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1  | THE CONTEXT OF A RELATIVE RISK

The abbreviation “RR” generally refers to relative risk, and should 
thus be interpreted as a ratio of two estimates of risk in epidemi-
ological studies, be it a ratio of odds (odds ratio), risks (risk ratio), 
rates (rate ratio), or hazards (hazard ratio). Knowing which type of 
comparison is being made is essential for interpretation. As such, 
the specific effect size measure used should always be explic-
itly mentioned. Regardless of type, the relative risk has multiple 
practical applications in clinical research, as it not only provides 
an answer to the question “is there an association?” but also “how 
large is the association?”, thereby supplying information about the 

magnitude and direction of the effect (e.g, harmful or protective). 
This is because the relative risk is calculated by dividing the risk 
of the outcome in the group with the exposure of interest by the 
risk of the outcome observed in the unexposed group. However, 
as with all ratio measurements, the absolute size of the numerator 
and denominator are lost1 (see Box 1). This loss of information im-
pedes interpretation, as it becomes difficult to understand the true 
impact of exposure. In this paper, we suggest multiple ways you, 
as both an author and critical reader of scientific publications, can 
put relative risks into meaningful context. In order to do so, we first 
need to establish a typology of domains in which relative risks are 
being used.
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Abstract
Universally, reporting guidelines emphasize the importance of using point esti-
mates that indicate the strength of an effect. A single statement of the presence 
(or absence) of “statistical significance” and/or a P value alone do not provide suf-
ficient information. Instead, an estimate of relative risk with a corresponding con-
fidence interval should be routinely provided. Unfortunately, the context of the 
reported relative risk is often omitted, thereby hampering the readers’ understand-
ing of the impact of the results. Additionally, commonly used binary outcomes 
might not be sensitive enough to fully convey the clinical relevance of an interven-
tion or risk factor. This tutorial underlines the role of the context of results pre-
sented in clinical research papers. It also provides suggestions of meaningful ways 
to illustrate the impact of your own results by going beyond the relative risk.
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Essentials
•	 Relative risk estimates do not always convey the necessary context for a meaningful interpretation of the data.
•	 Next to a description of the absolute risk, measures like the number needed to treat (NNT) and population attributable fraction (PAF) 

help contextualize the obtained relative risks.
•	 In some cases, ordinal outcomes can be used instead of binary outcomes to prevent the loss of relevant information.
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Generally speaking, all clinical research can be divided into four 
categories using typical questions a patient might ask a doctor when 
confronted with symptoms: “What is wrong with me?”, “What caused 
my disease?”, “Can you treat it?”, and “What will happen to me?”. You 
might recognize the four domains of clinical research implicit in these 
questions: diagnostic, etiologic, intervention (treatment), and prediction 
research. Even though the relative risk is traditionally used in all four 
areas, the context and interpretation of this effect measure is markedly 
different in each framework. Research questions rooted in Treatment & 
Etiology are focused on understanding the effect of a single factor. The 
focus differs for questions of Diagnosis & Prediction, where the emphasis 
lies on distinguishing specific groups within the study population and 
often involves combining information from (multiple) factor(s). This tu-
torial will focus on the former category of research questions.

2  | QUANTIFYING THE IMPACT

In both intervention and etiologic research domains, it is pivotal to 
isolate the effect of interest from other factors by selecting a suit-
able study design and sample, identifying and measuring potential 
confounding factors, as well as choosing appropriate statistical meth-
ods. In clinical trials, this means using tools such as randomization 
and concealment of treatment allocation to minimize bias and isolate 
the treatment effect. In observational studies, confounding control is 
needed to single out the effect of a causal factor using strategies such 
as stratification or regression adjustment. Recently, more advanced 
methods such as propensity score matching and inverse probability 
of treatment weighting have been popularized. Ultimately, it is often 
the relative risk that provides insight into the strength of an effect, be 
it a treatment effect or an estimate of the causal effect of a particular 
risk factor. However, as the ratio of two risk measures omits critical 
information about the absolute risk, one cannot easily judge the ex-
ternal validity of a study nor understand the contribution of a single 
factor to the total risk with this metric alone.

3  | ABSOLUTE RISK

The internal validity of a study refers to the extent to which the study 
minimizes potential biases, which could render the results invalid. In 
contrast, and perhaps more interesting in this context, external valid-
ity of a study refers to the extent to which the individual study results 
can be generalized to other populations. To make this assessment, a 
thorough understanding of the study population characteristics, cus-
tomarily presented in Table 1 of scientific articles, is important. Next 
to this, the overall absolute risk of the outcome of interest plays an 
integral role in the external validity of a study. For example, meaning-
ful differences in absolute risks between the study population and 
another population could indicate a difference in the prevalence of 
comorbidities or a difference in how healthcare is organized. This 
can have effects on both absolute and relative risk measures; when 
the absolute risk in a population is high, or the exposure is highly 

prevalent, relative risk estimates are generally smaller. Therefore, 
without knowing information about the absolute risk and the preva-
lence of the exposure, it is difficult to determine whether the gen-
eralization of results from one population to another is appropriate.

4  | “NUMBER NEEDED TO”

Some of the information needed to assess the contribution of a single factor 
to the total risk in interventional studies is provided by the risk difference 
(RD), a useful absolute measure that allows for ready calculation of the 
number needed the treat (NNT). Computed by taking the inverse of the ab-
solute risk difference, the NNT provides an idea of efficacy (or effective-
ness) by providing an answer to the question, “How many patients do we 
need to treat in order to prevent the occurrence of a single event?” The 
usefulness of the NNT in the context of a randomized controlled trial is 
particularly convenient, since the NNT can be easily calculated from the 
crude, unadjusted analyses in well-conducted trials. On the other hand, in 
observational research, we should not simply calculate NNT from crude 
data due to bias and confounding. Certain regression-based approaches 
such Poisson and Cox proportional hazards regression are capable of con-
trolling for confounding and thus come to a more valid estimate NNT.2,3

The NNT concept can also be extended to apply to harmful ex-
posures (i.e, number needed to harm, NNH; see Box 1) as well as po-
tential biomarkers informing treatment decisions (i.e, number needed 
to screen). Essential for the interpretation of NNT and derived mea-
sures is the time frame to which they are applied. In some fields, 
there is little confusion surrounding this aspect, as standard practice 
dictates a fixed time period. For example, most stroke studies involve 
an assessment of functional outcome at the time point of 3 months 
post-stroke, making the interpretation and comparison of reported 
NNT findings unambiguous across different studies.4 However, in 
the context of chronic disease treatment and variable follow-up 
time, failure to explicitly mention the time frame could result in a 
misleading representation of the NNT and inaccurate comparisons.

5  | POPULATION ATTRIBUTABLE  
FRACTION

A more common approach to illustrate the contribution of a sin-
gle factor to the total risk in observational research settings is to 
show to what extent the risk factor of interest contributes to the 
total risk in the entire study population. The population attribut-
able fraction (PAF; sometimes PAR, population attributable risk) 
provides this information;5 see sample PAF calculation in Boxes 1 
and 2. The PAF can be seen as the proportion of a population’s in-
cidence of a given disease that can be accounted for by exposure 
to the risk factor of interest, and is distinct from the attributable 
fraction which is simply the risk difference divided by the risk 
among the exposed. When interpreting this measure, it is often 
colloquially said that the removal of the exposure (hypothetically 
or literally) should decrease the total incidence of disease by the 
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Box 1 Practical example: putting your results into perspective

The data displayed below show the results of two fictitious cohort studies examining the role of exposure X on thrombotic disease D in 
young women. For simplicity’s sake, we will assume an unbiased study, i.e, no selection bias, information bias, and confounding present.

Developed disease D No disease D Total

Exposed to X 50 950 1000

Unexposed 25 2975 3000

Total 75 3925 4000

First, we will use the table to calculate the risk among young women exposed and not exposed to X and compare these risks using a risk ratio.

Risk of disease D (cumulative incidence):

Among the exposed 50/1000 = 0.05

Among the unexposed 25/3000 = 0.0083

Risk ratio (type of relative risk, RR):

RR risk of disease among the exposed/risk among the unexposed 0.05/0.0083 = 6.0

A RR of 6.0 indicates a six-fold increased risk for disease D among the young women exposed to X compared to the unexposed. An inter-
esting find, but to grasp the impact of this observation, it is important to compare the risks on the absolute scale starting off with a simple 
overall absolute risk. Subsequently, we can calculate the risk difference

Absolute risk of disease:

Absolute risk Number of disease cases/Total population 75/4000 = 0.019

Risk difference (RD):

RD Risk of disease among the exposed - Risk among the unexposed 0.05 − 0.0083 = 0.042

Both measures on the absolute scale are not very high. The low absolute risk and the risk difference put the 6-fold increase in risk in some per-
spective. But how can we make these numbers even more understandable in a clinically relevant context? We can calculate the number needed 
to harm, which tells us how many young women on average would need to be exposed to X for one additional woman to develop disease D.

Number needed to harm (NNH):

NNH Inverse of the risk difference = 1/RD 1/0.042 = 24

This means that, on average, for every 24 young women exposed to X, 1 will develop disease D (24 “need to be exposed” for 1 to be “harmed”).
Since we know diseases are multicausal, it may be useful to know what proportion of all cases of disease in our study population can be 
attributed to exposure X. To do this, we first need to calculate two pieces of information:
1.	The proportion of exposed cases of disease:

Proportion exposed cases Number of exposed participants with disease/Total participants with disease 50/75 = 0.667 (=67%)

2.	The attributable fraction among the exposed (AF):

AF RD/Risk among the exposed 0.042/0.05 = 0.84 (=84%)

Now, we simply multiply these two numbers together to get the population attributable fraction (PAF) as follows.

Population attributable fraction (PAF):
PAF Proportion of exposed cases × Attributable fraction among exposed 0.667 × 0.840 = 0.56 (=56%)

This example illustrates three valuable lessons: First, it shows that in order to interpret a high relative risk, additional context is needed. 
When the absolute risk for a particular disease is low, a high relative risk is less concerning. The risk difference is therefore often more 
intuitive and can readily interpreted as “excess risk”. Second, calculating the NNH (or a related measure) provides further useful informa-
tion that can aid in decision making. In the case of NNH, lower numbers are more concerning Third, the PAF answers a different contex-
tual question; specifically, what fraction of all cases can be attributed to the exposure? Taking the prevalence of the exposure in the 
population into account, the PAF tells us that more than half of the total cases of disease D could be attributed to exposure X.
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PAF.6 For this reason, the PAF is considered an appropriate tool to 
evaluate the impact of individual risk factors on a population level. 
Importantly, the PAF is dependent not only on the strength of the 
effect of the exposure on the outcome, but also on the absolute 
risk of outcome as well as the prevalence of the exposure in the 
population; two additional valuable pieces of contextual informa-
tion (see Box 2). For these reasons, PAFs calculated using data 
from well-conducted cohort and case-control studies provide 
meaningful information beyond the relative risk. When calculat-
ing and reporting PAFs, two major issues must be considered: as 
PAFs are often obtained from observational data, the PAFs are 
dependent on the extent of bias in the data. Additionally, many 
thrombotic diseases are multicausal, meaning there are (theo-
retically) multiple ways to prevent the onset of a single event.7 
Therefore, it follows that the sum of PAFs for all risk factors is not 
capped at 1; in fact, the sum of all PAFs for a particular outcome 
often exceeds this number.

6  | BEYOND THE BINARY OUTCOME

To understand the impact of a treatment or biomarker, it can be use-
ful to look beyond a dichotomous outcome and instead make use of a 
clinically relevant measurement with multiple levels. Many research 
fields regularly use such approaches to assess outcomes with multi-
ple levels, especially when they are ordinal in nature (e.g, outcomes 
after birth, pain management, rheumatology and surgery).8–11 This 
approach is distinct from the practice of using so-called “surrogate 
outcomes”, in which binary outcomes are also replaced, for example, 
by a biomarker.12 This practice is debated, primarily as the clinical 
relevance is often unclear. If one wants to create or adopt ordinal 
outcomes that are not surrogate outcomes, the clinical relevance of 
the outcome categories needs to be a guiding principle.

A well-known example from stroke research is the modified 
Rankin Scale (mRS), which has seven ordered steps of patient func-
tionality, ranging from “no impairment” (mRS = 0) to “dead” (mRS = 6) 

Box 2 Multiple measures paint the full picture

For a complete understanding of the impact of your results, it is important to consider multiple measures as discussed in this paper. 
Below, we provide six different variations on the cohort study studying the effect of exposure X on disease D in 4000 young women, as 
introduced in Box 1. Notice how looking at one measure alone could lead you to erroneously believe that two very different scenarios 
produce the same result.

Original example

D+ D− AR 0.02

X+ 50 950 1000 RR 6

X− 25 2975 3000 NNT 24

75 3925 4000 PAF 0.56

Six variations

D+ D− AR 0.003 D+ D− AR 0.19

X+ 10 1799 1809 RR 6 X+ 720 2762 3482 RR 6

X− 2 2189 2191 NNT 217 X− 18 500 518 NNT 6

12 3988 4000 PAF 0.70 738 3262 4000 PAF 0.81

D+ D− AR 0.22 D+ D− AR 0.024

X+ 505 1615 2120 RR 1.2 X+ 89 1906 1995 RR 18

X− 370 1510 1880 NNT 24 X− 5 2000 2005 NNT 24

875 3125 4000 PAF 0.10 94 3906 4000 PAF 0.89

D+ D− AR 0.75 D+ D− AR 0.028

X+ 2500 1 2501 RR 3 X+ 90 1950 2040 RR 3.5

X− 500 999 1499 NNT 1.5 X− 25 1935 1960 NNT 32

3000 1000 4000 PAF 0.56 115 3885 4000 PAF 0.56
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and is traditionally measured three months after the initial stroke.13 
The scale is interview-based, and as such, is not as objective as some 
binary outcomes. However, the scale has a good inter-observer agree-
ment, especially after adequate training.14 Specific statistical analysis 
techniques, such as proportional ordinal logistic regression, make full 
use of the ordered structure of this outcome measurement by quanti-
fying the odds of a person ending up in a better category of outcome 
(e.g, one mRS step lower) if exposed to treatment.

Some researchers unnecessarily dichotomize ordinal scales in order 
to calculate absolute risks and subsequently a NNT. For example, mRS 
is often dichotomised to model the risk of dependency a after stroke 
(using a cut-off at mRS 2/3). Although this dichotomous approach may 
lead to answers that are seemingly easy to interpret, this practice does 
not answer the arguably more important global question of whether 
patients are overall better off with treatment. Additionally, collapsing 
ordered outcome scores into a dichotomous variable results in a loss of 
important information about severity by reducing the resolution of the 
outcome measure. Fortunately, it is possible to translate ordinal effect 
measures into NNT estimates using modern methods.15,16

Currently, the broader field of clinical thrombosis and hemostasis 
does not (yet) have a well-developed and widely used ordinal outcome 
akin the mRS in stroke. But, for example, even adding a simple distinc-
tion between fatal/non-fatal outcome (no disease, non-fatal disease, fatal 
disease) provides meaningful added information. Categorizing venous 
thromboembolism by location (no venous thromboembolism, superficial 
venous thrombosis, deep vein thrombosis, pulmonary embolism) or using 
ordinal bleeding severity scores in hemophilia studies are just some ways 
researchers in the field could look beyond binary outcomes.

7 | SUMMARY

Relative risk estimates provide an answer to the research question 
at hand; however, due to their relative nature, they do not convey 
the necessary context for meaningful interpretation. Ultimately, it 
is the duty of the authors of a publication to go beyond the relative 
risk and explicitly provide the context needed to help readers un-
derstand the impact of their results. Measures like the NNT and PAF 
add additional dimensions to the effect estimate (i.e, absolute risk 
and prevalence of the exposure), and as such, help contextualize the 
obtained results. When possible and of (clinical) relevance, authors 
may consider using ordinal instead of binary outcome measurements 
and corresponding analyses techniques to prevent the loss of impor-
tant information.
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