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Abstract

Purpose of Review—Diabetes mellitus is a top contributor to the global burden of mortality
and disability in adults. There has also been a slow, but steady rise in prediabetes and type 2
diabetes in youth. The current review summarizes recent findings regarding the impact of
increased exposure to air pollutants on the type 2 diabetes epidemic.

Recent Findings—Human and animal studies provide strong evidence that exposure to ambient
and traffic-related air pollutants such as particulate matter (PM), nitrogen dioxide (NO5), and
nitrogen oxides (NOy) play an important role in metabolic dysfunction and type 2 diabetes
etiology. This work is supported by recent findings that have observed similar effect sizes for
increased exposure to air pollutants on clinical measures of risk for type 2 diabetes in children and
adults. Further, studies indicate that these effects may be more pronounced among individuals with
existing risk factors, including obesity and prediabetes.

Summary—Current epidemiological evidence suggests that increased air pollution exposure
contributes to alterations in insulin signaling, glucose metabolism, and beta ()-cell function.
Future work is needed to identify the specific detrimental pollutants that alter glucose metabolism.
Additionally, advanced tools and new areas of investigation present unique opportunities to study
the underlying mechanisms, including intermediate pathways, that link increased air pollution
exposure with type 2 diabetes onset.
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Introduction

Methods

The prevalence of diabetes mellitus remains high and is a top contributor to the global
burden of mortality and disability [1]. Although type 2 diabetes has been traditionally
regarded as an adult disease, there has been a slow yet steady increase in youth. For
example, by 2050 the number of youth with type 2 diabetes is projected to increase 4-fold
[2,3], illustrating that prevention of type 2 diabetes over the life course is an enormous
public health priority. While studies have shown that type 2 diabetes is strongly linked with
traditional risk factors such as poor diet and low physical activity and socio-economic status,
recent work suggests that ambient and traffic-related air pollution exposures may also play
an important role in disease development. The detrimental impact of air pollution exposure
on chronic respiratory, cardiovascular, and cerebrovascular morbidity and mortality has been
extensively studied [4-6], but the relationship between exposure to air pollutants and type 2
diabetes risk is a relatively new field of study in the past decade. This targeted review
provides an update of the most recent epidemiological findings regarding the impact of air
pollution exposure on diabetes morbidity in adults and children between the years 2012 and
2017.

Type 2 diabetes is characterized by high peripheral glucose concentrations caused by insulin
resistance and a relative deficiency of insulin secretion from pancreatic beta (p)-cells to
compensate insulin resistance. In clinical practice, the diagnosis of pre-diabetes and type 2
diabetes is made based upon blood markers of altered glucose metabolism, which include
elevated levels of fasting glucose, post-prandial glucose, or glycated hemoglobin (HbA1c).
Additionally, insulin resistance, hyperinsulinemia, and B-cell dysfunction can serve as early
indicators of risk for developing type 2 diabetes. Collectively, these metabolic markers assist
researchers and clinicians in monitoring individual risk for developing type 2 diabetes and
present opportunities for early intervention. In this review, the term “metabolic dysfunction”
has been used to encompass these metabolic markers as they relate to type 2 diabetes
progression.

In this narrative review, we performed a comprehensive review of the literature between
2012-2017. Searches were performed in August 2017. PubMed database was searched for
articles that contained the terms in the title and/or abstract that were relevant to the current
review. The terms included: “air pollution” AND (“diabetes,” or “type 2 diabetes,” or
“prediabetes,” or “metabolic dysfunction,” or “fasting glucose,” or “fasting insulin,” or
“insulin resistance,” or “insulin sensitivity,” or “HOMA-IR,” or “beta-cell function,” or
“HbA1c”). We also examined bibliographies of relevant articles, and papers previously
known to the authors. This resulted in 170 articles from PubMed that were further evaluated
for their relevance. Of these, we included 21 articles for diabetes prevalence or incidence, 6
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articles on risk factors for type 2 diabetes among children, and 14 articles on risk factors for
type 2 diabetes in adults.

Air pollution and diabetes morbidity in adults

Between 2012 and 2017, thirteen studies have examined the associations between chronic
ambient and/or traffic-related air pollution exposures and diabetes morbidity in adults (Table
1). Eleven of these thirteen cross-sectional studies observed positive associations between
diabetes prevalence and air pollutants, predominantly with particulate matter (including PM
less than 10 [PM1¢] and 2.5 micrometers [PM5 5]), NO», nitrogen oxides (NOy) [7-19].
Additionally, two of these studies examined traffic density and proximity to roadways as
proxies for residential traffic-related air pollution exposure. One of these studies observed a
positive association between diabetes prevalence and self-reported traffic density perception,
yet the other did not find an association between diabetes and proximity to major roads
[7,17]. Most longitudinal studies in adults [20-25], but not all [19,26,27], provide evidence
that increased exposure to air pollution contributes to diabetes incidence. For example,
cohort studies in Denmark and Germany found that exposure to pollutants, including PM,
NO,, and traffic-related air pollutants (i.e. traffic density, distance to roadways), were
associated with an elevated risk for developing diabetes [21,23]. Furthermore, results from
the German cohort indicated that traffic exposures may account for the largest detrimental
effects on metabolic risk where traffic- specific fine particulate matter (PM> 5) derived from
a source-specific dispersion and chemistry transport model was more strongly associated
with incident diabetes than total PM> 5 [23]. Lastly, only one longitudinal study found an
increased risk of diabetes with greater ozone (O3) exposure among African-American
women [25]. Among these recent studies, there appears to be specific subgroups that are
more vulnerable to the effects of air pollution exposure, including nonsmokers, obese
women, physically active older adults and those with heart disease [20,21]. Further, many of
the studies that found positive associations between diabetes and traffic-related or ambient
air pollution were in female-only cohorts or reported stronger effect sizes in women [19-
22,24,25,28].

Air pollution and metabolic dysfunction among adults

Beyond diabetes morbidity, recent studies indicate that exposure to air pollutants may
negatively impact early indicators of metabolic dysfunction (Table 2). Among fourteen
recent reports, nine cross-sectional studies found that increased exposure to three ambient air
pollutants (PM, NO,, and NO,) were associated with fasting blood levels of glucose, insulin,
homeostatic model assessment of insulin resistance (HOMA-IR), and/or HbAlc [11,12,28-
34]. In a large study among 11,847 Chinese adults, exposure to PM, s was estimated using a
spatial model incorporating satellite remote sensing data and an interquartile range increase
in PM, 5 exposure (41.1 ug/m3) in the 10 months prior to blood testing was associated with
an elevated fasting glucose (4.68 mg/dL) and HbAlc (0.08%) [12]. Another study in 1,023
predominantly obese Mexican-American women found that up to 58 days of cumulative
lagged exposure to PM, 5 was associated with higher fasting insulin and glucose levels as
well as HOMA-IR [28]. In addition to ambient pollutants, distance to major roadways has
been used as a proxy of residential exposure to the complex mixture of traffic pollutants.

Curr Epidemiol Rep. Author manuscript; available in PMC 2019 June 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Alderete et al.

Page 4

Among 371 Chinese men and women, those living within 50 meters of a major road had
1.30 times higher HOMA-IR and 1.95 pU/ml higher fasting insulin levels compared to those
living more than 200 meters away, yet fasting glucose levels did not differ between these two
groups [30]. In a study among 363 women from Germany, land-use regression was used to
asses exposures to NO, and NOy 10 to 20 years prior their clinical visit, which were found
to be positively associated with impaired glucose tolerance (2-hour glucose levels >140-199
mg/dL) [34]. To date, only one adult study has used robust measures of risk factors for type
2 diabetes [28], which includes whole-body insulin sensitivity (S;) and p-cell function from
a frequently sampled intravenous glucose tolerance test (FSIVGTT) with minimal modeling
[35]. This study found that short-term ambient exposure to PM, 5 and NO5 (two-months and
up to 37 days prior to testing, respectively) was associated with lower S; among the 1,023
Mexican-American previously described [28]. Results from this study were robust to multi-
pollutant models and further indicated that PM, 5 may have a larger effect on insulin
resistance among those with increased obesity [28]. Although this study found strong inverse
associations between ambient pollutants and S, exposure to PM, 5 and NO, was not
associated with B-cell function. Overall, results from these studies suggest that increased
exposure to ambient and traffic-related air pollutants have adverse effects on altered glucose
metabolism through insulin-dependent pathways.

Numerous studies have shown that increased exposure to air pollutants is associated with
measures of type 2 diabetes risk, yet it remains uncertain as to whether these associations are
independent of pre-existing states of metabolic dysfunction in susceptible populations. Four
recent studies examined this question by conducting stratified analyses based on metabolic
health [11,31-33] or restricting to a population of participants with metabolic syndrome
(MetS), which is a constellation of metabolic complications associated with insulin
resistance [29]. In one of the largest studies of this kind, researchers examined 73,117 adults
in southern Israel. Results from this study found that average three-month concentrations of
PM 0, but not one- to seven-day exposure, was associated with increased fasting glucose
levels and HbA1c. Positive associations were observed amongst all participants; however,
the strongest association was present in diabetic patients where an interquartile range
increase in PMyg (20 pg/m3) and PM, 5 (7 pg/mS3) was associated with a 3.6% and 2.9%
increase in HbAlc, respectively [31]. A German cohort study examined associations
between an array of pollutants (e.g., PM1g, PM5 5, NO5, NO,) in 2,944 participants who did
not have diabetes, had prediabetes (impaired fasting glucose: =100-125 mg/dL or impaired
glucose tolerance), or had diabetes. Among all participants, PMcoarse (PM2.5.10), PM1g,
PMs 5, NO,, and NOy were each associated with HOMA-IR and fasting insulin levels. In a
stratified analysis, the effect sizes for these pollutants were much larger and highly
statistically significant among those with prediabetes compared to those who were normal in
fasting glucose concentrations [32]. Further, no associations were observed between air
pollutants and HbA1c levels, and only increased PM> 5 and NO, exposure were modestly
associated with higher fasting glucose levels among all participants [32]. In another study,
prior 3-month NO, exposure was associated with fasting glucose levels among 131,882
adults, yet the effect sizes of these associations differed by glycemic status. For example, a
6.4 ppb (parts per billion) increase in NO, exposure (2472 hours prior to testing) was
associated with a 0.4%, 0.6%, and 1.1% increase in fasting glucose levels among those with
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normal glucose, impaired fasting glucose, and diabetes, respectively [33]. In a large cohort
of 4,121 older United Sates (U.S.) adults, 2-5 year moving averages of PM> 5 and NO,
exposure was associated with higher HbAlc levels in diabetic participants, while only NO,
was significantly associated with HbAlc in non-diabetic participants [11]. Additionally,
significant dose response relationships were identified for both pollutants in diabetic
participants and only for NO, in non-diabetic participants [11]. Finally, in 65 nonsmoking
adults with MetS from Beijing, four- and five-day exposure lags to exposure to ambient
PM, 5 were significantly associated with an increased HOMA-IR. Specifically, a one-
standard deviation (SD) increase in PM, 5 (67.2 pg/m3) exposure that was estimated from
urban and local monitor sites was associated with a 0.22 unit increase in HOMA-IR [29].
Results from these studies suggest that individuals with underlying type 2 diabetes risk may
be more susceptible to air pollution exposure by exacerbating insulin resistance and/or
impairing insulin signaling. However, additional studies are needed in order to determine
how such exposures impact whole body S; and B-cell function among susceptible
populations. Despite this, associations between increased air pollution exposure and
metabolic dysfunction have been observed in healthy populations, suggesting that air
pollutants play an important role in type 2 diabetes development and progression.

Recent literature suggests that increased exposure to air pollutants negatively alters glucose
metabolism. However, such cross-sectional studies are limited in that they are unable to
determine causality. As such, longitudinal and intervention studies provide additional
evidence, suggesting a causal role of air pollutants in type 2 diabetes. For example, four
recent longitudinal studies [16,36—38] and one intervention study [39] found that PM4g and
NO, exposures negatively impacted metabolic health, including fasting glucose and MetS.
In 27,685 Chinese adults, associations between 4-day average PM1g and NO» exposure with
fasting glucose levels were examined over four years of follow-up. This study found that a
100 pg/m3 increase in PM1g and NO, was associated with 1.98 mg/dL and 9.6 mg/dL
increase in fasting glucose levels, respectively. Furthermore, the effects of air pollutants on
fasting glucose levels were stronger in females, the elderly, and overweight participants [36].
Amongst 3,769 participants, the Swiss Cohort Study on Air Pollution and Lung and Heart
Diseases in Adults revealed that per every 10 p/m3 increase in 10-year mean PM; the odds
for developing MetS increased between 18-72% depending on the MetS definition.
Interestingly, amongst all the MetS components these associations appeared to be driven by
impaired fasting glucose [16]. Another study followed 551 nondiabetic US adults for a
median of 2 years and found that an interquartile range increase in 1-, 7-, and 28-day PM> 5
exposure was associated with 0.6 mg/dL, 1.0 mg/dL, and 0.9 mg/dL higher fasting glucose
level, respectively. The same PM 5 exposures were associated with 13%, 27%, and 32%
higher odds of impaired fasting glucose respectively [37]. The same group of researchers
investigated 587 men with visits every 3—7 years (average number of visits: 2) in an effort to
examine associations between PM, 5 and MetS as well as its components. This study found
that a 1-pg/m? increase in mean annual PM, 5 concentrations were associated with a 1.1
times higher risk of developing MetS and a 1.2 times higher risk of having an elevated
fasting blood glucose level (defined as =100 mg/dL or medication to treat elevated blood
glucose) [38]. Notably, an intervention study among 25 healthy adults in rural Michigan
found that a 10 ug/m3 increase in sub-acute PM, 5 exposure for 5 consecutive days (with 4-5
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hours/day of ambient exposures in an urban environment) was associated with increased
HOMA-IR [39]. Results from these studies provide strong evidence that PM5 5 and NO,
exposures contribute to glucose dysregulation.

Air pollution and metabolic dysfunction among children

Meanwhile, early onset type 2 diabetes in children and youth is increasingly prevalent [40]
with a heightened risk of microvascular and macrovascular complications in adult life [41].
There has been a growing body of evidence linking ambient and traffic-related air pollution
exposures with metabolic dysfunction in children (Table 3). Of these, three cross-sectional
studies found that increased exposure to ambient and traffic-related air pollution was
associated with higher fasting insulin levels and higher HOMA-IR [42-44]. For example,
among 837 adolescents from Germany, average prior year exposure to PMjg and NO, was
associated with increased HOMA-IR where a 2-SD increase in PMyq (6.7 pg/m3) and NO,
(8.9 pg/m3) were each associated with 11.4% higher HOMA-IR. Interestingly, in a multi-
pollutant model including PM, 5 and NO», only NO, exposure remained significantly
associated with HOMA-IR [42]. In an earlier study in 397 German children, the same group
found that HOMA-IR increased by 17.0% and 18.7% for every 2-SD increase in ambient
NO, (6 pg/m3) and PMyq (3.7 pg/m3) exposure, respectively. Additionally, proximity to the
nearest major road increased HOMA-IR by 7.2% per 500 meters [44]. The third cross-
sectional study examined 54 children from the Mexico City Metropolitan Area (MCMA)
and compared them to 26 controls matched on age, sex, weight, height, BMI, and
socioeconomic status. Importantly, this control group lived in areas of Mexico with air
pollution levels at or below air quality attainment levels. Compared to control children,
MCMA children had higher fasting glucose levels but did not differ in fasting insulin levels
or HOMA-IR [43]. Lastly, intervention studies provide additional evidence that air
pollutants have negative effects on glucose homeostasis. For example, a clinical intervention
study of 75 obese adolescents examined the metabolic benefits of laparoscopic adjustable
gastric banding in the context of exposure to air pollutants. This study found that increased
exposure to PM5 5 and NO, attenuated the magnitude of HbAlc reduction, a known
metabolic benefit of gastric banding [45]. As such, studies in children indicate that exposure
to air pollutants may disrupt glucose homeostasis and/or hinder preventive methods to
improve glucose metabolism.

To our knowledge, only two studies in children have investigated the impact of increased air
pollution exposure using the FSIVGTT with minimal modeling in order to describe S;, acute
insulin response to glucose (AIRg), and B-cell function [46,47]. The first was a cross-
sectional study among 429 overweight and obese African American and Latino children
living in urban Los Angeles, California. This study found that higher prior year exposure to
ambient and traffic-related air pollutants was positively associated with adverse effects on
glucose metabolism independent of body fat percent. For example, a 1-SD increase in PMy 5
exposure (5.2 pg/m3) was associated with 25.0% higher fasting insulin, 8.3% lower S,
14.7% higher AIRg, and 1.7% higher fasting glucose. Similar associations were observed for
increased NO, exposure. Additionally, a 1-SD increase in traffic-related air pollution
exposure from non-freeway roads (4.8 ppb of NO,) was also associated with 12.1% higher
fasting insulin, 6.9% lower S, 10.8% higher AIRg, and 0.7% higher fasting glucose [46]. A
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recent longitudinal study built on this work by examining a cohort of 314 overweight and
obese Latino youth from urban Los Angeles, California that was followed for an average of
3.4 years [47]. Results from this study found that higher NO, and PM>, 5 exposure over
follow-up was associated with faster declines in Sy and p-cell function. As an example, a 1-
SD increase in NO, exposure (5 ppb) over follow-up was associated with a 13% lower S,
and 13% lower p-cell function at age 18 years [47]. Although these studies included only
overweight and obese minority youth, their results suggest that increased air pollution
exposure affects the underlying pathophysiology of type 2 diabetes, including insulin
resistance and B-cell dysfunction in children.

Mechanisms linking air pollution with metabolic dysfunction

While the exact mechanisms underlying the associations between increased air pollution
exposure and greater risk of type 2 diabetes remain uncertain, most hypothesized
mechanisms include inflammatory or oxidative-stress responses. Exposure-induced
inflammation in the lungs, may lead to spill-over of pro-inflammatory cytokines and
chemokines to other tissues [48-54] or it may trigger neuronal responses in the brain. Either
can cause a cascade of events that may lead to metabolic dysfunction. Additionally, PM
components such as transition metals and lipopolysaccharides may penetrate into the
systemic vasculature and/or activate toll-like receptors, [55] leading to increased
inflammation. Exposure to air pollutants may also alter basal metabolism, including
increased white adipose tissue accumulation relative to metabolically active brown adipose
tissue, [56,57] inhibition of lipolysis [58], and/or increased adipose tissue inflammation [59].
Finally, inhaled or ingested PM can result in intestinal inflammation and increasing
metabolic susceptibilities. These hypothesized mechanisms are largely derived from animal
studies and suggest that the effects of increased air pollution exposure on diabetes etiology
are complex and multifactorial.

Diabetes is characterized by an altered metabolism of key molecules and pathways that
regulate insulin sensitivity and glycemic control. Metabolomics studies [60] suggest that
exposure to air pollutants may alter these molecules and/or endogenous metabolites, which
may contribute to increased inflammation and diabetes development. In a cohort of cardiac
catheterization patients in the U.S. [61], researchers found that one-day lagged exposure to
PM, 5 and O3 was associated with changes in amino acid concentrations of the
glycineornithine-arginine metabolic axis, as well as increased levels of medium- and long-
chain acylcarnitines, which indicated the involvement of oxidative stress [62] and
mitochondrial dysfunction [63]. Another study in London [64] found that higher long-term
exposure to PM1g and PM, 5 was associated with lower levels of asparagine and glycine.
Interestingly, decreased glycine concentrations and increased levels of acylcarnitines have
been related with insulin resistance and increased risk of type 2 diabetes [63,65-67]. In
addition, a meta-analysis of targeted metabolomics across four cohorts in Germany [61]
suggested that higher lagged 5-day averaged exposure to PM, 5, NO,, and O3 were
associated with higher levels of lysophosphatidylcholines, which are associated with
oxidative stress and increased oxidation of LDL [68]. Finally, non-targeted metabolomics
studies of O3 suggest that acute (0-1 hour lagged) exposure can rapidly increase lipolysis
and incomplete fatty acid oxidation in rats and humans [69,70]. Evidence in rats also suggest
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that short- and long-term exposure to air pollutants, including PM, 5 and O3, can increase
lipid peroxidation and result in dyslipidemia and insulin resistance [69,71-73]. Overall,
metabolomic studies suggest that PM5 5, NO,, and O3 exposure may contribute to metabolic
dysfunction.

The neuroendocrine system may also play a role in air pollution-induced metabolic
dysfunction via central nervous system (CNS) activation and downstream effects on psycho-
behavioral pathways. A recent study in mice found that weight gain resulting from exposure
to diesel exhaust was paralleled by changes in neuro-inflammation and neuronal structure in
cognitive and emational brain areas, suggesting that air pollution exposure directly alters the
CNS [74]. It has also been shown that hunger and satiety signals interact with the
hypothalamus to regulate energy status, feeding behaviors, and metabolism [75]. Moreover,
air pollution may also act on the hypothalamus-pituitary-adrenal (HPA) system to alter the
hormonal stress response [76]. In rats, for example, it has been shown that acute O3
exposure induces the activation of nucleus tractus solitarius neurons through the vagal
nerves and promotes neuronal activation in stress-responsive regions of the CNS [77]. In
humans, acute O3 exposure resulted in increased serum corticosterone and cortisol as well as
lipid dysregulation [70]. These studies suggest Osz-induced effects on the stress response
through the CNS, which may ultimately affect metabolic regulation.

An emerging area of research suggests that increased exposure to air pollution may alter the
composition and/or function of the gut microbiome where particles may reach the intestine
through inhalation and diffusion from the lungs into systemic circulation or ingestion of
inhaled particles following mucociliary clearance from the airways [78-81]. For example,
studies in rodents have shown that ingestion of airborne sources of PM alter the gut
microbiome and increase intestinal inflammation [82-84]. Studies in mice also indicate that
exposure to PM alters resident bacteria, promotes intestinal inflammation, disrupts gut
barrier integrity, and increases gut bacterial translocation [81,84,85]. As such, exposure-
induced alterations in the gut microbiome may decrease gut barrier integrity, resulting in
increased gut bacterial translocation, and a chronic low-grade level of inflammation that has
been linked with insulin resistance and decreased glucose utilization [86-88]. Studies
examining associations between air pollution exposure and chronic intestinal disease further
support effects of air pollution on the gut [78]. One study found that adolescents who lived
in regions with greater NO, concentrations were more likely to be diagnosed with Crohn’s
disease [89] and when indicators of air pollution (NO,, PM> 5) were elevated, adolescents
and young adults visited emergency rooms more often for intestinal bowel disease-related
pain [90]. Recently, work in overweight and obese adolescents found that increased
exposure to traffic-related air pollutants was correlated with gut bacterial taxa and fasting
glucose levels, suggesting that exposure to air pollutants may contribute to metabolic
dysfunction through alterations in the gut microbiota [91]. Lastly, the gut and CNS have
strong connections via the gut-brain axis, which is comprised of multiple sensing and
signaling pathways that are thought to convey enteric signals to the brain. These signals can
be mediated by the composition of the gut microbiome through alterations in the HPA axis
in the form of gut hormones, through microbial-derived neurotransmitters, and/or gut
bacterial translocation that may result in increased levels of systemic inflammation and
increased risk of type 2 diabetes [92].
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Conclusions

Human and animal studies provide strong evidence that short- and long-term exposures to
ambient and traffic-related air pollutants, namely PM, NO,, NOy play a role in glucose
metabolism and type 2 diabetes etiology. This work is supported by recent findings that have
observed similar effect sizes for increased exposure to air pollutants on clinical measures of
risk for type 2 diabetes in children and adults. Emerging evidence also indicates that
exposure to air pollutants has stronger effects in susceptible populations, including females
and those with obesity and existing metabolic dysfunction. Despite recent advances in our
understanding of the effects of air pollution exposure on human health, few long-term
follow-up studies have examined the chronic and dynamic impacts of air pollution on
increased diabetes risk. Additionally, most recent epidemiological studies have relied on air
pollution exposure estimated from central monitors and/or model predictions. In order to
fully understand the mechanics linking air pollution exposure with risk for type 2 diabetes,
future studies should characterize the sources of air pollution exposure taking into account
the multipollutant nature of the mixture and its varying chemical composition and physical
properties that could lead to differential toxicity. Beyond these approaches, advanced tools
(e.g., metabolomics) and new areas of investigation such as the CNS and the microbiome
present distinct opportunities to generate additional evidence for causality by constructing
the potential biological pathways linking air pollution exposure with type 2 diabetes. In
summary, the strength of the current evidence linking air pollution exposure with metabolic
dysfunction and diabetes risk warrants broader thinking about including the environment in
the prevention and treatment of diabetes.
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