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The 2015/2016 El Niño event caused severe changes in precipitation across the

tropics. This impacted surface hydrology, such as river run-off and soil moisture

availability, thereby triggering reductions in gross primary production (GPP).

Many biosphere models lack the detailed hydrological component required

to accurately quantify anomalies in surface hydrology and GPP during

droughts in tropical regions. Here, we take the novel approach of coupling

the biosphere model SiBCASA with the advanced hydrological model PCR-

GLOBWB to attempt such a quantification across the Amazon basin during

the drought in 2015/2016. We calculate 30–40% reduced river discharge in

the Amazon starting in October 2015, lagging behind the precipitation anomaly

by approximately one month and in good agreement with river gauge obser-

vations. Soil moisture shows distinctly asymmetrical spatial anomalies with

large reductions across the north-eastern part of the basin, which persisted

into the following dry season. This added to drought stress in vegetation,

already present owing to vapour pressure deficits at the leaf, resulting in a

loss of GPP of 0.95 (0.69 to 1.20) PgC between October 2015 and March 2016

compared with the 2007–2014 average. Only 11% (10–12%) of the reduction

in GPP was found in the (wetter) north-western part of the basin, whereas the

north-eastern and southern regions were affected more strongly, with 56%

(54–56%) and 33% (31–33%) of the total, respectively. Uncertainty on this

anomaly mostly reflects the unknown rooting depths of vegetation.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.
1. Introduction
The tropical latitudes are covered by a large amount of the world’s vegetation

and have high carbon stocks both above- and below-ground [1]. These regions

therefore play an important role in the global carbon budget [2,3]. The carbon

uptake by tropical forests shows large interannual variability [4] and is one of

the main sources of uncertainty in climate models [5,6]. One driver of this varia-

bility is the occurrence of extended drought periods, during which low rainfall

leads to a decrease in soil moisture levels [7]. This limit on the water available to

vegetation can reduce transpiration and photosynthesis, further reducing the

water available for precipitation by atmospheric recycling [8–10].

The Amazon region has experienced severe droughts in recent years, includ-

ing in 2005 [11], 2010 [12] and the recent 2015/2016 El Niño period, which had

significant effects across the tropics, including the Amazon basin [13–15].
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Liu et al. [16] found that the annual mean precipitation during

the 2015/2016 drought was the lowest in 35 years and that the

annual mean precipitation was 3 s.d. lower in 2015 relative to

2011. Yang et al. [17] noted a significant decrease in river dis-

charge and signs of a hydrological drought in terrestrial

water storage during this latest El Niño event. Jiménez-

Muñoz et al. [15] suggested that the drought was limited to

the eastern Amazon basin after analysing ERA-Interim

precipitation observations, whereas Yang et al. [17] found

decreased precipitation across a much broader area from two

alternative precipitation datasets together with observations

of river discharge and terrestrial water storage. Both studies

confirm that the Amazon region experienced an intense

drought during the 2015/2016 El Niño period.

The response of the vegetation in the Amazon to droughts

leads to reductions in carbon uptake by the biosphere [11,17–

20] and an increase in emissions from fires [21–23]. During

the 2010 drought, there was a significant reduction in net eco-

system production (NEP) over the Amazon basin of 0.08 to

0.28 PgC yr21 compared with 2011 [18,24,25], which together

with increased fires (0.16 to 0.43 PgC yr21) strongly increased

carbon release to the atmosphere. Liu et al. [16] assessed the

drought impact in 2015/2016 and found that in the drought-

affected parts of the Amazon, NEP decreased by 0.9+0.24

PgC during 2015 compared with 2011. As was also seen

during the 2005 drought [26], the availability of more sunlight

during the drought led to an increase in ‘greenness’ during

2015 [17]. At the same time, sun-induced fluorescence (SIF), a

measure for photosynthetic activity, was significantly decreased

across the basin [17,27], indicating that photosynthesis can be

decoupled from canopy greenness. These studies demonstrate

that the response of tropical ecosystems to droughts is not

well understood and also varies between regions [28].

In this paper, we aim to quantify the impact of the 2015/

2016 El Niño period on the carbon uptake in the Amazon. We

aim to calculate the impact of reduced precipitation on sur-

face hydrology and soil moisture and subsequently on the

photosynthetic carbon uptake, the gross primary production

(GPP), across the full basin at high resolution. To estimate

the carbon exchange of the Amazon, we use the terrestrial

biosphere model SiBCASA, which is a combination of the

Simple Biosphere (SiB) model and the biogeochemistry of

the Carnegie–Ames–Stanford Approach (CASA) [29,30].

We couple SiBCASA to the hydrological model PCRaster

GLOBal Water Balance (PCR-GLOBWB) [31] to account for

one of the main limitations of the SiBCASA model, which

is the too low response to soil moisture stress [32,33]. This

is a known uncertainty in terrestrial biosphere models in

general and leads to large differences in their estimated

carbon cycle drought response [32,34]. Van der Laan-Luijkx

et al. [24] showed for the Amazon region that the default SiB-

CASA model did not see any effect on the net carbon uptake

during the major Amazon drought in 2010. In this paper, we

propose a new method to improve on this limitation by direct

coupling with the surface hydrology and soil moisture bal-

ance from our hydrological model. The use of these models

allows us to specifically assess the soil moisture stress

placed on the Amazon vegetation during the drought.

We first describe the SiBCASA and PCR-GLOBWB

models in §2. Subsequently, we describe the results on the

hydrological balance and the carbon balance of the

Amazon in §3, followed by a discussion of the results and

our conclusion.
2. Material and methods
(a) PCRaster GLOBal Water Balance
The global hydrological model PCR-GLOBWB 2 [31] simulates the

hydrology globally with a spatial resolution of 5 arcmin and a

daily time step. In this paper, we focus on the Amazon basin

specifically, while our simulations extend across most of the

South American continent and are used for validation (see elec-

tronic supplementary material). The model contains two soil

layers: an underlying groundwater layer, and snow and vegetation

canopy layers. Vertical interaction is possible between these layers,

but there is no direct horizontal exchange of water between the

different cells; excess surface or soil water is routed along a river

network using the kinematic wave method with a time step of

approximately 20 min. PCR-GLOBWB is parameterized on the

basis of existing global datasets and is not further calibrated to a

specific meteorological input product, to maintain the option to

independently assess various products.

(i) Meteorological forcing data
PCR-GLOBWB uses daily time series of precipitation, tempera-

ture and reference evaporation as meteorological drivers of

the model. Precipitation determines the input of water in the

hydrological system and is therefore one of the most important

drivers of the model and an important source of uncertainty in

hydrological modelling [35–37]. We have therefore used three

alternative precipitation datasets in our simulations. These are:

MSWEP (Multi-Source Weighted-Ensemble Precipitation v. 2.1,

[38]), ERA5 (from the European Centre for Medium-range

Weather Forecasts (ECMWF) [39]) and Tropical Rainfall Measur-

ing Mission (TRMM) Multi-satellite Precipitation Analysis

(TMPA) 3B42 v. 7 [40]. We use these three simulations to deter-

mine the uncertainty range following from the choice of

precipitation input data. For the subsequent analysis, we have

selected the simulations with the MSWEP precipitation input

data, as they show the best comparison with independent dis-

charge observations between the simulations with the three

precipitation datasets (see §3). MSWEP also has the longest

time record, and includes actual precipitation observations,

which is not the case for TRMM or ERA5 [39,40].

We have used temperature and reference evaporation data

based on monthly data from the Climate Research Unit (CRU)

TS dataset downscaled to daily values [41]. We have used

v. 3.2 for the period before 2010 and v. 4.01 for 2010–2016.

The downscaling procedure for the data before 2010 is described

in Sutanudjaja et al. [31]. In the period after 2010, the daily var-

iance of the ERA5 temperature and reference evaporation is

added to the CRU TS monthly means.

(ii) Validation
We compared the monthly results of PCR-GLOBWB with dis-

charge measurements from the Global Runoff Data Centre [42]

and the HYBAM dataset (www.ore-hybam.org). We extended

the validation of PCR-GLOBWB presented in Sutanudjaja et al.
[31] by validating our results with observations from 360 stations

across the Amazon for recent years (see figure 1b for their

locations). We have calculated the Kling–Gupta Efficiency

(KGE) score for each station, which is a standard measure of per-

formance in hydrological modelling and equally measures

timing and amplitude differences and model bias. It returns a

single score from –1 to 1, where 1 is a perfect match and nega-

tive values indicate poor model performance [43,44]. Further

details of the model set-up and results of the validation can be

found in the electronic supplementary material. We also compare

our results with the terrestrial water storage from GRACE [45]

from the JPL-RL05M mascon product by the Jet Propulsion

Laboratory (JPL).

http://www.ore-hybam.org
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Figure 1. (a) Mean monthly discharge over the Amazon basin as simulated with PCR-GLOBWB with MSWEP precipitation. (b) KGE (see Material and methods for
explanation) model skill scores of the PCR-GLOBWB – MSWEP simulation for discharge stations across the Amazon basin (þ1 indicates the highest skill score);
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(b) SiBCASA
The biosphere model SiBCASA combines the photosynthesis

parameterizations of the SiB [46] model with the biogeochemis-

try of the Carnegie–Ames–Stanford Approach (CASA) [47].

SiBCASA has been separately described and validated with

flux measurements [29], extended with 13C isotope kinetics and

compared with other biosphere models [30] and used to investi-

gate soil moisture limitations [33] as well as changes in water-use

efficiency [32]. It explicitly differentiates between C3 and C4 veg-

etation following the enzyme kinetics of Farquhar et al. [48] (C3)

and Collatz et al. [49] (C4), and plant photosynthesis follows the

Ball–Berry–Woodrow stomatal conductance model [50]. SiB-

CASA calculates the exchange of water, carbon and energy at a

10 min time step. We use SiBCASA here to specifically assess its

tropical drought response, which so far has only been investigated

within the SiB component of the model [51,52]. The default

SiBCASA model as used in the previous publications cited

uses meteorological driver data from the ECMWF ERA-Interim

reanalysis [53].

In this work, we improve SiBCASA in two ways: (i) by

supplying it with the precipitation product MSWEP which,

with PCR-GLOBWB, best reproduces the surface hydrology of

the Amazon basin and (ii) by supplying SiBCASA directly with

the soil moisture saturation fraction produced by PCR-

GLOBWB each day at midnight. PCR-GLOBWB accounts for

the run-off and has an improved infiltration scheme. SiBCASA,

like several terrestrial biosphere models, simulates the exchange

using point simulations, and has a high infiltration capacity

and therefore does not account for run-off.

SiBCASA contains 25 soil layers that get progressively larger

downwards, with a top layer of 0.02 m and a bottom layer of 3 m,

totalling 15 m. To translate soil moisture from PCR-GLOBWB

into SiBCASA, we note that PCR-GLOBWB has two distinct

layers: 0–0.3 m depth and 0.3–1.5 m depth, which roughly corre-

spond to the first seven SiBCASA soil layers (0–0.28 m) and
layers 8–14 (0.28–1.48 m), respectively. Daily PCR-GLOBWB

soil moisture saturation fraction fields are spatially averaged to

1�18 resolution to match the resolution in SiBCASA, and these

fields are used to adjust SiBCASA’s soil moisture in the

mentioned layers accordingly.

Electronic supplementary material, §A.7 summarizes the inter-

action of soil moisture with GPP in SiBCASA. Briefly, soil moisture

stress is calculated based on the availability of moisture between

wilting point and field capacity, and the presence of roots at each

depth of the soil. Limited availability of soil moisture leads to (i)

reduced carboxylation capacity Vm, (ii) reduced canopy respiration

Rd, (iii) a lowering of the mesophyll conductance (gm) and (iv) a

lowering of the minimal stomatal conductance (gs, see electronic

supplementary material, equation A.6). Vm subsequently impacts

two of the three assimilation rates in the Farquhar et al. photosyn-

thesis model: limitations due to Rubisco enzymatic conversion

(vc, electronic supplementary material, equation A.1) and due to

the export capacity for photosynthates (vs, electronic supplemen-

tary material, equation A.3). The third limiting rate (due to light

availability, ve, electronic supplementary material, equation A.2)

is not affected by soil moisture stress but, like the others, does

respond to heat stress that occurs typically during midday.

All three rates are further reduced when atmospheric relative

humidity decreases (reduced gs, electronic supplementary material,

equation A.6), with the lowest assimilation rate (i.e. most limiting,

electronic supplementary material, equation A.5) determining

simulated GPP.

In this paper, we compare the results from our default

SiBCASA simulations (using ERA-Interim precipitation) with the

simulations with MSWEP precipitation, and with the coupled SiB-

CASA–PCR-GLOBWB system. Additionally, we have created a set

of three alternative model realizations with different rooting

depths for the plant functional type ‘Evergreen Broadleaf Forest’

(EBF) of 2, 3 and 5 m, recognizing that the soil moisture stress is

highly sensitive to this largely unknown parameter. SiBCASA
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prescribes the rooting density as an exponential function from the

surface down to this rooting depth, but any layer with roots pre-

sent can access soil moisture if available. The values chosen

represent the limit of the GPP response, which grows excessively

large below 2 m but does not decrease much further above 5 m

rooting depth. We use the coupled model with SiBCASA’s default

rooting depth (3 m) as our main result, and use the range of values

with different rooting depths as an uncertainty in the GPP num-

bers. Further details on model spin-up and set-up are provided

in the electronic supplementary material.

(c) Region definitions
In our analysis, we present our results by aggregated regions within

the Legal Amazon (following Gatti et al. [18] and Van der Laan-

Luijkx et al. [24]). The mask file for the Legal Amazon region can

be obtained at: https://doi.org/10.18160/P1HW-0PJ6. The sub-

regions are defined based on Köppen–Geiger climate zones [54].

Regions A and B are evergreen forests, with continuously high

precipitation or seasonally dry conditions, respectively. Region C

has more savannah vegetation, and a strong seasonality in

precipitation, and is known as the Brazilian ‘cerrado’.
3. Results
In this section, we first analyse the effects of the 2015–2016 El

Niño period on precipitation, discharge and soil moisture in

the Amazon region using PCR-GLOBWB (§3a), and we

subsequently examine the resulting changes in the Amazon

carbon balance using the SiBCASA model coupled with

PCR-GLOBWB for the soil moisture fields (§3b).

(a) Impacts on the hydrological balance
The discharge of the South American river systems as calcu-

lated by PCR-GLOBWB is shown in figure 1a. The main rivers

are clearly visible: the Orinoco in the north, the Amazon and

its tributaries in the centre, and the Paraña in the south. Feeding

into these big rivers are countless smaller streams and rivers.

We have used observations from 360 stations to perform an

extension of the validation of PCR-GLOBWB presented in

Sutanudjaja et al. [31] with more recent discharge data and a

focus on the Amazon basin. The locations of the stations are

included in figure 1b, indicating their respective KGE scores

(see §2), which confirm that PCR-GLOBWB performs well

across the Amazon. Figure 1 also highlights the results at two

observation stations: Obidos at the main stem of the Amazon

river (figure 1c) and Caracarai in the northern part of the
basin (figure 1d). Obidos is reasonably well reproduced

(KGE¼ 0.53), especially with MSWEP precipitation, although

the peaks arrive early and are slightly too high. Caracarai is

well simulated, with skill scores well above the average for all

basins (KGE¼ 0.83).

In September 2015, the monthly precipitation drops to

40–50% below the climatology (average over 2000–2014),

maintaining dry season conditions (defined as less than 100

mm precipitation in 30 days) for a month longer than average.

Figure 2a shows that the Amazon received 220–390 mm

(13–22%) less rain between September 2015 and May 2016,

leading to reductions of the simulated total water storage

(TWS, figure 2b). The TWS is significantly higher than the

climatology at the start of 2015, but decreases rapidly when

the precipitation anomaly starts in September. The TWS

remains significantly low until June 2016 and stays below the

climatological average until September, a whole year after the

start of the anomaly. River discharge is 40% lower than average

across the basin between December 2015 and February 2016,

and remains 10–20% below average until July 2016, much

beyond the persistence of the precipitation anomaly. River

discharge at Obidos—the final measurement station of the

Amazon river and thus the aggregation of all the run-off in

the Amazon basin—was 1100 km3 lower than average over

the October–April period, which is a reduction of 25%

(figure 2c). This corresponds to 230 mm less run-off for each

square metre of the Obidos catchment, which is comparable

to the precipitation reduction described above.

Figure 3a shows the spatial distribution of the anomalies in

the monthly soil moisture availability in the first 1.5 m soil

depth across the Amazon basin. The soil moisture becomes

significantly low in October 2015 and increases to a peak in

both area and strength in December 2015/January 2016. During

this period, 75% of all simulated gridcells in the Amazon basin

have a negative soil moisture anomaly with an average reduction

of almost 30%. The largest reductions occur in the eastern part of

the basin (.0.3 m less water available than average in the top 1.5

m), but the western part of the basin is also significantly anoma-

lous. The soil moisture storage begins to recover in February 2016,

but especially in the north-eastern part the recovery takes longer,

and the basin average does not return to the climatological

average until September 2016.

(b) Impact on the gross primary production
The 2015–2016 El Niño reduced GPP across the whole Amazon

basin, integrating to a 20.95 PgC of GPP anomaly over the
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Figure 3. Soil moisture anomalies (in m) per month as calculated by PCR-GLOBWB for the first 1.5 m of the soil profile over the Amazon basin for October 2015 – March
2016 in comparison with the climatology over 2000 – 2014 (a), and GPP anomalies (in %) per month in comparison with the climatology over 2009 – 2014 (b).

Table 1. Changes in GPP (PgC) during the El Niño period in comparison with the baseline years 2007 – 2014. Values are derived for the whole Amazon basin and
by the region. Results from the coupled SiBCASA – PCR-GLOBWB simulations are compared with the default SiBCASA run, which uses ERA-Interim meteorology
and no coupling to the PCR-GLOBWB soil moisture. Ranges in parentheses result from different rooting depths in the model, as discussed in the main text.

SiBCASA-default ([55])
SiBCASA – PCR (this work)

region Oct – Mar 2015/2016 Oct – Mar 2015/2016 Oct – Dec 2015 Jan – Mar 2016

Amazon

(Legal)

20.18 20.95 (21.20 to 20.69) 20.53 (20.73 to 20.37) 20.42 (20.47 to 20.32)

Region A

(EBF-wet)

þ0.04 20.10 (20.14 to 20.07) 20.05 (20.06 to 20.03) 20.06 (20.08 to 20.04)

Region B

(EBF-s.dry)

20.14 20.52 (20.66 to 20.37) 20.28 (20.39 to 20.19) 20.24 (20.28 to 20.18)

Region C

(EBF-sav.)

20.07 20.30 (20.37 to 20.23) 20.19 (20.26 to 20.14) 20.11 (20.11 to 20.09)
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six-month period from October 2015 to March 2016 (table 1).

This number has an uncertainty range of nearly 0.5 PgC

(21.20 to 20.69), which is calculated from alternative model

realizations with different rooting depths. Most of this

anomaly occurred in October to December 2015 (20.53

(20.73 to 20.37) PgC), and the January to March anomaly

was slightly smaller (20.42 (20.47 to 20.32) PgC) in magni-

tude and uncertainty. Spatially, reductions were widespread

across the basin, with the eastern Amazon most strongly

impacted (figure 3b), correlating significantly (r ¼ 0.66, N ¼
2934, p , 0.001) with the soil moisture anomalies from figure

3a. This suggests a regionally strong impact of soil moisture

on GPP, as also seen in the large temporal correlations between

their anomalies (electronic supplementary material, figure

A.7): 40% of the domain shows correlation coefficients of

.0.5 (N ¼ 83783), but with a large difference between the

different climate zones.

Region B contributed most to the GPP reduction (20.52

(20.66 to 20.37) PgC), followed by Region C (20.30 (20.37

to 20.23) PgC), while contributions from Region A are small

(20.10 (20.14 to 20.07) PgC) (table 1). Region B is also the

first region to show GPP anomalies .1s in September 2015
(figure 4), when precipitation falls below 50% of its climatologi-

cal amount. Anomalies in precipitation in Region A are similar

in absolute amounts by then (40–60 mm), but precipitation

rates remain well above 100 mm month21 in this much wetter

region. The GPP anomaly of Region A does not exceed 5% of

the total during any time in the period August 2015 to February

2016, when precipitation returns to climatological averages.

Not only does the reduction in GPP of Region B start ear-

lier, but also GPP declines more rapidly to a peak anomaly of

219% in December 2015/January 2016. It furthermore

remains low until April 2016, one month after the precipi-

tation returns to normal amounts. GPP in Regions A and C

goes below 1s in October 2015, and the peak anomaly of

Region C (17% below average) occurs in December 2015.

GPP in Region C recovers to climatological values in February

2016 following a month of normal rainfall, but returns to

slightly below average even in the next dry season period in

2016. In total, the GPP anomaly across the Amazon basin is

20.95 (21.20 to 20.69) PgC during October 2015 to March

2016 compared with the 2007–2014 average.

So, what drives the reductions in GPP during the 2015/2016

El Niño period? To answer that question, we look at the
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different components that govern GPP: photosynthetically

active radiation (PAR), Vm, humidity stress, soil moisture

stress (b), heat stress, gm and gs. Their influence on the three lim-

iting assimilation rates (ve, vc and vs) in the Farquhar et al. [48]

photosynthesis model used in SiBCASA is briefly summarized

in the electronic supplementary material, section A.7, and fully

documented in Sellers et al. [46] and Suits et al. [56]. Figure 5

shows their change from climatological values over an average

diurnal cycle in the month of January 2016 for a representatively

selected grid box in Region B (the location of which is shown in

figure 1a). Clearly, the GPP anomaly that we observe in our

results is incurred during the daily peak of photosynthesis,

with values between 10:00 and 16:00 most strongly reduced by

up to 7 mmol m22 s21 (.50%). This is the period of the day

that vc limits GPP (figure 5b) and thus the enhancement of light-

limited GPP (ve) due to the availability of extra PAR during Jan-

uary 2016 does not lead to increased GPP. Instead, we find that

the GPP reduction from climatology is strongly controlled by

(i) humidity stress, which reduces stomatal conductance

(figure 5c), and (ii) soil moisture stress and heat stress, which

reduce the maximum carboxylation rate Vmax and mesophyll

conductance (not shown). The reduction in Vmax causes a

reduction of the Rubisco-limited assimilation rate (vc) by up

to 6 mmol m22 s21, which, when multiplied with the fraction

of absorbed PAR (approx. 0.5), accounts for as much as 40%

of the total daily GPP reduction during this month. The total

reduction in GPP combines effects (i) and (ii), balancing

lowered assimilation rates with lowered gs and gm.

By March 2016, the picture shown in figure 5 has changed

(see electronic supplementary material, figure A.8). Although

the carboxylation rate and gm are still reduced owing to
continuing anomalous soil moisture stress at this location, the

heat and relative humidity stress follow the return to near-

normal conditions in the atmosphere, as also indicated by

the potential evapotranspiration (electronic supplementary

material, figure A.11). In this regime, diurnally declining gs

and increasing heat stress still play an important role in shaping

GPP, but their values are now much closer to the climato-

logical 1s variability. What remains is a small GPP anomaly

(2 mmol m22 s21), attributable to the reduced gm and vc as

Rubisco-enzyme activity still suffers from low soil moisture

levels. All anomalies have disappeared by April 2016 (see

electronic supplementary material, figure A.9).
4. Discussion
An important source of uncertainty in simulating tropical

surface hydrology and carbon cycling is the availability of

water from precipitation. Various precipitation datasets are

available, each with its own strengths and weaknesses in tropi-

cal regions. In a comparison by Sun et al. [57], datasets that

included surface gauge observations tended to perform

better than satellite-based datasets, while meteorological

reanalyses ‘show great inconsistency in their annual precipi-

tation amounts’. In this work, we used one of each type of

dataset (ERA5, TRMM, MSWEP) and first assessed them

against discharge data specifically in our region of interest, pro-

viding a solid base for our investigation of carbon cycle

impacts. Our final choice of precipitation driver dataset for

PCR-GLOBWB (MSWEP) falls in the middle of the range for

annual precipitation, but is still substantially lower than

ERA-Interim, which suffers from too high rainfall in South

America, like most reanalysis products [57].

Replacing the ERA-Interim precipitation with MSWEP

values already triggers more drought stress and GPP

reductions in SiBCASA, even before replacing its soil moisture

with that from PCR-GLOBWB. We find GPP reductions of

0.73 PgC for the Amazon when using the soil moisture from

SiBCASA that results from MSWEP precipitation (electronic

supplementary material, table A.1). This number is the same

as when using ERA-Interim precipitation and PCR-

GLOBWB soil moisture (0.73 PgC), suggesting that the largest

effect indeed is from the lower precipitation amount of

MSWEP. The combined use of PCR-GLOBWB soil moisture

and MSWEP precipitation makes the anomaly even larger

(0.95 PgC), because precipitation also affects the relative

humidity of SiBCASA’s canopy. PCR-GLOBWB soil moisture

also has different spatial patterns compared with the soil

moisture resulting from SiBCASA and MSWEP precipitation.

We furthermore note that the latter combination cannot be

validated with discharge observations, and it is only through

the use of PCR-GLOBWB that we could increase our faith in

the MSWEP product as a driver for this study.

We report a 20.95 (21.20 to 20.69) PgC anomaly in GPP

over the period October 2015 to March 2016, due to the drought

conditions during the El Niño period. Outside this window,

anomalies are small, and integrating over different time

periods such as the year 2015 (20.72 (20.99 to 20.50) PgC),

or the period September 2015 to June 2016 (20.97 (21.25 to

20.70) PgC), does not change this anomaly much. Our

number is therefore in a similar range compared with other

studies. Liu et al. [16] report a 0.9 PgC reduction of GPP over

tropical South America in 2015, relative to the year 2011 and
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integrated over a nearly 40% larger area than we report on here.

Gloor et al. [58] report a 0.9 PgC reduction of GPP based on

GoSAT SIF data and over the three-month period October to

December 2015 only, but their integration area is also larger

and includes some strong GPP anomalies just outside the

Legal Amazon mask. Our estimate of GPP reduction during

the peak of the El Niño period (October–December 2015) of

0.53 (0.37 to 0.73) PgC also agrees reasonably well with an inde-

pendently derived estimate using SIF. Koren et al. [27] report a

reduction of 0.34 to 0.48 PgC for the same period and region,

and the spatiotemporal patterns also correspond well even

though our calculations are completely independent of this

space-based view of GPP.

We find that the reduction of GPP is accompanied by a

reduction in respiration (R) in SiBCASA, such that net ecosys-

tem production (NEP¼ GPP 2 Rautotrophic 2 Rheterotrophic)

gives an additional release of carbon across the Amazon of

0.32 (0.20 to 0.45) PgC over the six months considered here.

This is in line with atmospheric CO2-based estimates of Gloor

et al. [58] (0.5 PgC over 10 months), but different from those

of Liu et al. [16], who found a total 0.9 PgC anomaly in net

biome exchange (NEPþfire losses), equal to their total GPP

anomaly as CO2 release from fires and respiration changed

only little in their analysis. We note though that translation of

a GPP anomaly to NEP involves assumptions on the partition-

ing of GPP into net primary production (NPP) and of NPP into

the different carbon pools that respire at different rates. If we

allowed NPP allocation patterns to change during droughts

as was found by Doughty et al. [59], or if we would allow

carbon-use efficiency (NPP/(NPP þ Ra)) to decrease as was

found by Metcalfe et al. [60], it could substantially change the

NEP anomaly calculated with SiBCASA.

Our results confirm that rooting depth is a highly uncertain

but influential parameter in the drought response of GPP

[61–65]. We used rooting depths between 2 and 5 m and this

resulted in a nearly 0.5 PgC range in the GPP anomaly, while

further increases of the rooting depth have little further effect

(not shown). The rooting depth in SiBCASA is prescribed per

plant functional type (PFT) and does not change over time,

while PFTs are based on the dominant vegetation type per

1 � 18 gridbox, which is ‘Evergreen Broadleaf Forest’ over

much of the domain (66%) considered. SiBCASA thus contains

very little spatial differentiation in its rooting depth, and veg-

etation is assumed to have access to all available water across

this depth. By contrast, PCR-GLOBWB includes up to six
different vegetation classes per 1 km2 to prescribe the rooting

depth and also includes the root density profile to determine

how much soil water can be accessed for transpiration [66]. A

recently released rooting depth estimate [67], as well as earlier

studies [51,52], suggests that especially the seasonally dry rain-

forest that falls within our Region B generally has deeper roots

(.10 m) than the rainforest in our Region A—much deeper

than prescribed in this work. This part of the forest would

therefore be less affected by changes in soil moisture in the

upper layers, and including such regional details in SiBCASA

could decrease our estimated GPP anomaly for Region

B. Improving our knowledge on the access to soil moisture by

vegetation might therefore constitute a next challenge for the

Amazon region.
5. Conclusion
We show that GPP in the Amazon reduced by 0.95 (0.69 to 1.20)

PgC during the 2015/2016 El Niño period compared with the

2007–2014 average, with the reduction during October–

December 2015 totalling 0.53 (0.37 to 0.73) PgC. There were sig-

nificant differences between subregions: the north-western

region is least affected by the drought (11% (10–12%) of the

Amazon total anomaly), whereas the eastern and southern

regions experience strong reductions in GPP (56% (54–56%)

and 33% (31–33%), respectively). In the southern region,

which has the most pronounced dry season and more savan-

nah vegetation, the reduction is caused by a combination of

higher than normal vapour pressure deficit and soil moisture

stress. The latter contributes even more to the GPP decrease

in the eastern seasonally dry tropical forest region, where we

illustrated the mechanism of GPP reduction in great detail.

We note that the influence of assumed rooting depth on the cal-

culated anomalies is large and could especially have affected

our simulations for Region B.

Confidence in our simulated soil moisture comes from the

hydrological model PCR-GLOBWB in combination with

MSWEP precipitation, which simulates the discharge in the

Amazon region well in comparison with observations at

many stations across the basin. Soil moisture stress during the

El Niño period extended across the entire region and persisted

especially long in the north-eastern part of the Amazon. Imple-

menting this soil moisture stress in SiBCASA to replace the

default parameterization, and/or using the MSWEP
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precipitation dataset that we validated with PCR-GLOBWB,

significantly enhances the estimated reductions in GPP.
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