise healthy pregnancy. These women were approximately mat-
ched to the CHD population on fetal gestational age (GA) at MRI, fetal
sex, and maternal race. Exclusion criteria included fetal diagnosis of a
genetic syndrome or chromosomal abnormality known to affect clinical
outcome, congenital anomalies (outside of CHD for the study popula-
tion), suspected or proven congenital infection, or multiple gestation
pregnancy. The local Institutional Review Board approved all aspects of
the study. Adult participants provided informed, written consent for
prenatal study evaluations and data collection. Both parents provided
informed, written consent for infant postnatal study evaluations and
data collection.

2.2. Demographic and clinical variables

Demographic and clinical variables were collected after informed
consent was obtained. Demographic variables included maternal age,
maternal and paternal race, and infant sex. Clinical variables included
pregnancy, delivery, and hospitalization characteristics. Pregnancy
data included co-morbid conditions and new pregnancy diagnoses.
Delivery characteristics included mode and indication for delivery,
Apgar scores, and delivery complications. GA at birth and anthropo-
metric measures at birth and at each MRI were also collected.
Hospitalization variables for CHD subjects included medical variables
related to the CHD diagnosis (i.e., need for preoperative prostaglandins
or atrial septostomy), cardiac surgical data, extracorporeal life support,
length of hospital stay, and survival.

2.3. Magnetic resonance imaging

Brain MRI was performed at four time points for the CHD popula-
tion and at three time points for the control population. These included:
1) a fetal brain MRI performed during the second or third trimester of
pregnancy for both groups, 2) a neonatal brain MRI that occurred
preoperatively for CHD subjects and within the first week of life for
control subjects, 3) a postoperative MRI for CHD subjects only, and 4) a
3-month MRI for all subjects. The preoperative and postoperative MRIs
were used to evaluate for perioperative brain injury in the CHD popu-
lation. Two raters experienced in neonatal neuroimaging (J.S. and C.S.)
who were blinded to the subject's group and clinical history reviewed
each MRI and a consensus was formed for presence of brain injury and
qualitative abnormalities in brain development. Brain injury was de-
fined as white matter injury, intraventricular hemorrhage, hemorrhagic
or ischemic infarct, or other hemorrhage (i.e., cerebellar hemorrhage).
A standardized scoring system was applied to evaluate the severity of
white matter injury (minimal, moderate, or severe) and to calculate an
overall brain injury severity score (0–3) (Dimitropoulos et al., 2013;
McQuillen et al., 2007). Qualitative abnormalities in brain development
included increased extra-axial space, open Sylvian Fissure, and delayed
myelination patterns.

2.3.1. Fetal magnetic resonance imaging acquisition
Pregnant women underwent fetal MRI on a 1.5 Tesla Magnetom

Avanto (Siemens Healthcare, Erlangen, Germany) without sedation.
The acquisition parameters included a T2 half-fourier acquisition
single-shot turbo spin-echo (HASTE) sequence acquired in the axial,
coronal, and sagittal planes with a field of view (FOV) of 320 milli-
meters (mm), repetition time (TR) of 1450 milliseconds (ms), echo time
(TE) of 140 ms, flip angle of 180°, and slice thickness of 3.0 mm. To
address the possibility of fetal motion and improve the success of vo-
lumetric reconstruction, multiple acquisitions were acquired in each
plane (Kuklisova-Murgasova et al., 2012; Gholipour et al., 2010). The
MR scanner and acquisition protocol utilized were identical for both the
CHD and control groups.

2.3.2. Postnatal magnetic resonance imaging acquisition
Postnatal imaging (preoperative, postoperative, and 3-month MRIs)
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was performed on a 3-Tesla Magnetom Trio (Siemens Healthcare,
Erlangen, Germany) using the same scanner and protocol for the CHD
and control groups. Infants underwent MRI without sedation. If clini-
cally appropriate, they were fed prior to the MRI and were prepared
and wrapped using a Med-Vac fixation device (Mathur et al., 2008).
Acquisition parameters for volumetric analysis included a T1 magne-
tization prepared rapid gradient echo (MP-RAGE) sequence with a FOV
of 144 × 192 mm, TR of 1550 ms, TE of 3.05 ms, inversion time (TI) of
1100 ms, flip angle of 15°, and voxel resolution of 1.0 × 1.0 × 1.3 mm3.
A T2 fast spin echo sequence was also acquired with a FOV of
144 × 192 mm, TR of 7000–8210 ms, TE of 161 ms, flip angle of
110–120°, and voxel resolution of 1.0 × 1.0 × 1.0 mm3.

2.3.3. Post-processing methods
For the fetal MRI data, an isotropic, high-resolution volume re-

construction was generated at 0.75 cubic mm from the multiple scan
slice acquisitions outlined above. This methodology incorporates an
inter-slice motion correction that has been shown to be accurate and
robust for fetal imaging (Kuklisova-Murgasova et al., 2012; Gholipour
et al., 2010; Kainz et al., 2015). A spatiotemporal fetal brain MRI atlas
was then used to segment key tissue-types within the fetal brain
(Gholipour et al., 2017). To maintain consistency from fetal to postnatal
post-processing analyses, labels from the automated fetal segmentation
were combined using ITK-SNAP tools (Yushkevich et al., 2006) to
generate final segmentations of the cortical gray matter (CGM), white
matter (WM), subcortical (deep nuclear) gray matter (SCGM), cere-
bellum, and cerebrospinal fluid (CSF). The SCGM included the basal
ganglia, thalamus, hippocampus, and amygdala. For the postnatal MR
data, automated segmentations were generated using the Advanced
Normalization Toolkit (ANTS) (Avants et al., 2011) to provide seg-
mentations of the same tissue-types as above. All fetal and postnatal
segmentations were then manually modified in ITK-SNAP by staff
blinded to clinical status. Segmentations were modified using the T2-
weighted images, initially in the coronal plane, from posterior to
anterior regions of the brain. Additional modifications were subse-
quently performed in the axial and sagittal planes while referencing the
coronal segmentation. The majority of the manual modifications ad-
justed overestimations of the cerebellum, corrected misclassified hy-
perintense WM regions, and delineated the WM region between the
basal ganglia and insular cortex. Final segmentations were reviewed by
a single rater (D.A.) blinded to group to ensure the accuracy of seg-
mentation results and consistent data quality. Fig. 1 demonstrates ex-
amples of the final segmentations. Using the manually modified seg-
mentation, measurements were calculated for each tissue-type. The
CGM, WM, SCGM, and cerebellar volumes were then combined to de-
termine TBV.

2.4. Statistical analysis

Statistical analyses were conducted with IBM SPSS Statistics for
Windows, Version 25.0 (Armonk, NY: IBM Corp.) and SAS software,
Version 9.4 (Cary, NC, USA). Demographic and clinical variables were
compared between groups using Pearson's Chi-square or Fisher's Exact
Test, as appropriate, for categorical variables and two-sample in-
dependent t-tests or Mann-Whitney U tests (for non-normally dis-
tributed data) for continuous variables. A random coefficients model
was created to compare the growth of TBV from fetal to 3-month MRI
between the CHD and control groups. Gestational/postmenstrual age at
MRI (defined herein as GA at MRI for the statistical model), study
group, and the interaction between the two were fixed effects, and
subject and GA at MRI were the random coefficients. Because of a non-
significant, but likely clinically important group difference in birth
weight, this variable was included as a covariate in the model. Raw
values, as opposed to z-scores, were used for anthropometric measures
because the statistical model included GA at each MRI and brain vo-
lume had greater correlations with raw weight values than with z-

scores (data not shown). Fetal/infant sex was not included in the model
because this variable was matched between groups. The random coef-
ficients model was repeated after removing infants with brain injury to
determine the impact of injury on trajectory of brain growth.

Subanalyses were performed for each tissue-type using the same
random coefficients model structure described above. To determine
whether volumetric differences were present at each of the three MRI
time points available for both groups, least square mean estimates of
TBV were calculated and compared at the mean GA of all subjects at
each time point.

Spearman correlations and Mann-Whitney U tests were performed
to assess the association of clinical factors with TBV. Results are re-
ported as the Spearman correlation coefficient (rs), which ranges from
−1 to +1, with 0 representing no association. Mann-Whitney U tests
are reported with group medians. These investigations were limited to
the 3-month MRI because the greatest differences in TBV occurred at
this time point and would be reflective of the entire clinical course.
Because of the small sample size, a limited selection of clinical variables
shown to affect brain volume in CHD patients or with biological plau-
sibility were investigated. These variables included hospital length of
stay, presence of brain injury, HLHS diagnosis, and weight measure-
ments (Ortinau et al., 2012a; Peyvandi et al., 2018a; International
Cardiac Collaborative on Neurodevelopment, 2016). Associations were
only performed in the CHD group because the variables tested were all
confounded by the diagnosis of CHD. Nonparametric methods were
chosen for these analyses to be more conservative and relax the as-
sumption of normality, given the sample size and distribution of the
data. A multivariable linear regression model was explored using these
variables; however, several variables were collinear and no model
performed better than a univariate model. Due to the pilot nature of the

Fig. 1. Segmentation for Volumetric Analysis. The T2-weighted fetal volu-
metric reconstruction (A) and the T2-weighted postnatal raw images (B) were
used to generate tissue segmentations for the fetal and postnatal images, re-
spectively (C and D). Green represents cortical gray matter (CGM), blue re-
presents white matter (WM), yellow represents subcortical gray matter (SCGM),
and red represents cerebrospinal fluid. The cerebellar segmentation is not
shown in these images.
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study and the relatively small sample size, no experiment-wise correc-
tion for multiple tests was performed.

3. Results

3.1. Cohort characteristics

Thirty-four patients, including 16 CHD and 18 healthy controls,
were enrolled and underwent at least one research MRI. One control
subject was excluded from analysis for a postnatal diagnosis of a small
ventricular septal defect, microcephaly, and hypotonia that prompted
admission to the Neonatal Intensive Care Unit. Two control subjects
underwent fetal MRI, but their imaging data could not be reconstructed
for volumetric analysis, and both subjects subsequently withdrew from
the postnatal study visits. Thus, the final cohort included 16 CHD and
15 control subjects who had volumetric measures (Fig. 2, Table 3).
Pregnancy, delivery, and hospitalization characteristics of the cohort
are displayed in Table 1. Compared to controls, CHD infants were more
likely to have an earlier GA at birth, a smaller length and head cir-
cumference at birth, a longer hospital length of stay, an earlier post-
menstrual age at preoperative and 3-month MRI, a lower weight at 3-
month MRI, and a smaller change in weight from birth to 3-month MRI.
One CHD infant was delivered preterm at 33 weeks gestation. All other
CHD and control infants delivered at ≥37 weeks gestation. Cardiac
diagnoses and surgical procedures for the CHD group are displayed in
Table 2.

3.2. Magnetic resonance imaging

3.2.1. Brain injury
There was no brain injury noted on any MRI scans for the control

population. There was one control infant whose fetal and neonatal MRIs
were normal, but the 3-month MRI showed mild ventricular promi-
nence with mild enlargement of the subarachnoid spaces. All volu-
metric measures for this subject were within two standard deviations of
the mean for the control population, therefore this patient was included

in the cohort. For the CHD population, there was no evidence of brain
injury or qualitative abnormalities in brain development on any fetal
MRI. Of CHD infants who underwent postnatal imaging, preoperative or
postoperative brain injury was present in 36% (5/14). Four of these
subjects had a brain injury severity score of 2–3, two with moderate
white matter injury, one with infarct, and one with hemorrhage causing
mass effect of > 5% of the hemisphere (Table 3). Qualitative abnorm-
alities in brain development were noted in 29% (4/14) (Table 3). Re-
presentative longitudinal images of CHD patients with and without
injury are displayed in Supplementary Fig. 1.

3.2.2. Volumetric analysis
Of the 31 subjects included in the study, three had useable volu-

metric data at four time points, eight at three time points, eleven at two
time points, and nine at one time point (Fig. 2, Table 3). The random
coefficients model demonstrated an association between GA at MRI and
TBV, where TBV increased as GA increased (p < 0.0001) (Fig. 3). Birth
weight neared significance with an estimated slope of 0.02 cm3 per one
gram increase (p = 0.06). Controlling for GA at MRI and birth weight,
there was a significant interaction between group and GA at MRI, such
that CHD infants had an 11.5 cm3 increase in TBV per week compared
to a 16.7 cm3 increase for controls (p = 0.0002) (Fig. 3).

Subanalyses were performed for all tissues-types to determine which
brain tissues were contributing to the difference in TBV over time and
are reported here as the estimated slopes per week in CHD versus
control infants. These analyses showed a significant interaction be-
tween group and GA at MRI, such that infants with CHD had a smaller
slope, for the CGM (5.1 cm3 versus 8.5 cm3, p < 0.0001), the SCGM
(0.8 cm3 versus 1.1 cm3, p = 0.002), and the cerebellum (1.4 cm3

versus 1.8 cm3, p = 0.005). There was no group difference in slope for
the WM (4.4 cm3 versus 5.3 cm3, p = 0.30) or the CSF (4.5 cm3 versus
3.0 cm3, p = 0.085) (Fig. 3).

Specific to each MRI time point, total and tissue-specific volumes at
fetal, preoperative, and 3-month MRIs were compared between groups
using least square mean estimates from the random coefficients model
at the mean GA of each MRI time point. There was no group difference

Fig. 2. Flow Diagram of Study Participants. Numerators represent successful volumetric analysis, whereas the denominators represent participants eligible for each
MRI.

C.M. Ortinau et al. NeuroImage: Clinical 20 (2018) 913–922

916



in TBV at fetal MRI, but CHD infants did have smaller TBV at the
preoperative (p < 0.001) and 3-month MRI (p = 0.0001) (Table 4).
The CGM, SCGM, and cerebellum displayed a similar pattern. There was
no difference in WM at any MRI time point. CSF volume was marginally

greater in the CHD group compared to the control population on the 3-
month MRI. (Table 4).

Associations of 3-month TBV with clinical factors in the CHD group
demonstrated that lower 3-month TBV was associated with longer
hospital length of stay (rs= −0.80, p = 0.002) and brain injury
(median TBV for infants with brain injury = 349 cm3, median TBV for
infants without brain injury = 428 cm3, p = 0.02). The relationship of
lower TBV with a diagnosis of HLHS did not reach significance (median
3-month TBV for HLHS = 367 cm3, median 3-month TBV for other
CHD = 427 cm3, p = 0.27). To better delineate the impact of brain
injury on the trajectory of TBV, the random coefficients model was
repeated after removing infants with brain injury. An altered trajectory
of brain growth persisted in the CHD population, where CHD infants
without brain injury had a 13.6 cm3 increase in TBV per week com-
pared to a 16.6 cm3 increase per week for controls (p = 0.006).

Given the potential for impairment in somatic growth in an in-
tensive care environment, which may affect TBV and be confounded by
diagnosis, brain injury, and hospital length of stay, analyses were un-
dertaken to further define the relationship between somatic and brain
growth. Lower 3-month TBV was associated with lower birth weight
(rs= 0.75, p = 0.005) and lower weight at 3-month MRI (rs= 0.71,
p = 0.02), but there was no association of TBV with change in weight
from birth to 3-month MRI (rs= −0.08, p = 0.81). Infants with a lower
birth weight were more likely to have brain injury (median birth weight
in infants with brain injury = 2194 g, median birth weight in infants
without brain injury = 3330 g, p = 0.01) and a longer hospital length
of stay (rs= −0.64, p = 0.01).

4. Discussion

This study demonstrated an altered trajectory of brain growth in
infants with CHD in a unique cohort of patients who underwent serial
prenatal and postnatal MRI. CHD infants displayed a progressively
smaller TBV over time, resulting in an 11.5 cm3 increase in TBV per
week in CHD infants in comparison to a 16.7 cm3 increase per week in
controls after adjusting for GA at MRI and birth weight. Tissue-specific
analyses revealed that this altered trajectory of growth included pro-
minent effects in the CGM, SCGM, and cerebellum. Importantly, the
differences in growth trajectories remained evident even when CHD
infants with brain injury were removed from the analyses, suggesting
that injury is not the sole predictor of altered growth in this clinical
population.

4.1. Trajectory of total and tissue-specific brain volumes

Studies in the CHD population have consistently shown reductions
in brain volume prenatally and postnatally that appear to be global in
nature(Limperopoulos et al., 2010; Sun et al., 2015; Rollins et al., 2017;
von Rhein et al., 2015; Heye et al., 2018; Peyvandi et al., 2018a;
Clouchoux et al., 2013; Owen et al., 2014; Olshaker et al., 2018). In
fetuses with HLHS, specific involvement of the cortical plate and de-
veloping WM has been reported after 30 weeks gestation, with a less
significant effect on SCGM (Clouchoux et al., 2013). Cerebellar volumes
have also been shown to be reduced prenatally (Olshaker et al., 2018).
Reductions in CGM, WM, subcortical structures, and the cerebellum
have all been reported postnatally before cardiac surgery (von Rhein
et al., 2015; Owen et al., 2014). These data demonstrated no differ-
ential effects between tissue-types, ranging from an 18% reduction for
WM to a 29% reduction for CGM (von Rhein et al., 2015). However,
data in infants beyond the neonatal period has demonstrated decreased
brain volume to be largely driven by smaller WM measures in infants
with biventricular circulation at one year of age (Rollins et al., 2017).

Our study adds to the existing literature by characterizing the tra-
jectory of total and tissue-specific brain volumes from the prenatal
environment through early infancy in a single cohort. To our knowl-
edge, this study is the first to do so. The growth trajectory of 11.5 cm3

Table 1
Characteristics of the cohort.

CHD (n = 16) Control
(n = 15)

P value

Pregnancy characteristics
Maternal age 27.2 (5.8) 29.0 (5.7) 0.39
Maternal race 0.33

Caucasian 15 (93.8) 15 (100)
African American 1 (6.3) 0 (0)
Other 0 (0) 0 (0)

Paternal race 0.21
Caucasian 13 (81.2) 15 (100)
African American 1 (6.3) 0 (0)
Other 2 (12.5) 0 (0)

Maternal asthma 3 (18.8) 1 (6.7) 0.60
Pre-pregnancy or gestational DM 4 (25.0) 0 (0) 0.10
Gestational HTN or pre-

eclampsia
2 (12.5) 0 (0) 0.48

Maternal Hypothyroidism 1 (6.3) 1 (6.7) 1.00

Delivery characteristics
Mode of delivery 0.34

Vaginal 12 (80.0) 13 (86.7)
Non-emergent cesarean

section
1 (6.7) 2 (13.3)

Emergent cesarean section 2 (13.3) 0 (0)
Apgar Score at 1 mina 8 (7–8) 8 (8–8) 0.29
Apgar score at 5 mina 8 (8–9) 9 (9–9) 0.074
Gestational age at birth, wksa 38.9

(37.3–39.0)
39.7
(38.9–40.3)

0.002†

Birthweight, g 3062 (722) 3385 (470) 0.16
Birth length, cm 48.4 (3.4) 50.9 (2.4) 0.03†

Birth head circumference, cm 33.3 (1.4) 34.4 (1.2) 0.02†

Infant sex, male 10 (62.7) 8 (53.3) 0.71

Postnatal characteristics
Preoperative prostaglandins 11 (73.3) – –
Preoperative atrial septostomy 3 (20.0) – –
Age at surgery, daysa 11 (3–83) – –
Cardiopulmonary bypass 12 (80.0) – –
Cardiopulmonary bypass time,

min
135 (49.1) – –

Cross-clamp time, min 82 (44.4) – –
Deep hypothermic circulatory

arrest
7 (46.7) – –

Deep hypothermic circulatory
arrest time, min

80 (57.6) – –

Extracorporeal life support 2 (13.3) – –
Length of hospital stay, daysa 32.0

(13.0–49.0)
2.0 (2.0–3.5) < 0.001†

Died 3 (20.0) 0 (0) 0.23

MRI characteristics
GA at fetal MRI, wks 32.7 (2.5) 32.7 (3.7) 0.99
PMA at preoperative MRI, wks 38.8 (0.7) 40.3 (0.7) 0.001†

Weight at preoperative MRI, g 3570 (540) 3574 (334) 0.99
PMA at postoperative MRI, wks 42.6 (2.3) – –
Weight at postoperative MRI, g 3352 (636) – –
PMA at 3-month MRI, wks 51.0 (1.8) 54.2 (1.2) < 0.001†

Weight at 3-month MRI, g 4721 (698) 5977 (557) 0.001†

Change in weight, birth to 3-
month MRI, g

1650 (807) 2637 (710) 0.01†

Data are presented as mean (SD) or number (percentage), unless otherwise
noted. Delivery and hospitalization characteristics are reported for 15 CHD
subjects, as one subject transferred care to her local hospital prior to delivery.
MRI characteristics were for those subjects with usable volumetric data. (−)
Represents variables that were not applicable to the control population and
could not be compared between groups. DM = diabetes mellitus, GA = ge-
stational age, HTN = hypertension, PMA = postmenstrual age.

a Data are displayed as median (interquartile range).
† p < 0.05.
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per week in the CHD group is not only smaller than controls, but is also
similar to previous data reporting growth rates of 7–12 cm3 in the
perioperative setting for CHD infants (Peyvandi et al., 2018a). In ad-
dition to identifying a slower rate of growth for TBV, our study also
demonstrated regionally-specific alterations in growth trajectory for
CGM, SCGM, and cerebellar volumes in CHD infants. Although our data
did not find differences on fetal MRI, reductions were present across
multiple tissue-types on the preoperative and 3-month MRI, coinciding
with increased CSF volume over time. Further, though WM volume was

not significantly different in our cohort, WM measures were con-
sistently smaller in the CHD group across all time points. This collection
of findings suggests diffuse disturbances in brain growth. Although the
exact timing of these differential tissue effects has not been fully elu-
cidated, it is becoming more clear that they are global in nature and
likely occur secondary to multifactorial innate (i.e., genetic) and
modifiable (i.e., brain injury) variables from both the prenatal and
postnatal environment (Volpe, 2014; Hovels-Gurich, 2016; Chai, 2018).

Volumetric deficits in the CHD population are thought to begin

Table 2
Cardiac diagnoses and surgical procedures for CHD subjects.

Cardiac diagnosis Primary corrective or palliative procedure

Subject 1 HLHS, MS, AA, with LV sinusoids Hybrid procedure with bilateral pulmonary artery banding and stenting
of the PDA

Subject 2 HLHS, MS, AS Norwood with Sano modification
Subject 3 HLHS, MA, AA, restrictive atrial septum Norwood with Sano modification
Subject 4 HLHS, MA, AA Norwood with Sano modification
Subject 5 d-TGA with restrictive atrial septum Arterial switch operation and primary closure of muscular VSD
Subject 6 HLHS, MA, AA Norwood with Sano modification
Subject 7 PA with small VSD, hypoplastic TV and RV with overriding aorta, moderate to large ASD,

bicupsid aortic valve
Orthotopic heart transplant

Subject 8 TOF with a small pulmonary valve annulus Tetralogy of Fallot repair
Subject 9 HLHS, MA, AA Unknowna

Subject 10 DORV with d-TGA, ASD, VSD Rastelli Procedure
Subject 11 Double-inlet left ventricle, hypoplastic right ventricle, L-TGA Damus-Kaye-Stansel Procedure and modified bidirectional Glenn
Subject 13 TOF/PA Modified BT shunt
Subject 14 PA/IVS with severe tricuspid stenosis Modified BT shunt
Subject 15 HLHS, MS, AS, restrictive atrial septum Norwood with Sano modification
Subject 17 TOF without pulmonary stenosis Tetralogy of Fallot repair
Subject 18 d-TGA/IVS with restrictive atrial septum Arterial switch operation

AA = aortic atresia, AS = aortic stenosis, ASD = atrial septal defect, BT = Blalock-Taussig, DORV = double outlet right ventricle, d-TGA = dextro-transposition of
the great arteries, HLHS = hypoplastic left heart syndrome, IVS = intact ventricular septum, L-TGA = levo-transposition of the great arteries, LV = left ventricle,
MA = mitral atresia, MS = mitral stenosis, PA = pulmonary atresia, PDA = patent ductus arteriosus, RV = right ventricle, TOF = tetralogy of Fallot, TV = tricuspid
valve, VSD = ventricular septal defect.

a This subject transferred care back to her local hospital prior to delivery.

Table 3
Brain injury/abnormalities in CHD subjects.

Subject Fetal MRI Preoperative MRI Postoperative MRI 3-month MRI BIS score

1d None – Bilateral moderate WMI, bilateral mild
ventriculomegaly, increased extra-axial spaces
and open Sylvian Fissures (greatest on right)

Mild bilateral ventriculomegaly, increased extra-axial
spaces and open Sylvian Fissures (greatest on right)

3

2 – – Open Sylvian Fissures None 0
3 Nonea – None None 0
4 None None Mild bilateral ventriculomegaly Mild bilateral ventriculomegaly 0
5 None Bilateral moderate WMI,

bilateral basal ganglia infarcts,
bilateral grade II IVH

Bilateral moderate WMI, bilateral
ventriculomegaly, left basal ganglia infarct

Bilateral moderate WMI, bilateral ventriculomegaly,
residual left basal ganglia hemorrhage

3

6 None – Died Died N/A
7d None – – Left acute and chronic frontotemporal subdural

hematoma with adjacent mass effect > 5% of
hemisphere, bilateral ventriculomegaly, open Sylvian
Fissures

3c

8b Nonea None – None 0
9 None – – – N/A
10b None None – Nonea 0
11b Nonea None – None 0
13 Nonea None – None 0
14 Nonea – Bilateral mild WMI, left grade II and right grade I

IVH, and open Sylvian Fissures
– 1

15 Nonea – Small right frontal cortical infarct Mild bilateral ventriculomegaly 2
17 None – – None N/A
18d None None None None 0

(−) Subjects unable to undergo MRI at that time point. BIS = brain injury severity, IVH = intraventricular hemorrhage, N/A = not applicable because perioperative
MRI data not available, WMI = white matter injury.

a MRIs with motion artifact precluding volumetric analysis.
b Cardiac surgery was after the 3-month MRI for these subjects.
c 3-month MRI was used for BIS score because cardiac surgery was 15 days prior to the 3-month MRI for this subject.
d Preoperative atrial septostomy occurred in these subjects. Subject 18 had the septostomy before the preoperative MRI.
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prenatally secondary to cerebral hypoxia/hypoperfusion and, indeed,
reduced fetal TBV has been associated with reduced ascending aortic
oxygen saturation and cerebral oxygen consumption (Sun et al., 2015;
Lauridsen et al., 2017). The pathophysiology of postnatal deficits are
likely multifactorial. It has been suggested that processes are similar to
those identified in preterm infants, such that pre- and post-natal cere-
bral hypoxia and hypoperfusion result in injury to the developing white
matter (displayed as white matter volumetric reductions). This can
result in interruption of thalamocortical connectivity, leading to vo-
lume reductions of cortical and subcortical gray matter. This process
could occur independently or in combination with direct neuronal and
axonal injury (Volpe, 2014; Morton et al., 2017). Our findings de-
monstrating less significant reductions in the WM of CHD infants, in
comparison to more prominent disturbances in gray matter tissues, may
support such a “two-hit” phenomenon of both direct and secondary
neuronal and axonal effects. This may explain the progression of gray
matter (and therefore TBV) deficits over time in our cohort. Alter-
natively, or in addition, there may be postnatal clinical factors that
directly impact growth of gray matter tissues.

4.2. Trajectory of TBV and clinical factors

Repeated measures of postnatal brain volumes have been evaluated
in two other studies, both of which have identified cardiac diagnosis as
an important factor for brain volume. The first investigated acute
perioperative changes from pre- to post-operative MRI in a large cohort
of patients (n = 79) with two distinct cardiac physiologies – HLHS and
d-TGA. Their data demonstrated poorer perioperative brain growth
over approximately two weeks in infants with HLHS and in infants with
moderate-severe brain injury, with HLHS a stronger predictor
(Peyvandi et al., 2018a). These data may suggest lesion-specific effects,
but also highlight the complexities of diagnosis, perioperative care, and

brain injury. Similarly, repeated postoperative imaging at one and three
years of age in 10 children with TGA and 23 with single ventricle
physiology showed initial deficits in both groups that only persisted for
the single ventricle patients, suggesting correction of hypoxemic con-
ditions may improve brain growth (Ibuki et al., 2012). While our data
did not demonstrate volumetric differences in HLHS infants, the cohort
included a smaller, more heterogeneous sample and was not designed
to investigate subgroup differences.

Regarding the impact of brain injury, we identified perioperative
injury in 36% of infants with CHD in our cohort. The current literature
suggest 26–55% of CHD infants have perioperative brain injury,
26–41% of which occurs preoperatively and 30–44% as new post-
operative lesions. White matter injury is the most common pattern of
injury across cohorts (Dimitropoulos et al., 2013; Beca et al., 2013;
Claessens et al., 2018; Peyvandi et al., 2018b). Our rate of brain injury
is consistent with rates previously described. Additionally, white matter
injury was also common in our cohort. Of note, we did not identify any
injury on fetal MRI, though it is possible that injury patterns related to
chronic fetal hypoxia, such as white matter injury, fell below the
threshold of resolution that could be detected on fetal imaging.

The exact relationships between brain injury and fetal and postnatal
volumetric deficits have not been clearly defined. Conventional quali-
tative assessments of fetal and neonatal MRI have shown that over one-
third of neonates with brain injury have markers of altered brain de-
velopment on either fetal or neonatal imaging (Brossard-Racine et al.,
2016). Postnatal, preoperative assessments have also suggested a re-
lationship between brain development and subsequent postoperative
brain injury, although diagnostic category was a stronger predictor of
injury (Beca et al., 2013). We were able to identify an association be-
tween brain injury and TBV, with TBV being 79 cm3 smaller on 3-month
MRI in infants with injury. When we excluded infants with brain injury,
our model continued to demonstrate an altered trajectory of brain

Fig. 3. Trajectory of Brain Volumes. Data points and fit lines represent the random coefficients model results for the CHD (open circles, dashed line) and control
(solid triangles, solid line) groups. The regression equations are as follows (BW = birth weight): TBV CHD = −388.08 + (0.02 × BW) + 162.82 + (11.49 × GA at
MRI), TBV control = −388.08 + (0.02 × BW) + (16.66 × GA at MRI), CGM CHD = −248.97 + (0.01 × BW) + 115.21 + (5.07 × GA at MRI), CGM
control = −248.97 + (0.01 × BW) + (8.47 × GA at MRI), WM CHD = −101.05 + (0.01 × BW) + 23.73 + (4.41 × GA at MRI), WM
control = −101.05 + (0.01 × BW) + (5.30 × GA at MRI), SCGM CHD = −25.96 + (0.002 × BW) + 12.00 + (0.77 × GA at MRI), SCGM
control = −25.96 + (0.002 × BW) + (1.14 × GA at MRI), cerebellum CHD = −52.03 + (0.001 × BW) + 11.70 + (1.40 × GA at MRI), cerebellum
control = −52.03 + (0.001 × BW) + (1.79 × GA at MRI), CSF CHD = 33.15 – (0.01 × BW) – 54.5 + (1.41 × GA at MRI), CSF control = 33.15 –
(0.01 × BW) + (2.95 × GA at MRI).
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growth for infants with CHD. This would suggest that brain injury is not
the only factor affecting the trajectory of brain growth. Given the di-
vergence of TBV through early infancy, it is possible that other clinical
factors in the perioperative and intensive care environment (i.e., an-
algesia and sedation management, nutritional factors beyond weight
assessments, developmental care models) could be affecting this tra-
jectory.

Another potential factor affecting the trajectory of brain growth is
the prenatal environment. Our cohort demonstrated associations of
smaller TBV with lower birth weight and lower 3-month weight. In
contrast, there was no association with change in weight from birth to
three months, suggesting that birth weight (reflective of prenatal
growth) is perhaps more important than change in weight in early in-
fancy. Of interest, lower birth weight was also associated with brain
injury and longer hospital length of stay, both important factors asso-
ciated with TBV in our cohort. Although these analyses were ex-
ploratory, these results could indicate prenatal somatic growth is an
alternative or interactive pathway by which brain growth is associated
with brain injury and hospital length of stay.

4.3. Prenatal volumetric deficits

While our cohort did not display significant reductions in TBV on
fetal imaging, infants with CHD are known to have MRI deficits in brain
volume that begin prenatally. Specifically, the seminal work of
Limperopoulos and colleagues discovered fetuses with CHD to have
decreased TBV that progressed during the third trimester of pregnancy,
which was most prominent in fetuses with HLHS and reflected a re-
duction of approximately 13% at 32 weeks gestation (Limperopoulos
et al., 2010). Subsequent prenatal studies have corroborated this
finding, reporting deficits in brain volume as early as the late second
trimester in fetuses with tetralogy of Fallot and a 13% reduction in TBV
at 36 weeks gestation in fetuses with single and biventricular cardiac
defects (Sun et al., 2015; Schellen et al., 2015).

It is unlikely that our inability to detect a difference in TBV at fetal
MRI is due to methodologic variation in volumetric analysis, as this
should result in systematic variations across CHD and control popula-
tions, which would not affect overall findings. More likely is that our
sample size and/or differences in cohort characteristics are contributing
to this result. To better delineate why our cohort did not show differ-
ences on fetal MRI, we compared our findings to those of
Limperopoulos et al. using their regression equation. This comparison
showed similar measurements in TBV between cohorts for CHD fetuses
at 32.7 weeks (204 cm3 compared to 210 cm3), but TBV varied for
controls (211 cm3 compared to 244 cm3) (Limperopoulos et al., 2010).
Further, Sun et al reported TBV of 279 cm3 for CHD fetuses and 319 cm3

for controls at 36 weeks gestation (Sun et al., 2015). Our model esti-
mates provide a TBV of 254 cm3 for CHD fetuses and 277 cm3 for
controls at 36 weeks, reflecting a 9% and 13% difference in volume,
respectively, compared to Sun et al. We matched our CHD and control
subjects on clinical variables including GA at MRI, fetal sex, and ma-
ternal race and recruited both groups from a clinical setting of similar
sociodemographic backgrounds. However, it is possible that the control
population we selected, while matched to our infants with CHD, had
smaller brain volumes than other cohorts, contributing to the lack of
significance prenatally. This could reflect differences in socio-
demographic or genetic factors for our controls, which may be im-
portant to consider for future investigations.

4.4. Postnatal volumetric deficits

Cerebral volumetric deficits have been reported on neonatal pre-
operative MRI scans in a heterogeneous group of cardiac diagnoses
compared to controls (von Rhein et al., 2015), and several studies have
shown reductions in brain volume during infancy and early childhood,
well after the initial acute perioperative period (Rollins et al., 2017;Ta
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Heye et al., 2018; Watanabe et al., 2009). In addition, a single study in
adolescents with CHD and another in adults have also reported di-
minished brain volumes (Cordina et al., 2014; von Rhein et al., 2014).
Our data demonstrated a significant reduction in TBV on both pre-
operative and 3-month MRIs, consistent with the existing postnatal
imaging literature reporting differences after birth. However, our pre-
operative reductions in TBV were only 13% compared to previous data
reporting a 20% reduction (von Rhein et al., 2015). These differences
may be related to the timing of the neonatal MRIs, as ours occurred at
earlier postmenstrual ages and there is a progression of reduced TBV
over time in our cohort. Although, cohort variation may again play a
role, as our controls had comparatively smaller TBV, similar to our
prenatal findings.

4.5. Methodologic considerations

The “gold standard” for measuring brain growth is with volumetric
methods, which were employed here. As established by our group and
others, comparisons of volumetric measures between groups and
methodologies in fetal and neonatal populations standardly utilize
manually-corrected segmentations generated by blinded personnel as
the optimal reference (Beare et al., 2016; Matthews et al., 2018; Habas
et al., 2010; Makropoulos et al., 2014). Here, after an automated seg-
mentation algorithm was used for the initial segmentation process, all
data across all time points were subsequently manually modified in a
blinded fashion and in a systematic manner to ensure the fidelity of
results. This rigorous approach eliminates variations in procedures
specific to group and mitigates the possibility of differences in metho-
dology contributing significantly to the differences that we identified.

Our prior work took a more simplistic approach by using 2D bio-
metric measurements on MRI, and identified smaller brain size across
multiple regions preoperatively that persisted through the first three
months of life. These data showed a similar rate of growth between the
CHD and control groups (Ortinau et al., 2012a; 2012b). However, 2D
biometrics methods are global regional measures, as opposed to the
analyses reported here, which reflect tissue-specific changes beginning
prenatally at approximately seven weeks before our previous 2D neo-
natal measures. Additionally, 2D biometric measures have limitations
in their correlation with 3D volumetry for tissue measures. For ex-
ample, bifrontal diameter (2Dregional measure) and cortical gray
matter volume (3D tissue-type measure) only have a correlation coef-
ficient of 0.482 (Nguyen The Tich et al., 2009). Thus, this study ex-
pands our previous data by defining total and tissue volumetric changes
from prenatal to postnatal imaging, which provides complementary
information to our prior work regarding brain growth.

4.6. Limitations

This study has several limitations. First, the sample size is relatively
small, which impacted the ability to define the relative contributions of
specific tissue-types to longitudinal TBV, as well as the variance ex-
plained by relevant clinical factors. While exploratory analyses were
undertaken, future studies with larger samples are needed to rigorously
evaluate these relationships. Second, our sample includes a hetero-
geneous cohort of CHD that may have variable effects on brain devel-
opment at different gestational ages, which could influence the timing
and severity of fetal and infant impairments in brain development.
Finally, our cohort had missing data at each MRI time point. We ad-
dressed this limitation with a random coefficients model, but there may
be systematic differences between those subjects who did and did not
undergo imaging at each time point. For example, infants deemed too
unstable for pre- or post-operative MRI may have had the greatest
deficits in volumetric measurements at this time point. Their findings
might be better represented on the 3-month MRI results when these
infants were more clinically stable and a larger number were able to
undergo MRI scans. Despite these limitations, these data are the first to

evaluate longitudinal changes in brain volume from prenatal to post-
natal imaging and provide a foundation for future work investigating
the timing of tissue-specific involvement in altered brain development.

5. Conclusions

This study demonstrated that infants with CHD have an altered
trajectory of brain growth from fetal through neonatal and 3-month
MRI. Importantly, by three months of age multiple tissue-types were
involved, suggesting global disturbances in brain development that are
likely multifactorial.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.09.029.
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