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Extreme droughts have been recurrent in the Amazon over the past decades,

causing socio-economic and environmental impacts. Here, we investigate the

vulnerability of Amazonian forests, both undisturbed and human-

modified, to repeated droughts. We defined vulnerability as a measure of (i)

exposure, which is the degree to which these ecosystems were exposed to

droughts, and (ii) its sensitivity, measured as the degree to which the drought

has affected remote sensing-derived forest greenness. The exposure was calcu-

lated by assessing the meteorological drought, using the standardized

precipitation index (SPI) and the maximum cumulative water deficit

(MCWD), which is related to vegetation water stress, from 1981 to 2016. The

sensitivity was assessed based on the enhanced vegetation index anomalies

(AEVI), derived from the newly available Moderate Resolution Imaging Spec-

troradiometer (MODIS)/Multi-Angle Implementation of Atmospheric

Correction algorithm (MAIAC) product, from 2003 to 2016, which is indicative

of forest’s photosynthetic capacity. We estimated that 46% of the Brazilian

Amazon biome was under severe to extreme drought in 2015/2016 as

measured by the SPI, compared with 16% and 8% for the 2009/2010 and

2004/2005 droughts, respectively. The most recent drought (2015/2016)

affected the largest area since the drought of 1981. Droughts tend to increase

the variance of the photosynthetic capacity of Amazonian forests as based

on the minimum and maximum AEVI analysis. However, the area showing

a reduction in photosynthetic capacity prevails in the signal, reaching more

than 400 000 km2 of forests, four orders of magnitude larger than areas with

AEVI enhancement. Moreover, the intensity of the negative AEVI steadily

increased from 2005 to 2016. These results indicate that during the analysed

period drought impacts were being exacerbated through time. Forests in the

twenty-first century are becoming more vulnerable to droughts, with larger

areas intensively and negatively responding to water shortage in the region.

This article is part of a discussion meeting issue ‘The impact of the 2015/

2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms

and implications’.

1. Introduction
The stability of the carbon cycle in Amazonia depends on the resistance and resi-

lience of these forests to the impacts of climatic extremes. The carbon sink of

Amazonian forests has been dampened during and after each drought, through

the decrease in photosynthesis and net primary productivity, the increase in tree

mortality from the direct drought effect and by the impact of understory fires
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[1–4]. Meanwhile, the Amazon is becoming an increasingly

human-modified forest system due to the continuous formation

of forests fragments and forest edges, as a cumulative conse-

quence of deforestation [5], the widespread occurrence of

illegal logging, wildfires and the increase in the area of

degraded and secondary forests. Worryingly, it is expected

that these human-related processes will continue to affect

the Amazon biome functioning in the future due to the

on-going land cover and climatic changes, especially in Brazil.

The gross impact of land cover dynamics on carbon emis-

sions can be partially compensated by the regrowth of

secondary forests in pasturelands and agricultural fields fol-

lowing abandonment [6]. Secondary forests grow at fast rates

and can accumulate in their biomass from 2.5 t C ha yr– 1 to

4.5 t C ha yr– 1 [7,8]. Ten-year-old forests are estimated to

hold between approximately 30 t C ha– 1 and 40 t C ha–1 in

their biomass, reaching up to about 130 t C ha21 after 20

years of regeneration [7,9,10]. Moreover, their net carbon

sequestration rates can be as high as 20 times the rate of undis-

turbed forests [11]. Despite the potential for carbon

sequestration by both degraded and secondary forests, their

ability to cope with extreme droughts is still unknown.

Droughts have been impacting Amazonian forests at a recur-

rence rate of approximately 5 years [12]. The first documented

widespread tree mortality event resulting from a drought was

for the 2005 drought [13,14]. The 2005 drought caused persistent

impacts on forest canopy, lasting for at least 4–5 years after the

event [15]. Similarly, the 2010 drought has negatively affected

tree growth rates in Amazonia [16]. However, there is a lack

of extensive on-the-ground evidence about the cumulative

effect of this drought in comparison to 2005. Biome-scale

drought impacts on vegetation became evident because of

recent advances in techniques for correction of atmospheric

and sun-sensor geometry effects, inherent of satellite data,

specifically the Multi-Angle Implementation of Atmospheric

Correction algorithm (MAIAC) [17] applied to the Moderate

Resolution Imaging Spectroradiometer (MODIS) data. The use

of MAIAC-corrected reflectance data has provided a consistent

evaluation of the widespread decrease in photosynthesis

during the 2005 and 2010 droughts [18–20]. These results

have been independently corroborated by using sun-induced

chlorophyll fluorescence data derived from the Greenhouse

gases Observing SATellite (GOSAT) and the Global Ozone

Monitoring Experiment-2 (GOME-2) satellite measurements

for the 2010 and 2015/16 droughts, respectively [21,22].

Field-based evidence has quantified a range of impacts of

droughts on Amazonia forest structure and functioning. How-

ever, there is still a lack of understanding of how these forests

respond to droughts spatially and temporally at a large spatial

scale. Using a suite of readily available satellite data able to

detect large-scale indicators of drought impacts on forests, in

this study, we investigate the vulnerability of Amazonian tro-

pical dense, degraded and secondary forests to droughts. Here

vulnerability is defined as a measure of (i) exposure, which is

the degree to which these ecosystems were exposed to

droughts, and (ii) sensitivity, measured as the degree to

which the drought has affected these forests [23]. The adaptive

capacity, the third element that contributes to the full evalu-

ation of the vulnerability, is discussed in this study based on

the results from (i) and (ii) and the existing literature.

Specifically, we first assessed the exposure of these forests

to extreme droughts by using two rainfall-derived indices, the

standardized precipitation index (SPI) and the maximum
cumulative water deficit (MCWD). Second, we assessed the

sensitivity of the photosynthetic capacity of Amazonian for-

ests to droughts by quantifying MODIS/MAIAC enhanced

vegetation index anomalies (AEVI), which represents the

deviation of EVI from the long-term mean value of the

time-series. As droughts are likely to affect forests differently

depending on the timing of the beginning of the dry season

and its duration in specific regions, in this study both rainfall

and vegetation indices were spatially stratified considering

the beginning and duration of the dry season [19]. Most of

the Amazonian drought impacts studies focus only on old-

growth forests. Here, we take the opportunity to further

explore the impacts on degraded and secondary forests.
2. Material and methods
Our study area encompasses the entire Brazilian Amazon biome,

within the limits of the Brazilian Legal Amazon (figure 1a). This

is a heterogeneous region, with different land uses and veg-

etation formations. The total forest cover in this biome was

estimated to be 3 494 643 km2 in 2016 considering dense,

degraded and secondary forests (MapBiomas, 2017; see http://

mapbiomas.org/pages/downloads).

(a) Rainfall data
We used the monthly precipitation data from the Climate Hazards

Group InfraRed Precipitation with Station data (CHIRPS; [24]).

CHIRPS is a relatively new rainfall product and is made available

at daily to seasonal time scales with a spatial resolution of 0.058,
starting from 1981 onwards. This dataset integrates satellite ima-

gery with in situ rain gauge station data to create gridded rainfall

time series. This dataset has a good performance in several regions

of the world [25–30]. For this study, we performed a validation of

CHIRPS data using 24 ground stations over Amazonia. We show

that the CHIRPS data explain 73% of the station data with a root

mean square error below 15 mm per month (electronic supplemen-

tary material, figure S1). The time series used for this research

covers the period spanning from January 1981 to December 2016.

To perform our analysis of exposure, we calculated two

metrics computed from the CHIRPS dataset: (i) the SPI represent-

ing the meteorological drought, and (ii) the MCWD, as a proxy for

the forest water stress.

The SPI is a drought index proposed by Mckee et al. [31] used to

quantify the probability of occurrence of a precipitation deficit at a

specific time scale. In this study, the time scale of 12 months was

considered. To calculate the SPI we fitted the precipitation data

to a gamma probability distribution function, and then used the

inverse normal distribution function to rescale the probability

values, resulting in SPI values with mean of zero and standard

deviation of one. Thus, dry events were represented by SPI

values falling below 21 for at least two consecutive months

[32,33]. The drought event ends when the SPI values return to posi-

tive values. Therefore, the SPI defines the beginning, end, severity

and intensity of the meteorological drought event. To define the

drought’s severity, the monthly SPI values were accumulated

from the first to the last month of the drought event by summing

the SPI values. The SPI scale for drought events is defined as: mod-

erately dry from 21.0 to 21.49; severely dry from 21.5 to 21.99

and extremely dry when values are lower than 22 [34].

The CWD was calculated at the pixel level for the entire time-

series, following the methodology proposed by Aragão et al. [35].

According to this study, the onset and duration of the dry season

months were determined by using the approximation that moist

tropical forests have a mean evapotranspiration (E) of 100 mm

per month [36–38] (equation (2.1)). Therefore, when the monthly

rainfall (P) for each month (n) is lower than this value, the forest

http://mapbiomas.org/pages/downloads
http://mapbiomas.org/pages/downloads
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Figure 1. Study area exhibiting the (a) stratification of regions according to the beginning and end (month in parenthesis) of the dry season: Feb, February; Mar,
March; Aug, August; Sep, September; Nov, November; Dec, December, (b) forest cover in the Brazilian Amazon biome for the year 2015, (c) Brazilian Amazon states.
The dry season length was defined based on the threshold of 100 mm rainfall per month.
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enters into water deficit (WD). The MCWD was calculated by

selecting the minimum value of the CWD reached for each pixel

within the year (i,j). The drought periods analysed were 2004/

2005, 2009/2010 and 2015/2016. The standardized anomalies (z-

score) of the MCWD (AMCWD) were calculated by subtracting

the mean MCWD climatology, covering from 1981 to 2016, and

dividing by the standard deviation. The anomalies were then

assessed based on their level of significance ( p , 0.05).

If WDn�1ði,jÞ–Eði,jÞ þ Pnði,jÞ , 0;
Then WDnði,jÞ ¼WDn�1ði,jÞ–Eði,jÞ þ Pnði,jÞ;
Else WDnði,jÞ ¼ 0:

9=
; ð2:1Þ

Therefore, droughts in this study correspond to a period of

abnormally low rainfall, considering SPI and MCWD anomalies.

The onset of the dry season was obtained from Moura et al. [19].

In their study, seven regions were identified. These regions pre-

sent different onsets of the dry season, varying from January to

September or no dry season (figure 1a). This dataset was used

to assess the temporal patterns of the rainfall deficit in each

region. Moreover, these regions were also used to assess the

impact of droughts on the vegetation by using the AEVI.
(b) MODIS data: enhanced vegetation index and land
surface temperature

The enhanced vegetation index (EVI) is a combination of the

reflectance (r) in red, blue and near-infrared (NIR) bands [39],

as in equation (2.2):

EVI ¼ 2:5
rNIR � rred

rNIR þ rred � 7:5 rblueþ1
: ð2:2Þ

The EVI has been consistently correlated with Amazonian

forests’ photosynthetic capacity and canopy structure [20,40–

43]. For this study, the MODIS multi-angle implementation of

atmospheric correction (MAIAC) EVI was used due to its

improved performance for monitoring drought impacts on

Amazonian forests [19,20,44].

In order to correct for sun-sensor-target geometry effects

inherent of the image acquisition process, the MODIS/

MAIAC daily surface reflectance with 1 km spatial resolution

[45,46] was normalized to an apparent view zenith angle of

08 (nadir-view) and a 458 solar zenith angle using a bidirec-

tional reflectance distribution function (BRDF) and Ross-Thick

Li-Sparse (RTLS) model [47]. The daily product was then aggre-

gated to 16-day composites using the median values in order to

create nearly cloud-free mosaics of the entire study area as well

as to reduce short-term noise [45,46]. The month of December

was excluded from all years of the analysis as more than 50%

of the study area presented no cloud-free data during this

month (electronic supplementary material, figure S2). We ana-

lysed data spanning from January 2003 to November 2016,
and monthly mosaics were generated by using the median of

the images within the month [19], filtering for noisy or no

data values.

The standardized EVI anomaly (AEVI) was calculated for

each month and for each year from 2003 to 2016, excluding the

years of 2005, 2010, 2015 and 2016. The monthly anomaly was

calculated by subtracting the month from its monthly average cli-

matology, and dividing it by the month standard deviation

climatology. In the literature, it has been shown that during

anomalous droughts, the EVI presents both greening and brown-

ing signals [19,22,48], although the area and location of the forest

affected varies depending on the data and methodology used.

Here, we attempted to go one step further and assessed how

these severe droughts affected the extremes of the EVI: minimum

and maximum. To obtain the annual AEVI, we first calculated

the minimum annual EVI, and the anomaly of the minimum

EVI. Then, we calculated the maximum annual EVI, and the

anomaly of the maximum annual EVI. Only significant

anomalies ( p , 0.05) were considered.

We first combined the AEVI with the land cover data

(description below) in order to calculate the forested area affected

by drought, according to the proportion of forest cover for each

1 km grid cell. Only pixels with 50% or more forest cover were

assessed. Then, we explored the annual patterns of the minimum

and maximum AEVI ( p , 0.05). To explore the interaction

between the AEVI and the MCWD, we estimated the median

and standard deviation of the minimum AEVI in the areas

affected by significant anomalous MCWD ( p , 0.05). In order

to investigate whether the recurrence of anomalous MCWD in

a given region is associated with a greater impact on the forest,

we calculated the median and standard deviation of the mini-

mum AEVI, stratified by the number of recurrences of

AMCWD. Finally, we explored the area of significant monthly

AEVI stratified by forest type.

To support the interpretation of the results and discussion,

we processed the land surface temperature (LST) derived from

the MODIS MOD11A2 v006 product. We specifically used the

8-days daytime 1 km spatial resolution LST. Monthly composites

were generated based on the mean LST value of all 8-days

images within the month, filtering for noisy or no data values

[49]. Then, the monthly anomalies were generated based on the

maximum positive temperature anomalies. Finally, the maxi-

mum annual anomalies were generated. In this way, only

abnormally high annual temperatures were captured.

All the analyses were carried out for the entire area and also

per region, according to the onset and end of the dry season

(figure 1).
(c) Vegetation types
Dense, degraded and secondary annual vegetation cover maps

were based on the MapBiomas product, v. 2.0 (MapBiomas,
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2017). The MapBiomas is a dataset that depicts annual land cover

and land use dynamics in the Brazilian biomes. We focused our

study uniquely on the Amazon biome. The dataset is based on

the classification of Landsat images, with 30 m spatial resolution.

Detailed information on the processing and validation of this

dataset is provided in the Algorithm Theoretical Base Document

and Result (MapBiomas, 2017). The overall accuracy of the maps

provided by the MapBiomas for the Amazon biome is 82.7%.

Among all land cover classes available in the product, we only

consider three classes: (i) dense, (ii) degraded and (iii) secondary

forests (figure 1b). In addition, a layer containing the sum of the

forest types was created, named total forest.

The annual MapBiomas dataset was resampled to 1 km

spatial resolution, by calculating the proportional coverage of

each forest type in each grid cell. Only cells with 50% or more

forest cover were analysed. The time series used covered the

period from 2003 to 2015. The forest cover for the year 2016

was assumed to be the same as the one available for the year

2015, as the dataset was not available. In 2015 the dense, second-

ary and degraded forests covered 84%, 0.36% and 0.33% of the

study area, respectively.
170411
3. Results
(a) Exposure of Amazonian forests to droughts
The SPI indicates that during the 2015/16 drought, approxi-

mately 46% of the Brazilian Amazon biome was subjected

to severe to extreme drought intensity levels, compared

with 16% and 8% for the 2009/10 and 2004/05 droughts,

respectively (figure 2a–c). While the 2004/05 and 2009/10

droughts had widely scattered spatial patterns of extremely

dry regions, the 2015/16 drought had its epicentre in central

Amazonia. The significant ( p , 0.05) AMCWD, on the other

hand, occurred over 14% and 10% of the study area during

the 2015 and 2016 drought, respectively, while in 2005 and

2010 droughts the affected areas were 6.12% and 9.16%,

respectively (electronic supplementary material, table S1).

From 1981 to 2016, some regions in the Amazon biome

have experienced up to five exposures to significant

AMCWD, mainly in central north and western parts (elec-

tronic supplementary material, figure S4), with more than 1

million km2 affected once, 973000 km2 affected twice, over

300000 km2 affected three times and 35 400 km2 and

1400 km2 affected four and five times, respectively.

Spatially, the AMCWD showed clustered spatial patterns

for the 2004/05, 2009/10 and 2015/16 droughts (see

electronic supplementary material, figure S3 for the entire

time-series AMCWD). The AMCWD epicentres of the

2004/05, 2009/10 and 2015/16 droughts were concentrated

in the western, south and central-north portions of the

Amazon biome, respectively (figure 2d–f ). It is interesting

to note that the north-western region, which has no dry

season, showed changes in rainfall as depicted by both SPI

and AMCWD metrics during 2009/10 and 2015/16. During

both periods (2009/10 ad 2015/16), negative SPI and

AMCWD metrics were also detected in the northern part of

the biome, in the state of Roraima.

The SPI stratified by region showed that in terms of dur-

ation, the 2015/16 drought was the longest of the twenty-first

century (figure 3), and thus the most severe. Since the year

2000, SPI-derived drought duration varied from 10 months

in southern Amazonia (R02) up to 32 months in central-

north Amazonia (region R07) (electronic supplementary
material, table S2). The average SPI-derived drought duration

among all regions reached 15 months, nine months and

6.5 months for the events spanning the years of 2015/16,

2009/10 and 2004/05, respectively.

By considering the entire time series studied, the three

longest SPI-derived drought events were located in northern

Amazonia (region R02), which lasted 50 month, starting in

March 1998; 32 months in northeast Amazonia (region R07)

starting in July 2014 and 29 months in Northeast Amazonia

(region R06), starting in January 1992. By dividing the

number of months under the SPI-derived drought by the

total number of months during the years analysed, we esti-

mated that during the pre-2000 period, at least one region

in Amazonia experienced SPI values below 21 every 1.5

months, compared to 0.6 months post-2000. In terms of

drought severity, as measured by the cumulative SPI

values, and by averaging all regions, SPI value during the

pre-2000 period was 221.44 and for the droughts that started

post-2000, the SPI value was 213.04. This is likely to be

driven by the 1992 and 1998 droughts (figure 3).

It is interesting to note two contrasting patterns: while

during pre-2000, 12.7% of the months presented SPI values

higher than 1 (moderately to extremely wet months),

post-2000 this number increased to 16.8%. Contrarily, for

moderately to extremely dry months (SPI values lower than

21), the first period presented 21.5% of the months under

dry events and in the latter period this number decreased

to 9.1% of the months. The regions with the highest increase

in months ranging from moderate to extreme wet were

located in the northeast (R07) and northeast/north regions

(R05, R02). On the other hand, the regions with the highest

decrease in number of months moderately to extreme dry

(months with SPI lower than –1) were located in central

and north regions (R06, R04, R01) (electronic supplementary

material, table S3).

At the biome-scale, during August 2015 the rainfall

decreased below the 100 mm threshold, which persisted

until January 2016, indicating a six-month prolonged water

deficit when comparing to 2005 with four months (August

to November water deficit) and 2010 with three months

(August to October water deficit) (electronic supplementary

material, figure S5). When stratifying the CWD for each

region, we observed three distinctive patterns of drought

recurrence and/or intensification over the years (electronic

supplementary material, figure S6). During 2015/16 drought,

the region with no dry season (R01) experienced for the first

time since 1981 a water deficit lower than 250 mm, starting

in September up to February. Second, in the north region

(R02), the CWD reached its lowest values for four consecutive

months during the 2015/16 drought. This was the longest

drought in this region. In the southern region (R03), values

of CWD below 2100 mm, which usually occurs in June,

were advanced to May in both the 2010 and 2015 droughts.

Additionally, in this region, we observed an increased

number of months with CWD lower than 2200 mm after

year 2000, and an even higher increase for extremely low

values (less than 2300 mm) when compared with the pre-

2000 period (electronic supplementary material, table S4).

Interestingly, we also observed in this region an intensifica-

tion of high rainfall events after 2010, during the wet

season (electronic supplementary material, figure S7). These

results indicate an intensification of the variance in rainfall

patterns.



extremely dry
2004/2005 2009/2010 2015/2016

2004/2005 2009/2010 2015/2016

severely dry
moderately dry
near normal

<–2.57 (p < 0.01)

anomalies in standard
deviation (s)

–1.96 to –2.57 (p < 0.05)
–1.65 to –1.96 (p < 0.10)
–1.65 to –1 (n.s.)

(a) (b) (c)

(d) (e) ( f )

Figure 2. Minimum standardized precipitation index (SPI), calculated based on the 12 months’ time scale (a – c), and maximum cumulative water deficit anomaly
(AMCWD) spatial patterns (d – f ) of the years 2004/2005, 2009/2010 and 2015/2016, respectively. The anomalies (z-score) are expressed in standard deviation from
the long term mean (1981 – 2016). n.s. is non-significant.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170411

5

(b) Sensitivity of Amazonian forests to droughts
(i) Intensity of EVI anomalies
By analysing the anomalies of minimum and maximum EVI

(figure 4; electronic supplementary material, figure S8,

respectively), we identified peaks in 2005, 2007, 2010, 2015

and 2016. First, while areas with significant minimum

AEVI reached more than 600 000 km2, areas with positive

AEVI corresponded to less than 140 km2. Despite this dispro-

portionate area affected, this result indicated that during

drought years the variance of EVI values increases, with

extremely high or low EVI superseding other years. Second,

there was also a progressive increase in the intensity of the

affected areas from 2005 to 2016, given by the increase in

the area with EVI anomalies lower than 23s and 24s.

From 2015 to 2016, there was an increase in the intensity of

the negative anomalies, and we observed a 2-year long

drought effect in the forest. The exception is the year 2007,

when minimum values did not go beyond 22.75 s.

This same pattern is observed for all seven regions

(figure 4). However, northwest and south regions of the

Amazon presented larger affected areas. It is interesting to

note that the region R01, which has no dry season, was

exposed to significant AMCWD during 2015/16.

The year 2007 did not present any major indicator of

droughts, according to the SPI (figure 3) and AMCWD (elec-

tronic supplementary material, figure S3). Thus, one could

expect that the other mechanism leading to the increase in

the minimum AEVI during this year would be the anomalous

high temperatures, which would lead to high atmospheric

demand. However, this also did not show any strong

anomalies (electronic supplementary material, figure S8).

(ii) Interaction between droughts and EVI anomalies
By assessing the median and standard deviation of minimum

AEVI over the areas with significant AMCWD, we observed

peaks in both metrics during the drought years, especially

during 2010, 2015 and 2016 (figure 5a). This indicates that

areas significantly affected by droughts, given by AMCWD,

have not only lower AEVI, but also a higher variability of

the minimum AEVI. We also found that some regions have
been hit up to five times by recurrent significant AMCWD

from 1981 to 2016 (electronic supplementary material, figure

S4). The evaluation of the AEVI revealed that areas affected

only once by AMCWD have higher AEVI values than areas

affected twice or more, although this was non-significant

( p , 0.05) (figure 5b).
(iii) Spatial and temporal patterns of affected forests
Significant negative anomalies of minimum EVI appeared

along the entire time-series (electronic supplementary

material, figure S10). However, forest areas affected more

intensively (lower negative anomalies) emerged in 2005,

2010, 2015 and 2016 (figure 6). Although most of the entire

area exhibited negative AEVI, we observed spatially clustered

areas in southwest Amazonia in 2005 and in central Amazo-

nia in 2010 from north to south. During 2015 and 2016, there

was an intensification of the affected areas, with a wide-

spread negative AEVI. Some areas are of particular interest

due to a dense cluster of affected forests: (i) in central Acre

state, (ii) southern Mato Grosso, in the Xingú Indigenous

reserve, (iii) an extensive area along the Solimões river,

spreading from the border with Colombia up to the central

part of the Amazonas state, near Manaus, (iv) southern for-

ests of Roraima state, (v) the area surrounding the Tapajós

National Forest and the remaining forests of eastern Amazo-

nia, in the Maranhão state. Among the other years, 2007

presented negative AEVI regions from the southeast to the

northwest (electronic supplementary material, figure S10).

Monthly AEVI revealed that in the dense forest, larger

areas were impacted at the end of the dry season and begin-

ning of the wet season, from July to October, particularly in

2010 and 2016 (figure 7a). The peaks in drought-affected

area for secondary and degraded forests also occurred from

July to November mostly during the drought years

(figure 7a). However, small portions of degraded forests

also exhibited anomalies during other months and years.

This result indicates that other processes such as anthropic

actions are permanently impacting these forests. The persist-

ence of AEVI throughout the year and in non-drought years

indicates that these forests are experiencing constant and
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multiple pressures. By assessing the total monthly affected

areas for the three forest classes, we observed that 2010 was

the year with the highest area (more than 30% of the total

area) of affected dense forests. Similar proportions of affected

areas were observed for secondary and degraded forests.

During both 2015 and 2016, over 20% of these forests

exhibited a decrease in the photosynthetic capacity (figure 7b).
4. Discussion
(a) Long-term drought exposure
Each severe drought that affected the region presented a

different spatial arrangement across the Brazilian Amazon.

We observed that for 2005 the western part was the epicentre

of the drought. The most affected areas in 2010 occurred in

the southern and northern flanks of the region, whereas in

2015/16 the drought was concentrated in central Amazon.

The western Brazilian Amazon as well as the north part of

Acre state were affected during the three most recent

events. Our results indicate that the largest area affected by

drought recorded in our dataset occurred during the most

recent drought (2015/2016). However, when analysing the
results by regions, we showed that droughts are constantly

hitting Amazonia in different places and approximately

20% of the biome has been hit more than once. For instance,

MCWD anomalies per region were significant in 1992 in

northern Amazonia (R02) and in central Amazonia in

1997/98 (regions R04, R05, R06). Moreover, the MCWD

anomaly in region R06, corresponding to Eastern Amazonia,

was significant in 2015, and in the other areas, marginally sig-

nificant in 2015/16 (electronic supplementary material, figure

S11). In the north and northeast flanks of the Amazon, the

CWD annual mean was lower than the long-term average

for two to three years, covering 2014 to 2016. Interestingly,

during the 2015/16 drought in eastern Amazonia (region

R06), we observed for the first time ever in the time series

analysed a region with more than six months of CWD

below 2100 mm per month. This same pattern was observed

in region 4, central Amazonia, during the 1997/98 El Niño

(electronic supplementary material, figure S11).

Based on the time-series analysed in this study, the results

indicate that the north and northeast regions of the Amazon

are becoming wetter (regions R02, R05 and R07). Gloor et al.
[50] have observed an intensification of the hydrological cycle

concentrated in the wet season; however, the epicentre for the



2016
ye

ar
s

2003

0 800 000600 000400 000200 000

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

minimum AEVI in km2 ( p < 0.05)

anomaly:
–2.00

–2.25

–2.50

–3.75

–4.00

–3.50

–3.25

–3.00

–2.75

2016

ye
ar

s
ye

ar
s

ye
ar

s
ye

ar
s

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

2016

2003

0 50 000 150 000

minimum AEVI in km2 ( p < 0.05)

250 000

0 50 000 150 000

minimum AEVI in km2 ( p < 0.05)

250 000

R01

R02
R07

R06

R05
R04

R04

R03 R07

R02

R01

R06

R05

R03

2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

Figure 4. Anomalies of minimum EVI values for the entire forest area, and per region. Only significant values ( p , 0.05) were assessed. The line colours and values
indicate the anomalies (z-score) expressed in standard deviation from the long-term mean (2003 – 2016).

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

373:20170411

7

region is located further west, outside the Brazilian Amazon,

a region not contemplated in this study. Nonetheless, it is

possible that the central to northeast regions are experiencing

the same phenomena.

In the southern part of the Amazon (Mato Grosso state,

region R03) the number of months with cumulative water

deficit (CWD) lower than 2300 mm increased after the year

2000 (29 events pre 2000 to 41 events post 2000), thus

becoming increasingly exposed to droughts. However, unex-

pectedly, the wet season (February to March) in this region

seems to be receiving more rain. This clearly shows that the

dry season in southern Amazonia is strengthening and

potentially advancing into the end of the wet season, while

the rainy season is becoming wetter.

Some studies suggest that the Amazon may be experien-

cing higher frequency and more intense droughts [51] and

modelling scenarios indicate an increase in the negative

trend in the mean annual precipitation in north and eastern

parts of the Amazon [52]. These results are not supported

by the observed long-term patterns and tendencies of the

mentioned regions as reported in this study. However, in

southern Amazonia, the increase of dry and very dry

events is in accordance with Marengo et al. [53] and Spinoni

et al. [32]. At least in southern Amazonia, the increase of

extremes seems to be already occurring.
By dividing the severity of the events by their duration,

we observed that the pre-2000 droughts were shorter and

more severe than post-2000. After the year 2000, droughts

were either shorter or longer than pre-2000, but certainly

less severe. For example, the most severe and shorter events

in central-east Amazonia occurred in the early 1980s. Conver-

sely, in both northwest (region 01) and southern Amazonia

(region 03), the 2015/16 drought was the most severe and

shortest since 1981. It is interesting the north-eastern Amazo-

nia (Amapá state, region R07), closer to the Atlantic Ocean,

the 2015/16 drought was the most intense and longest in

the time-series analysed. Also, in this region, climate seems

to be becoming wetter given the number of months with

positive SPI from 2002 onwards (figure 3). This result con-

trasts with the projection of dryer years for this area,

suggested by Duffy et al. [52]. The difference reported here

could be due to our approach, which has stratified the

Amazon in regions based on the beginning of the dry

season, rather than analysing the entire area as a single

region, and possibly to the different rainfall dataset used.
(b) Sensitivity of Amazonian forests to droughts
Based on the negative anomalies of the minimum enhanced

vegetation index (AEVI), which indicates forests under
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stress, we confirmed that Amazonian forests are sensitive to

droughts. Moreover, the intensity (lower values) and the

area affected by negative anomalies increased from 2005 to

2016. Despite some remote sensing-based studies reported

greening of some regions in Amazonia during extreme

drought years [22,48,54], areas with negative impacts were

much larger than positive impacts in 2005 [48] and even

greater areas were affected during the 2010 drought [19,55].

Moreover, in this study, we quantified that the positive

anomalies calculated based on the maximum EVI occurred

in areas with no more than 140 km2. MODIS-derived
vegetation indices in the Amazon have been associated

with the reduction of photosynthetic capacity during drought

years [55], tree mortality [56], change in forest structure [57]

or even the opposite effect, by relating to the increase in veg-

etation index with observed leaf flushing [58]. It is interesting

to note that Yang et al. [22] observed larger areas with posi-

tive EVI anomaly than with negative EVI anomaly for

2015/16. Despite using the MODIS EVI MAIAC, also used

in this study, the results are contrasting. There are three pos-

sibilities for this discrepancy. First, it refers to the time-series

adopted by Yang et al. [22], which spans from 2007 to 2016,
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while we used data from 2003 to 2016, thus covering the 2005

and 2010 droughts. Second, we assessed the extreme

anomalies by first calculating the minimum and maximum

annual EVI, while Yang et al. [22] used monthly data from

August 2015 to July 2016 and compared with the 9-year aver-

age from August 2007 to July 2016. Finally, while Yang et al.
[22] considered positive or negative anomalies values higher

or lower than 1 or 21 standard deviation, in our study only

significant values ( p , 0.05) were accounted for, thus more

conservative. It is remarkable to note that despite the differ-

ences in methodologies, contrasting results were captured

by the same dataset and variable, the MAIAC-EVI. Nonethe-

less, the solar-induced chlorophyll fluorescence (SIF) assessed

by Yang et al. [22] showed a significant decrease during the

2015/16 drought. Moreover, it has been demonstrated that

SIF and EVI are highly correlated [59], which supports our

findings.

A visual inspection of the 2015/16 AEVI in the region of

the Tapajós National Forest (Pará state) demonstrated anoma-

lous significant negative values (figure 6). This feature is

associated with major wildfires in this area, as observed in

high-resolution satellite observations and also reported in

local news (http://www.oeco.org.br/reportagens/incendios-

na-regiao-de-santarem-em-2015-degradaram-74-mil-km2/).

We also detected an area with strong significant negative

AEVI in western Amazonia, Acre state during the 2015/16
drought. This feature is linked to widespread mortality of

bamboo forests, associated with its natural life cycle [60]

(figure 6). Therefore, although drought-affected forest

areas detected by the AEVI are not validated with field

measurements, we are confident that our AEVI results can

describe extensive impacts on photosynthesis and on

canopy structure, including tree mortality [40,42,56]. Part

of this response can also be associated with drought-related

disturbances, such as wildfires.

Atmospheric inversion modelling showed a decrease in

CO2 uptake during the 2010 drought compared to 2011 in

Amazonia [2], and field observations demonstrated that at

both leaf-level and plot-level, the drought suppresses photo-

synthesis [61] and forest productivity [13,16]. Plots located in

the humid dense forests increased leaf fall during the 2010

drought, and in the following year there was a preferential

carbon allocation towards the canopy [61]. Moreover,

during the 2010 drought, trees under the areas of intense

rainfall anomalies had lower growth rate [16].

In all regions and among dense, degraded and second-

ary forests we observed a peak in negative AEVI and

with larger areas during the 2005, 2010 and 2015/2016

droughts. Doughty et al. [61] reported that in 2011, 1 year

after the 2010 drought, the photosynthesis of old-growth

forests returned to normal. However, contrary to the 2005

and 2010 droughts, we observed prolonged negative

http://www.oeco.org.br/reportagens/incendios-na-regiao-de-santarem-em-2015-degradaram-74-mil-km2/
http://www.oeco.org.br/reportagens/incendios-na-regiao-de-santarem-em-2015-degradaram-74-mil-km2/
http://www.oeco.org.br/reportagens/incendios-na-regiao-de-santarem-em-2015-degradaram-74-mil-km2/
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AEVI, lasting for 2015 and 2016, which could be associated

with long-term structural changes in the canopy. Uriarte

et al. [62] observed that in secondary forests, high water

stress reduced large tree growth but favoured growth of

small trees. Moreover, plants with high specific leaf area

magnified the negative effect. They also observed that

droughts reduced tree survival for both large and small

trees. In our study, secondary forests do exhibit a larger

affected area (AEVI p , 0.05) during drought years. The

remote sensing signal observed in our study is in agreement

with their field observations, and is associated with the

canopy of the trees, thus the large trees. The enhanced

growth of small trees under drier conditions would not be

revealed by our data.

(c) Adaptive capacity of Amazonian forests to droughts
Drought impacts on Amazonian forests have prolonged

effects. After the 2005 drought, changes in canopy structure

and water content were detected based on the reduction of

backscattering signal retrieved by the QuickSCAT satellite

[15]. These changes, associated mainly with forest upper

canopy, were observed for at least 4–5 years after the

drought, when the satellite was decommissioned [15]. It has

been suggested that the 2010 drought was more severe,

with its impacts on forests persisting from October to Decem-

ber 2010, when compared with the 2005 drought [55]. In our

study, we observed a progressive increase in the minimum

AEVI, from 2005 to 2016, thus reflecting an increased inten-

sity of the affected forest, and also in the affected area

(figure 4). Perhaps the situation is even more critical. Hilker

et al. [44] have observed that since 2000 there was a satel-

lite-observed widespread decline in the normalized

difference vegetation index (NDVI) in the Amazon, which

could be linked to the previous droughts. Field studies that

have reported increased tree mortality after the 2005 and

2010 droughts [13,16] and long-term decline of forest pro-

ductivity [14] could also have captured forest responses and

dynamics related to the pre-2000 droughts. A reduced rate

of recovery (slowing down) of forests with a decrease in rain-

fall [63] has also been observed, at the tropical scale and

specifically in the Amazon, potentially indicating the loss of

resilience of these forests.

Tree mortally is probably the main consequence of

drought that can cause a pervasive and persistent change in

forest structure, composition and dynamics. Doughty et al.
[64] observed an increase in individual tree mortality rate of

6.7% per year after the 2010 drought in a south-western

Amazonia site (MCWD anomaly , 2241 mm) and 3.6%

per year in a western Amazon site (MCWD anomaly less

than 251 mm). In our study, with the exception of region

R01 in northwest Amazonia, where there is no

dry season, all regions presented since 1981 from 3 to

13 years with MCWD anomaly lower than 2241 mm,

although not in consecutive years; and after the year

2000, from 2 to 5 years (electronic supplementary material,

figure S12). It is remarkable that during 2015/16, two

regions—North (Region R02) and Northeast (Region R07)

Amazon—presented persistent MCWD anomaly lower

than 2241 mm in consecutive years. During the 2010

drought, eastern parts of the Amazon were not affected,

and Doughty et al. [64] did not find a significant increase

in tree mortality at the Caxiuanã site (n ¼ 6 plots) in eastern
Amazonia. However, in this study, we observed that in

2015, the MCWD anomaly was lower than 2577 mm,

which may be expected to drive tree mortality in this

area. In six regions of this study, the MCWD anomaly in

2015 or 2016 (and in one region for both years) was

lower than in 2005, when a widespread event of tree mor-

tality was recorded for the Amazon [13]. Feldpausch et al.
[16] associated a basin-wide impact of the 2010 drought

on tree growth rates across Amazonia related to a moisture

deficit (dW, z-score ,21.6). By calculating the water deficit

using the same method as Feldpausch et al. [16], we

observed that with the exception of region R07, all regions

experienced from one to three times significant negative

anomalies. Southern Amazonia (region R03 in 2010) and

central-east Amazonia (regions R05 and R06, both in

2015) are the identified regions that have experienced

dW ,21.6 after the year 2000. Therefore, it is expected

that the 2015/16 drought had a widespread impact on

tree mortality, including regions not affected by the 2005

and 2010 droughts, such as the eastern Amazonia.

So far, most studies have associated drought impacts on

degraded forests with increasing forest vulnerability to wild-

fires [10,65–68]. However, little is known about drought

impacts on both degraded and secondary forests in terms

of tree mortality, net carbon exchange and photosynthetic

capacity [69]. In this study, we estimated a significant nega-

tive AEVI for both these forest types for this century’s

drought́s and for 2007 (figure 7), but the impacts on the

above-ground live biomass and productivity are open ques-

tions. We acknowledge that the signal of secondary forests

is less clear due to small sizes of forest patches: even by

using only pixels with more than 50% of secondary forest

cover, and for smaller patches, the drought effects are not

quantified in this study.

An integrated analysis of the AEVI with the areas affected

by AMCWD suggests that drought areas have a negative

effect on the forest, depicted by the decrease in the median

of minimum AEVI. Moreover, although non-significant,

there is a decrease in the median of minimum AEVI in

areas with higher numbers of drought recurrences, given by

significant AMCWD. Field data also do not report evidence

for the hypothesis that repeated droughts could lead to an

enhanced impact on tree mortality [16]. However, with the

improved drought analysis performed in this study, we

suggest that future field-based assessments to quantify

forest drought impacts should be designed to cover areas

affected by two or more significant years with negative

AMCWD.
5. Conclusion
The exposure of Amazonian forests to droughts was

remarkable during 1983, 1997, 2015 and 2016, where 10%

or more of the area presented significant negative anomalies

of the MCWD: 20.5%, 16.8%, 14% and 10%, respectively.

More than 1 million km2 (40%) of the area was affected at

least once by anomalous negative MCWD and more than

300 000 km2 were affected three times, an area about the

size of Germany. According to the SPI, a meteorological

drought index, after the year 2000 there was an increase in

the number of extremely wet months and decrease in the

number of dry events. Values below the CWD threshold of
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2200 mm have increased in southern Amazonia in the past

18 years, but also there was an intensification of rainfall

during the rainy season in this region. North and southern

parts of the Amazon have been experiencing an increase in

rainfall extremes, and in eastern Amazonia, higher rainfall

has been observed since 1981. Also, the dry season in

southern Amazonia is getting drier. In central areas, droughts

detected during this century did not appear to be either more

intense or longer than twentieth-century droughts. The

exception from this pattern is the 2015/16 drought in the

northeast of the basin, which according to our results was

one of the strongest droughts on record.

Analysed droughts affected Amazonian forest by increas-

ing its photosynthetic capacity variability, measured by the

minimum and maximum EVI anomalies. However, the area

affected negatively, which indicates a decrease in the photo-

synthetic capacity and change in the canopy structure,

prevails in the signal. Moreover, each subsequent drought

has a more intense effect on the canopy over larger forest

areas. Dense forests exhibit a dominance of drought-affected

canopies occurring towards the end of the dry season/begin-

ning of the wet season in the four droughts studied, but

peaked in 2010 and 2015. On the other hand, secondary and

degraded forests exhibited a dominance of drought-affected

canopies during longer periods. Moreover, degraded forests

also exhibited affected areas in non-drought years, possibly

indicating other disturbances, such as fires and logging.

The year 2007 presents an intriguing pattern of significant

minimum EVI anomalies, but we found no evidence that this

could be associated with AMCWD or with abnormally high

temperatures. We suggest that this should be further explored

in the future.

Most of the studies that have linked rainfall anomalies,

water deficit and cumulative water deficit with tree mortality

or productivity have relied on the TRMM dataset, which
starts collecting data in 1998. In this study, we observed

that during the pre-2000 period, the Amazon was exposed

to droughts, in different regions. Therefore, by analyzing

this longer rainfall time-series, our study highlights possible

regions for setting new field plots in order to assess the

impacts of recurrent droughts on Amazonia’s carbon cycle.
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