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Abstract: Background: Idiopathic normal pressure hydrocephalus (INPH) is a treatable cause of gait
disturbance, cognitive impairment, and urinary incontinence. This clinical triad of symptoms occurs in
association with ventriculomegaly and normal cerebrospinal fluid (CSF) pressure. Although the treatment
outcomes after CSF shunting for INPH have improved significantly since its first description in 1965,
shortcomings in our understanding still remain. Not all INPH patients exhibit clinical improvement after
shunting, and it is challenging to identify patients who are more likely to benefit from shunting.
Methods: The Cochrane Library, Medline, Embase, and PubMed databases were searched for English-
language publications between 1965 and October 2015. Reference lists of publications were also manually
searched for additional publications.
Results: The findings of this review indicate that, despite efforts to improve patient selection, the degree of
clinical improvement after shunting continues to demonstrate significant variability both within and between
studies. These discrepancies in treatment outcomes are the result of controversies in 3 distinct but
interrelated domains: the underlying pathophysiology of INPH, the diagnosis of INPH, and the identification of
likely shunt-responders.
Conclusions: This review focuses on these 3 areas and their relation to surgical treatment outcomes. Despite
the limitations of published outcome studies and limitations in our understanding of INPH pathophysiology,
shunting is a safe and effective means of achieving meaningful clinical improvement in most patients with
INPH.

Normal pressure hydrocephalus (NPH) was first reported in

1965 as a triad of dementia, gait disturbance, and urinary incon-

tinence, with associated ventricular dilatation and normal cere-

brospinal fluid (CSF) pressure.1 NPH can be classified as

idiopathic NPH (INPH) or secondary NPH (SNPH), the latter

of which occurs most commonly after subarachnoid hemor-

rhage, trauma, or meningitis.2 Although CSF diversion via a

shunt is the mainstay of NPH management, surgical outcomes

in INPH have been consistently less successful than those in

SNPH.3–5 In addition, the reported rates of postoperative clini-

cal improvement in INPH patients have varied from 24% to

96%.6,7 These discrepancies in treatment outcomes are the result

of controversies in 3 domains: the underlying pathophysiology

of INPH, the diagnosis of INPH, and the identification of

likely shunt-responders.

This review focuses on these 3 areas of controversy and their

relation to surgical outcomes. The Cochrane Library, Medline,

Embase, and PubMed were searched for English-language

publications between 1965 and October 2015 using a combina-

tion of medical subject headings and free text key words such

as: “normal pressure hydrocephalus,” “treatment,” “outcome,”

and “cerebrospinal fluid shunt.” Reference lists of publications
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were also manually searched for additional publications relevant

to the scope of this review.

Epidemiology
Both SNPH and INPH occur in approximately equal propor-

tions.8 However, SNPH can occur at any age, whereas INPH

typically occurs during the seventh decade of life. Furthermore,

there has been no identifiable association between NPH and

either sex or any ethnicity.9,10 Studies have estimated that the

incidence of NPH is from 0.84 to 5.5 per 100,00011,12 and that

the prevalence is from 0.41% to 1.4% for persons aged 65 years

or older.13,14 However, most epidemiological studies are hospi-

tal-based, and community-based epidemiological data are lack-

ing.12 One retrospective study of 4 nursing homes found that

the incidence of NPH was between 9% and 14%.15 These vari-

ations clearly reflect difficulties in the definition and identifica-

tion of NPH.2,8

Pathophysiology
To date, no clear pathophysiological mechanism for INPH has

been established.2 Earlier hypotheses suggested the possibility of

defective CSF absorption secondary to leptomeningeal fibro-

sis,4,16 but several studies have demonstrated no significant asso-

ciation between leptomeningeal fibrosis and the CSF outflow

resistance or clinical outcomes.16,17 Other early studies identi-

fied a transmantle pressure gradient from the ventricular wall to

the cortical surface as a factor in the development of ventricu-

lomegaly in both experimental models and patients with

NPH.18,19 However, in another experimental model, Shapiro

et al.20 subsequently demonstrated that ventricular expansion

can also progress even in the absence of a measurable transman-

tle pressure gradient, suggesting that such a gradient is unlikely

to solely account for the pathological findings of INPH.

CFS Mechanisms
Because CSF diversion can improve INPH symptoms, it is

likely that a dysfunction of the CSF circulation is involved.

Animal and hydrodynamic human studies have implicated

elevations of CSF pressure as a core defect in INPH.21,22 The

increased frequency of episodic pressure elevations, called

B-waves, observed on continuous intracranial pressure (ICP)

monitoring is consistent with this.23 It is generally accepted that

this increased ICP pulse amplitude suggests a decrease in brain

compliance, which may play a central role in INPH pathophys-

iology.24 Previous canine studies have demonstrated that brain

compliance is dynamic and displays a frequency-dependent

function with enhanced pulsatility absorbance around cardiac

frequency.25 This phenomenon is diminished in canine models

of hydrocephalus as well as in INPH patients.23,26 In keeping

with these experimental findings, Eide and Sorteberg24 demon-

strated that 93% of patients with increased ICP pulsatility

improved after shunt surgery compared with only 10% of

patients without increased ICP pulsatility. The failure of a

pulsation absorber mechanism among INPH patients—and

relative normalization of this mechanism after shunt surgery—

may explain why higher amplitude ICP waves were seen more

frequently in INPH patients who improved after shunt

surgery.24 However, Czosnyka et al.27 also found no evidence

suggesting that an increased pulse amplitude was a factor in

promoting ventricular dilatation and highlighted the need to

consider these findings in the context of other clinical and CSF

compensation parameters. In any case, there is now common

agreement that CSF pressures are not always “normal” in

INPH, and some have even adopted the term “idiopathic adult

hydrocephalus syndrome.”28

Cerebrovascular Mechanisms
Interestingly, Meier and Mutze29 demonstrated that a favorable

response to shunting is not predicated by a reduction in ven-

triculomegaly. In fact, greater clinical benefit was seen in

patients with minimal postoperative ventricular size change,

suggesting that CSF dynamics alone cannot explain all the fea-

tures of INPH. To this effect, many authors have suggested a

cerebrovascular component to INPH pathophysiology due to its

strong association with vascular risk factors such as hyperten-

sion.2 Hypertension causes arterial wall thickening and arte-

riosclerosis, which predispose patients to microinfarcts in vessels

such as the lenticulostriate arteries that have a long course

through the brain parenchyma.30 This is supported by Akai

et al.,31 who found arteriosclerosis, demyelination, organized

thrombi, and microinfarcts in the deep and periventricular

white matter of NPH patients. Other studies have also alluded

to associations between INPH, deep white matter ischemia, and

even Binswanger’s disease—which some have suggested may in

fact represent the same pathophysiological process.32,33 In light of

such findings, several authors have hypothesized that these vascu-

lar phenomena impair brain viscoelasticity and permit ventricular

enlargement with relatively normal CSF pressures.32,34

Conversely, it is possible that ventricular enlargement

increases interstitial pressure, secondarily impairing periventricu-

lar blood flow and resulting in ependymal disruption, microin-

farctions, gliosis, and neuronal degeneration.31,35 Using a canine

model of chronic hydrocephalus, Luciano et al.36 demonstrated

dynamic changes in capillary vessel diameter and density that

may reflect adaptive processes occurring to maintain adequate

cerebral perfusion in chronic hydrocephalus. Although the exact

mechanism behind these adaptive changes is unclear, vascular

endothelial growth factor (VEGF) appears to be involved.

Increased levels of VEGF can be detected in the CSF of both

chronic hydrocephalus canines and humans alike, possibly

reflecting a hypoxic response.37,38 Furthermore, higher levels of

VEGF are found in patients who have no improvement after

CSF drainage, suggesting that a greater ischemic injury burden

may be responsible for the poor treatment response in these

patients.37

Vascular injury in INPH patients may also result in a

subsequent reduction in CSF turnover that impairs the clearance

of neurotoxic metabolites such as b-amyloid, tau-protein, and
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proinflammatory cytokines.39 Because INPH frequently occurs

in combination with both Alzheimer’s and cerebrovascular

disease, such mechanisms that can causally relate these 3 entities

are attractive.31,40 One such hypothesis proposes that INPH is

caused by the loss of vascular and CSF pulsation dampening, or

the Windkessel effect.41 In this model, impaired vascular com-

pliance causes elevated venous pressures, which can account for

ventricular enlargement, cerebral hypoperfusion, and thus a

diminished CSF turnover.42

Some authors have also proposed the possibility of a pro-

tracted early-onset mechanism whereby INPH is the end result

of a “2-hit” process: benign external hydrocephalus (BEH) in

infancy with subsequent deep white matter ischemia (DWMI) in

late adulthood.43 BEH is believed to be the result of a mismatch

in CSF production and absorption by immature arachnoid vili.44

This results in a relative increase in head circumference that

persists in adulthood—a finding that Bradley et al.45 demon-

strated when comparing the intracranial volumes of INPH

patients with those of age-matched and sex-matched controls. It

is hypothesized that these BEH individuals are at least partially

dependent on CSF egress to the subarachnoid space via an extra-

cellular route. DWMI may impair this extracellular route of CSF

flow and cause increasing resistance, ventriculomegaly, and

INPH symptoms.43 In keeping with this hypothesis, Bradley

et al.43 demonstrated significantly higher apparent diffusion coef-

ficients in NPH patients compared with controls, suggesting

increased fluid content in the extracellular space of NPH

patients.

Diagnosis
Diagnosing INPH is difficult, and the accepted gold standard

for diagnosis is clinical improvement after shunt surgery.2

This implies a circular argument: shunt-responsive INPH

(SR-INPH) is defined by a clinical response to CSF diversion.

Given that there are patients with an identical clinical picture

and no clinical improvement after CSF diversion, it is reason-

able to assume that INPH is a broader clinical syndrome with

shunt-responsive and nonresponse subgroups. Therefore, ancil-

lary investigations, such as trial CSF drainage tests, may be con-

sidered as supplementary prognostic46 tests rather than

diagnostic tests, predicting shunt responsiveness rather than

defining the INPH syndrome. As a result, there is no definitive

clinical or diagnostic test for INPH. This has left room for some

clinicians to question whether the syndrome actually exists,

arguing that it is rare at best.47

Nevertheless, Relkin et al.48 stipulate that diagnosing INPH

only involves the clinical history and examination, neuroimag-

ing, and CSF opening pressure. Because different degrees of

diagnostic certainty can follow these routine assessments, some

authors have also proposed classifying INPH as “probable,”

“possible,” or “unlikely.”48,49 However, the use of these terms

varies across different contexts and is often without explicit def-

inition, making interpretation of the literature difficult. Herein,

we define INPH as a presumed clinical syndrome in its broadest

sense, regardless of its treatment response.

Clinical History and Examination
Reported symptoms should demonstrate an insidious onset after

age 40 years and progress over at least 3 to 6 months.48 There

should also be no alternative medical explanation of the symp-

toms or any antecedent events indicating secondary NPH.

Gait disturbance is usually the first symptom and the most

responsive to shunting.50 The “classical” gait of INPH is charac-

terized by a slow, short-stepped shuffling with a slightly broad

base, reduced step-height, and associated gait freezing.51 Arm

swing may be relatively preserved when considering stride length

and gait speed; occasionally, arm swing is noticeably increased. It

may also include postural instability and difficulty turning.48,50

These gait disturbances are consistent with subcortical deficits

involving the basal ganglia and frontal periventricular path-

ways.52,53 Using diffusion tensor imaging (DTI), Lenfeldt et al.54

provided further support for hypothesis by demonstrating axonal

loss in anterior frontal white matter tracts that are involved in

movement planning.

Although Adams et al.1 originally reported INPH as a reversible

dementia, dementia is in fact the triad symptom least likely to

improve postoperatively.9,55 The typical cognitive deficits of INPH

are “subcortical,” with psychomotor retardation, apathy, difficulty

in executive functions, and impaired recall memory yet relatively

preserved recognition memory.56 Although the underlying patho-

physiology of these deficits is unclear, the frontostriatal system and

periventricular projections have again been implicated.53

Urinary symptoms in INPH usually begin as increased

frequency and urgency, only developing into incontinence in

later stages.57 Urinary symptoms respond well to shunting but

only predict a functional improvement in 31% to 33% of

patients.7,58 Although incontinence may also occur secondary to

gait disturbance or dementia, detrusor over activity is believed

to be the primary mechanism, and this is consistent with frontal

and basal ganglia dysfunction.59

Despite classically being a triad of symptoms, INPH can be

diagnosed in the presence of gait disturbance and 1 other cardi-

nal symptom.48 This is in light of findings revealing that the

complete triad often represents prolonged symptom duration,

more advanced disease, and a poorer prognosis.60

Neuroimaging
Neuroimaging evidence of hydrocephalus on computerized

tomography (CT) or magnetic resonance imaging (MRI) is

essential for the diagnosis of INPH. This requires demonstrating

ventricular dilatation out of proportion to cerebral atrophy and

an absence of macroscopic obstruction to CSF flow.48 The

degree of ventriculomegaly is commonly quantified by the

Evans ratio, which is calculated as a ratio of the maximum fron-

tal horn diameter to the maximal biparietal diameter between

the inner tables of the skull (Fig. 1).61 An Evans ratio greater

than 0.3 is generally regarded as sufficient confirmation of ven-

triculomegaly for INPH diagnosis.48 Other complex methods

for quantifying ventriculomegaly in INPH have also been

described but are yet to be sufficiently validated or widely
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adopted.62 Newer MRI techniques like DTI have also

emerged.63 DTI allows for the quantitative assessment of the

magnitude and 3-dimensional direction of water diffusion along

white matter tracts of interest.64 Through measurements of

mean diffusivity and fractional anisotropy in regions of interest,

such as the corpus callosum, internal capsule, hippocampus, and

frontal subcortical and periventricular white matter, a number

of studies have demonstrated differences between patients with

INPH, Parkinson’s disease, and Alzheimer’s disease that may

assist diagnosis.65–67 Although promising, novel imaging modali-

ties like DTI or others that assess CSF hydrodynamics, metabo-

lism, or blood flow do not currently have sufficient large-scale

studies to support an established diagnostic role.48

CFS Opening Pressure
The traditional concept of “normal” CSF opening pressure as a

defining feature of INPH has been criticized.68 Nevertheless, an

opening pressure outside the range of 70 to 245 mm H2O is

not consistent with the diagnosis of INPH, and it is still recom-

mended that CSF opening pressure be measured at the time of

lumbar puncture or other investigations.48

Differential Diagnosis
Much of the diagnostic uncertainty surrounding INPH relates

to difficulties distinguishing INPH from other diagnoses com-

mon in the elderly.8 In 1 study of 71 patients referred to a

memory clinic with suspected INPH, only 20% had INPH as

their final diagnosis.69 Therefore, differentiating between INPH

and other subcortical dementias is essential—particularly Bin-

swanger’s disease, subcortical arteriosclerotic encephalopathy,

and multi-infarct dementia, which can also present with similar

symptoms.70,71 Fortunately, unlike INPH, gait disturbances in

these diseases generally occur in advanced stages, and extensive

leukoaraiosis on CT/MRI is more common in vascular

Figure 1 A series of magnetic resonance imaging (MRI) features are consistent with a diagnosis of idiopathic normal pressure hydro-
cephalus (INPH). (A) Disproportionate ventriculomegaly with an Evans ratio of 0.44 was measured by the ratio of the maximum frontal
horn diameter to the maximal biparietal diameter (white arrows). (B) An acute callosal angle (labeled) and “tight” convexity with narrow
cerebrospinal fluid spaces (white arrow) are shown. (C) Disproportionate enlargement of the Sylvian fissures (bilateral white arrows) is
observed. (D) A T2-weighted MRI demonstrates an aqueductal flow void (white arrow).
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dementias.72 Parkinson’s disease and other extrapyramidal syn-

dromes, such as progressive supranuclear palsy, may also com-

bine gait disturbance, subcortical cognitive deficits, and urinary

symptoms.8 Differentiating INPH from classical Alzheimer’s dis-

ease is less difficult, as the cortical pattern of dementia in Alz-

heimer’s disease predominates over other symptoms, and the

presence of hippocampal atrophy on CT/MRI may also assist

its confirmation.73,74 When the NPH triad is incomplete, it is

especially important to differentiate INPH from other causes of

gait/balance disturbance, cognitive deficits, and urinary symp-

toms (see Table 1). It is also important to note that multiple

comorbidities are common in the elderly and can mimic INPH,

particularly when there is neuroimaging evidence of mild

hydrocephalus. Examples of this include polypharmacy (espe-

cially anticholinergic, antiepileptic, or antipsychotic medica-

tions), chronic alcoholism with prostatism, or dementia with

Lewy bodies and uterine prolapse.

Prognostic Investigations
When a diagnosis of probable INPH is established on clinical

and radiological grounds, the positive predictive value for a

shunt response may be as low as 58%.49 Hence, even with a

correct clinical diagnosis of INPH, an unfavorable shunt

outcome can still occur. This implies either a highly inaccurate

diagnosis or an accurate diagnosis but only partially effective

therapy; or, perhaps more likely, a combination of both. It is

therefore important to identify SR-INPH through further

assessment.46

Radionuclide Cisternography
Radionuclide cisternography was originally used to identify SR-

INPH by demonstrating ventricular reflux and stagnation over

the convexities.75 However, Vanneste et al.76 revealed that cis-

ternography was worse than combined clinical and CT criteria

at identifying SR-INPH in 33% of cases. Black58 also found

that 55% of INPH patients with normal cisternography were

actually shunt-responsive. More recently, the use of CT cis-

ternography has also been investigated; however, this has also

been unsuccessful in improving predictive accuracy.77

Infusion Studies
CSF infusion studies aim to assess CSF absorptive capacity by

measuring the outflow resistance (Rout) or its inverse: conduc-

tance.78 Despite employing different infusion and pressure-mea-

suring techniques, studies have consistently demonstrated a

positive predictive value over 80%.79,80 However, the overall

predictive accuracy in most studies has been diminished by a

poor negative predictive value as low as 27% to 31%.28,79

Whereas the predictive uncertainty may be related to the

heterogeneity of infusion methods and differing threshold values

of Rout adopted across studies,48 it may also reflect our incom-

plete understanding of INPH pathophysiology. Because INPH

is likely to involve more complex changes than those seen in

CSF dynamics alone, infusion studies may represent an incom-

plete assessment of INPH. Consequently, it is not surprising

that prospective selection of SR-INPH is difficult using infusion

studies alone.

CSF Drainage Tests
The drainage of 30 to 50 mL of CSF through a “tap test” is

believed to simulate shunting and may produce transient clinical

improvements that predict SR-INPH.5 Studies have demon-

strated positive predictive values as high as 94% to 100%80,81;

however, numerous studies have also found negative predictive

values of only 23% to 32%.28,82 In addition, Kahlon et al.80

found that 58% of SR-INPH patients would have been over-

looked for shunting if the CSF tap test was used in isolation. As

a result, patients with INPH can be selected for shunting based

on a positive CSF tap test but cannot be excluded based on a

negative CSF tap test.48

External lumbar drainage (ELD) attempts to reduce the high

false-negative rate observed with the CSF tap test by draining

more CSF over a number of days in-hospital.83 Earlier small-

sample studies used 5-day to 6-day draining protocols and were

able to achieve 100% sensitivity and specificity.81,84 Unfortu-

nately, larger, more recent studies have still found that the

negative predictive value of ELD varies from 36% to 78%.60,82

Nevertheless, most ELD studies have demonstrated less false-

TABLE 1 Conditions to consider in the differential diagnosis of
idiopathic normal pressure hydrocephalus*

Neurodegenerative
disorders

Alzheimer’s disease
Parkinson’s disease
Dementia with
Lewy bodies
Frontotemporal dementia
Corticobasal degeneration
Progressive supranuclear
palsy
Multiple system atrophy
Spongiform
encephalopathy

Vascular

Cerebrovascular disease
Vertebrobasilar insufficiency

Infectious diseases

Human immunodeficiency
virus
Syphilis

Urological disorders

Bladder or prostate cancer
Benign prostatic hypertrophy
Medications
(e.g. anticholinergic)

Other hydrocephalus
disorders

Aqueduct stenosis
Arrested hydrocephalus
Long-standing overt
ventriculomegaly
of adults (LOVA)
Non-communicating
hydrocephalus
Secondary normal
pressure
hydrocephalus

Miscellaneous

B12 deficiency
Traumatic brain injury
Spinal stenosis
Chiari malformation
Wernicke’s
encephalopathy
Carcinomatous
meningitis
Spinal cord tumor
Orthostatic myoclonus
Drug-induced
parkinsonism
Anxiety, depression,
fear of falling
Functional (psychogenic)

*Adapted from Klassen and Ahlskog47, Relkin et al.48 and Bech-
Azeddine et al.69
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negatives and greater predictive accuracy than the CSF tap

test.60,81,85,86 The added cost and morbidity of ELD from

hospitalization and potential complications such as meningitis

caution against the routine use of this technique.2,87

ICP Monitoring
The use of ICP monitoring is controversial.46 Whereas earlier

NPH studies found that B-wave activity occurring greater than

50% of recording time was correlated with shunt response,4,22

others have debated this.86 Alternatively, Raftopoulos et al.88

proposed that specific B-wave morphologies were correlated

with shunt response. More recently, other authors have also

found that the mean ICP wave amplitude is significantly higher

in patients with SR-INPH,24,27 and Eide and Brean89 achieved

a 91% clinical response rate in those with elevated ICP wave

amplitudes. However, ICP monitoring is not always abnormal

in INPH, and few studies have confirmed these findings.

Consequently, the predictive role of ICP monitoring is not

completely understood.

Adjunctive Neuroimaging
Although CT is an adequate imaging modality to establish

ventriculomegaly, MRI more readily permits the evaluation of

additional features that correlate positively with INPH.2 A

prominent MRI flow void in the cerebral aqueduct is indica-

tive of an increased flow velocity and was thought to be

predictive of SR-INPH (Fig. 1).90 However, others have

described no difference in flow void occurrence between

INPH patients and normal individiualss91 and have reported

that successful shunting does not necessarily alter flow void

signals.92 CSF stroke volumes above 42 lL on phase-contrast

MRI have also been associated with shunt response.92 Whereas

some studies have supported this promising result,93 others have

not.94

An acute callosal angle95 and a “tight” high convexity with

narrowed CSF spaces96 (Fig. 1) have also been identified as pre-

dictors of SR-INPH. Kitagaki et al.96 further described dispro-

portionate enlargement of the Sylvian fissures, basal cisterns, and

focal sulci as features supporting a diagnosis of SR-INPH

(Fig. 1). Given the lack of a pressure gradient between the ven-

tricles and subarachnoid spaces in INPH,97 it is postulated that

CSF may accumulate in either space—causing so-called “dispro-

portionately enlarged subarachnoid-space hydrocephalus”

(DESH).98 This phenomenon may be difficult to distinguish

from focal cortical atrophy and has not been widely investigated

internationally. Nevertheless, Japanese diagnostic criteria for

INPH include the presence of DESH and further subdivide

INPH into DESH and non-DESH forms.2

Aside from its potential diagnostic role, DTI has also been

investigated as a potential prognostic and follow-up utility.

Using DTI, Jurcoane et al.99 demonstrated increased fractional

anisotropy and axial diffusivity in the corticospinal tracts of

SR-INPH patients compared with nonresponders. Scheel

et al.100 also examined these DTI parameters before and after

shunt surgery and demonstrated a trend toward normalization

postoperatively, further suggesting a potential follow-up role for

DTI imaging.

Alternative imaging modalities for cerebral blood flow and

measurements of CSF biomarkers have also been investi-

gated. However, their predictive value for SR-INPH is still

unknown.99,101–104

Surgical Treatment
The mainstay of treatment for INPH involves CSF diversion

through a shunt. Numerous shunt types, including ventriculoa-

trial, ventriculopleural, lumboperitoneal, and ventriculoperi-

toneal (VP) shunts, have been used.105 Although differences in

outcomes between shunt configurations have not been

proven,106 VP shunts are commonly used.

The valves that these shunts use can be flow-regulated or

differential pressure-regulated. It is unclear which mechanism

produces better outcomes, and Weiner et al.107 found no

difference in clinical outcomes or shunt survival. Furthermore,

Boon et al.108 compared different valve pressure settings and

found no statistically significant association with shunting

outcome. Programmable valves have now been adopted, as they

permit noninvasive pressure adjustments that can optimize clini-

cal improvement and ameliorate drainage-related complica-

tions.105 There is a lack of evidence comparing clinical

outcomes between programmable and nonprogrammable valves.

However, the reported rates of infection and shunt occlusion

appear comparable,83 so programmable valves are being used

more frequently.

Overall, shunt-related complications occur in up to 38% of

patients, 22% require additional surgery, and there is a 6% rate

of permanent neurological deficit or death.83 Common compli-

cations include shunt malfunctions, infections, headaches, and

drainage-related subdural hematomas or effusions.2 Interestingly,

some authors have debated whether shunt-related complications

produce any long-term detrimental effects at all.108,109 Given

the frailty of most study populations, studies with longer

follow-up periods also face difficulties differentiating between

shunt-related complications and other age-related or comorbid-

ity-related complications.83 It is important to note that general

surgical complications may also occur, including deep vein

thrombosis, pulmonary embolism, and myocardial infarction.

Postoperative delirium is also common.

Endoscopic third ventriculostomy (ETV) has also been pro-

posed by some authors as an alternative treatment to VP shunt-

ing. Using ETV in a cohort of 110 patients with INPH,

Gangemi et al.110 achieved a 69.1% improvement rate and a

6.4% complication rate. Although some authors have demon-

strated similar promising results with ETV,111 a randomized

clinical trial by Pinto et al.112 suggested VP shunting as the

superior surgical treatment, with better outcomes 12 months

postoperatively. Furthermore, Chan et al.113 also demonstrated

an inferior short-term safety profile for ETV compared with VP

shunting. As such, the role of ETV in INPH remains unclear

without further prospective, randomized studies.
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Clinical Outcomes
Given the lack of clinical equipoise regarding efficacy, random-

ized control trials comparing CSF diversion with placebo or

active nonsurgical treatment have not been widely con-

ducted.114 However, the SINPHONI-2 (Study of INPH on

Neurological Improvement) open-label, randomized trial com-

pared the outcomes between lumboperitoneal shunt surgery

within 1 month (immediate treatment group) and surgery post-

poned for 3 months (postponed treatment group). In their

cohort of 93 patients with INPH, 65% of the immediate sur-

gery group demonstrated an improvement in modified Rankin

scale of at least 1 point at 3 months compared with 5% in the

postponed treatment group.115 Their results not only demon-

strate a benefit for CSF diversion but suggest a need for further

studies to investigate whether lumboperitoneal shunt surgery

should be considered first-line treatment. Nonrandomized stud-

ies have also demonstrated significant clinical benefits from

shunting. A systematic review of 64 outcome studies demon-

strated that 71% (range, 28%–100%) of patients with INPH had

a positive outcome at 1 year after shunt insertion and that 65%

(range, 31%–96%) demonstrated improvement beyond

3 years.116

Although there are significant discrepancies in these reported

rates of clinical improvement, some degree of this variability is

likely historical. Early studies reported improvement rates of

24% to 33%,3,117,118 with the low response rate perhaps in part

due to the inclusion of patients with predominating dementia

or dementia alone—a poor prognostic indicator.109 In contrast,

30 studies published since 2006 that were included in the sys-

tematic review by Toma et al.116 demonstrated an overall

improvement rate of 82% at 1 year and 73% at 3 years or

beyond. Although the selection of appropriate surgical candi-

dates appears to have improved, some studies remain pessimistic.

One recent community-based study reported that misdiagnosis

was common, true INPH was rare, and only one-third of

patients maintained improvement, whereas up to one-third

experienced shunt surgery complications.47

The marked differences in outcomes between studies may

also reflect the variable inclusion of patients with poor-outcome

risk factors. These include the presence of the full triad of

INPH symptoms, including dementia, prolonged disease dura-

tion, Alzheimer’s pattern cognitive impairment, and marked

atrophy on imaging.119 Nevertheless, studies suggest that

patients with poor-outcome risk factors can still obtain clinical

benefits from shunting and thus should still be offered shunt

surgery if otherwise clinically appropriate.120

Difficulties in Assessing Clinical
Outcomes
There is no established method of quantifying clinical improve-

ment that is standardized, unbiased, and practical.2 Although

clinical outcomes have been reported in the literature using a

plethora of scales and variations,24,28,108 comparisons between

these scales can produce markedly different results, even when

identical data are used.2,121 Similarly, outcome studies not only

lack randomization but are also generally unblinded, with assess-

ments performed by the treating team, leaving scope for poten-

tial bias.

Furthermore, the duration of postoperative follow-up neces-

sary to adequately assess clinical status has not been estab-

lished.109 For example, the Dutch NPH study restricted the

follow-up period to 1 year,122 whereas other studies have

demonstrated that some INPH patients still continue to

improve at 24 months.9,123 On the other hand, studies that

have followed patients for 3 years or more have consistently

found declining rates of clinical improvement.124,125 However,

long-term outcomes also undoubtedly are influenced by comor-

bidities, and vascular factors have been shown to be a main

cause of mortality.126,127 Hence, it is unclear the extent to

which this long-term clinical decline is comorbidity-related and

not shunt-related.

Methodological Limitations
Unfortunately, these difficulties in INPH research are not just

limited to outcome studies. The conclusions and reported pre-

dictive values of numerous studies are made unreliable by small

sample sizes, retrospective study designs, variable inclusion crite-

ria, and a failure to differentiate INPH from SNPH.72 Studies

are also largely uncontrolled, unblinded, and often lack objec-

tive clinical assessments. Furthermore, many studies report posi-

tive and negative predictive values that depend on the

frequency of disease in the group being studied. Although more

difficult to interpret intuitively, sensitivity and specificity are

preferable, as they are not influenced by the frequency of dis-

ease in the sample. Other useful statistics to estimate effect size,

such as Cohen’s d, also are rarely reported. Finally, shunt

responsiveness does not account for false-positive placebo

responders or those who fail to respond due to shunt complica-

tions or comorbid diseases.83 Evidently, there is a need for fur-

ther research that can address these shortcomings and identify a

true gold-standard diagnostic or prognostic measure.

Research into the diagnosis and treatment of INPH has the

potential to not only improve clinical outcomes for patients but

also to significantly reduce health care expenditure.128 It has

been suggested that the appropriate treatment of hydrocephalus

in the elderly may lower 5-year Medicare expenditure by

approximately $184.3 million in the United States.129 It is clear

that further translational studies examining the pathophysiology

of adult hydrocephalus disorders like INPH are central to

improving diagnosis and treatment outcomes. As such, research

into these areas has been appropriately identified as a consensus

priority for the next 5 years of hydrocephalus research.63

Conclusion
After 50 years of research, the diagnosis and treatment of INPH

seems to have improved. However, advances continue to be
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hampered by research limitations and shortcomings in our

understanding of the pathophysiology underlying INPH. As a

result, both the accurate diagnosis of INPH and the appropriate

selection of shunt surgery candidates remain controversial issues.

Indeed, there is still no universally accepted definition of the

syndrome or accepted neuropathological changes. Does this

mean we cannot diagnose or treat INPH? We would answer

this with a resounding “no.” Those familiar with the condition

can diagnose it, and most patients so diagnosed obtain meaning-

ful clinical improvement.
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