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Abstract

Queens and workers of eusocial Hymenoptera are considered homologous to the reproductive and 

brood care phases of an ancestral subsocial lifecycle. However, the molecular mechanisms 

underlying the evolution of reproductive division of labor remain obscure. Using a brain 

transcriptomics screen, we identified a single gene, insulin-like peptide 2 (ilp2), which is always 

upregulated in ant reproductives, likely due to their higher nutritional state. In clonal raider ants, 

larval signals inhibit adult reproduction by suppressing ilp2, producing a colony reproductive cycle 

reminiscent of ancestral subsociality. Increasing ILP2 peptide levels overrides larval suppression, 

thereby breaking the colony cycle and inducing a stable division of labor. This suggests a simple 

model for the origin of ant eusociality via nutritionally determined reproductive asymmetries 

potentially amplified by larval signals.

Eusocial insects exhibit a reproductive division of labor in which queens lay eggs and 

workers perform other tasks (1). Eusociality in ants, and in many other Hymenoptera, likely 

evolved from a subsocial state in which a female wasp would lay an egg and then care for 

the resulting larva until pupation (1–3). Such brood care may have been induced by larval 

signals, and observations of extant subsocial wasps are consistent with this scenario (2–4). 

This temporal reproductive and behavioral plasticity was then modified into a fixed 

reproductive asymmetry between queens and workers in eusocial colonies (2, 5). This raises 

three important mechanistic questions: first, how are subsocial reproductive cycles 

*Correspondence to vchandra@rockefeller.edu (V.C.), ifetter@rockefeller.edu (I.F-P.), dkronauer@rockefeller.edu (D.J.C.K.).
Author contributions: D.J.C.K., V.C., I.F-P., and P.R.O. designed the study; S.K.M, I.F-P., and V.C. performed fieldwork; P.R.O., 
V.C., R.L., S.K.M., I.F-P., and A.L.R. performed genomic analyses; I.F-P., V.C., A.L.R., R.L., and S.K.M. performed immunostains; 
V.C., A.L.R., I.F-P., and P.R.O. performed pharmacological experiments; V.C., I.F-P., and D.J.C.K. wrote the manuscript with 
feedback from all authors. D.J.C.K. supervised the project

Competing interests: The authors declare no competing interests

Data and materials availability: Raw sequence data are available through NCBI (BioProject PRJNA472392); scripts are available on 
GitHub (https://github.com/Social-Evolution-and-Behavior/insulin_signaling).

HHS Public Access
Author manuscript
Science. Author manuscript; available in PMC 2019 July 27.

Published in final edited form as:
Science. 2018 July 27; 361(6400): 398–402. doi:10.1126/science.aar5723.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Social-Evolution-and-Behavior/insulin_signaling


regulated? Second, how is the eusocial reproductive division of labor regulated, i.e. what 

allows queens to lay eggs but prevents workers from doing so? And third, what is the 

evolutionary trajectory that gave rise to fixed eusocial division of labor from subsocial 

cycles? Here we suggest that, in ants, evolutionary innovations in insulin signaling may have 

played a crucial role in each case.

Eusociality evolved once in a common ancestor of ants and, with the exception of a few 

derived social parasites, all extant ants are eusocial (6) (Fig. 1). To identify conserved 

potential regulators of division of labor between reproduction and brood care in ants, we 

conducted an unbiased screen for differentially expressed genes between whole brains or 

heads of reproductives and non-reproductives across seven ant species, including four 

previously published datasets (Fig. 1; Tables S1, S2) (7–11). We sampled a range of 

reproductive strategies, from species with morphologically distinct queens and workers to 

queenless species. Among all 5,581 identified single-copy orthologs, we found only one 

such gene: insulin-like peptide 2 (ilp2). ilp2 was always significantly upregulated in 

reproductives (Fig. 1). Thus, the differential expression of ilp2 is likely conserved across 

ants. Consequently, the most recent common ancestor of ants likely had ilp2 expression that 

was high in reproductives and low in non-reproductives.

Although our approach is conservative and probably misses genes, it has the advantage of 

eliminating false positives. When we relaxed the statistical stringency for classifying genes 

as differentially expressed, our screen still returned ilp2 as the single candidate gene (Fig. 

S1). Relaxing other inclusion criteria divulged additional genes that might be expected to 

vary with reproductive state. For example, a total of 24 genes were consistently differentially 

expressed in subsets of five of the seven studied species (Fig. S2; Table S3). This list 

includes insulin-like peptide 1 (ilp1), as well as other genes implicated in insulin signaling 

(Fig. S3; Table S3). Non-single-copy orthologs were excluded from our screen. One 

example is vitellogenin (vg), a gene that has undergone repeated duplications in ants (12). 

The vitellogenin protein is a lipid carrier that provisions developing oocytes with yolk and 

constitutes a reliable indicator of female reproductive activity (12, 13). Studies of bees and 

other insects have shown that vitellogenin interacts with insulin signaling (14–16). vg indeed 

showed consistently higher expression in reproductives in our screen, even though this 

difference was not statistically significant in two of the ponerines (Fig. S3). These findings 

further bolster the conclusion that insulin signaling played a major role in the evolution of 

reproductive division of labor in ants.

Insulin regulates reproduction and food-seeking behavior across a wide range of organisms, 

making it a prime candidate for the regulation of subsocial cycles and eusocial division of 

labor (17). Most studied hymenopterans have two ILPs: ILP1 and ILP2 (Fig. S4). While 

ILP1 resembles insulin-like growth factor, ILP2 is similar to canonical insulin (Fig. S5) (11). 

In other holometabolous insects, these ILPs regulate larval growth, adult metabolism, and 

reproduction (17–19). Moreover, caste determination in most ant species relies on nutritional 

asymmetries during development: queen-destined larvae eat more than worker-destined 

larvae, which likely explains how queens acquire higher ILP2 levels (20). A study of 

Diacamma sp. found that the asymmetry in reproductive potential between ants was 

correlated with insulin receptor expression in the ovaries (21). This suggests a possible 
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secondary mode of reproductive control downstream of ILPs that may augment the initial 

reproductive asymmetry reflected by differential ilp2 expression in the brain.

ILPs have not been studied functionally in eusocial insects in the context of reproductive 

division of labor between adults. However, insulin signaling has been implicated in other 

contexts, such as caste development and non-reproductive division of labor (18, 22–24). 

Current data from wasps and bees do not usually find ilp2 differentially expressed between 

adult queens and workers, suggesting that this expression pattern may be ant-specific (Table 

S5). This apparent inconsistency may be explained by the fact that eusociality has evolved 

independently in ants, bees, and wasps (1). While insulin signaling may have been co-opted 

repeatedly during social evolution, the details thus likely differ between independent 

lineages.

We used the clonal raider ant Ooceraea biroi to study ant ILP2. O. biroi has secondarily lost 

queens, resulting in a species in which workers reproduce synchronously and asexually (13, 

25). Colonies alternate between reproductive and brood care phases. This colony cycle is 

regulated by the periodical presence of larvae, which suppress reproduction and induce 

brood care behavior in adults, and is reminiscent of the subsocial cycle presumed to precede 

eusociality in ants. Despite this unusual biology, O. biroi is eusocial. Workers display 

cooperative brood care, colonies contain overlapping generations of adults, and reproductive 

asymmetry exists within colonies (25).

We found that antibody-staining of ILP2 exclusively localized to the brain, primarily in a 

single medial cluster of ca. 15 cells in the pars intercerebralis (Fig. 2A–C, Fig. S6). These 

insulin-producing cells coincide in location with those of other insects (26, 27). Axons likely 

project to the corpora cardiaca, the only other brain region staining positive for ILP2 (Fig. 

S6–8). We quantified ILP2 in the insulin-producing cells, and found that its levels are higher 

in the brood care than in the reproductive phase (Fig. 2D, Fig. S6). Peptide levels are thus 

anti-correlated with transcription. This pattern is known from D. melanogaster, where the 

rate of ILP secretion correlates with the rate of ilp transcription (27). This suggests that the 

mechanisms of ilp expression and ILP secretion are conserved in holometabolous insects.

Because larvae regulate the O. biroi colony cycle, we asked whether larval communication 

altered ilp2 expression in adults. When larvae are removed from colonies in the brood care 

phase, ilp2 expression levels in adult brains increase dramatically within 12 hours (Fig. 2E) 

(28). This increase occurs under identical nutritional conditions. Conversely, when ants in 

the reproductive phase are given larvae, their ilp2 levels decrease (Fig. 2E). vgq, the 

vitellogenin gene upregulated in ant queens, responds similarly, albeit slower, to these 

changes (Fig. S9A), raising the possibility that ILP2 regulates reproduction at least partly by 

acting on vgq. Although this experiment is highly suggestive, the addition of larvae was 

always correlated with the removal of pupae, and changes in expression occurring after the 

24h time point were confounded by nutritional differences. We therefore repeated this 

experiment without pupae and under nutritionally-controlled conditions. We removed larvae 

from colonies in the brood care phase, waited until the ants in these colonies activated their 

ovaries, and then compared brain gene expression between these and control colonies. 

Again, the removal of larvae increased ilp2 (Fig. 2F) and vgq (Fig. S9B) expression. This 
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suggests that social signals can mediate insulin signaling independently of internal 

nutritional state, and that this is a key regulatory mechanism underlying the O. biroi colony 

cycle. Given the conserved association of caste and ilp2 expression in all ants, social 

regulation of ilp2 may also underlie the life cycle of the subsocial ancestor.

In D. melanogaster insulin signaling is necessary and sufficient to regulate the terminal 

differentiation of germline stem cells into oocytes. Moreover, it promotes yolk uptake in 

developing oocytes and is crucial for ovary activation (29). It is therefore plausible that the 

differential expression of ilp2 in ants has a causal role in regulating ovary activation and 

reproductive division of labor. We further hypothesized that if the regulation of ilp2 were 

freed, at least partially, from larval control, this would yield ants whose physiology is less 

susceptible to reproductive suppression. Such a mechanism would allow the evolution of 

distinct reproductive and non-reproductive castes from an ancestral subsocial cycle. To test 

this hypothesis, we injected synthetic O. biroi ILP2 mature peptide into workers in colonies 

with larvae. As a control, we injected the inactive B chain of this peptide (Fig. S11A) (19). 

Injecting ILP2 mature peptide caused strong ovary activation despite the presence of larvae 

(Fig. 3A–C, Fig. S10A). Higher doses of ILP2 caused ants to develop more eggs 

simultaneously (Fig. S10B,C), suggesting that quantitative differences in ILP2 levels vary 

the ants’ positions along a spectrum of reproductive potential. To ensure that ILP2 does not 

have inhibitory effects during the opposite phase of the colony cycle, we injected ants in the 

reproductive phase with ILP2, and found no detectable effect on ovary state (Fig. S11B,C).

Finally, we hypothesized that, as developmental nutritional asymmetries determine caste in 

most ants, this might be a general and natural mechanism that produces asymmetries in 

baseline adult ILP2 levels and consequently in reproductive potential. While most O. biroi 
workers have two ovarioles, some (‘intercastes’) have four or more (25) (Fig. S12A,B). We 

found that these differences can be determined by the amount of food a larva receives (Fig. 

S13). Intercastes have longer and more active ovaries than regular workers in the brood care 

phase, suggesting that they are less sensitive to larval signals that suppress ovarian activity 

(Fig. 4A, Fig. S12C). This is consistent with previous work showing that some intercastes 

fail to regress their ovaries during the brood care phase (25). Finally, we found that the 

insulin-producing cells of intercastes contained more ILP2 than those of regular workers 

(Fig. 4B,C). As we have shown above, ILP2 peptide levels are negatively correlated with 

ilp2 expression, ovary state and, by extension, circulating ILP2 levels in workers between 

the different phases of the cycle, likely due to higher rates of peptide release during the 

reproductive phase (Fig. 2D). The phase-matched comparisons between different types of 

workers, on the other hand, show that intercastes consistently have higher ILP2 levels in 

their insulin-producing cells and, given their more active ovaries and decreased sensitivity to 

larval signals (25), it is likely that they also have consistently higher circulating ILP2 levels.

How the ancestral subsocial cycle was regulated remains unknown. However, assuming that 

similar mechanisms underlie the O. biroi colony cycle, our findings suggest a plausible 

scenario for the evolution of ant sociality. First, during the transition from solitary to 

subsocial, some signaling systems (probably including insulin signaling) in adults must have 

become responsive to larval signals. This allowed behavioral and physiological responses in 

adults to be appropriately modified for the nutritional requirements of the larvae. During the 
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transition from subsocial to eusocial, increased developmental variation may have caused 

some adults to emerge from the pupa with low nutritional stores and low ILP2 levels. These 

sub-fertile individuals would have been more sensitive to larval signals that suppress 

reproduction and would consequently have foregone nest-founding and ovary activation and 

instead assumed brood care roles. Other adults, meanwhile, would have emerged with high 

nutritional stores and high ILP2 levels. These adults would have had reduced sensitivity to 

larval signals and would have been more likely to reproduce despite the presence of larvae. 

This reproductive asymmetry could then have been enhanced or modified by natural 

selection to ultimately produce the obligately reproductive queens and sterile workers of 

advanced eusocial species (Fig. S14). This scenario constitutes an explicit molecular version 

of Mary Jane West-Eberhard’s model for the evolution of hymenopteran eusociality (10).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Brain gene expression in seven ant species identifies one conserved differentially 
expressed gene.
The figure shows the summary cladogram of the seven ant species used in this study in the 

context of the entire ant phylogeny with all subfamilies labeled. Five of the focal species 

have queens, while two (D. quadriceps and O. biroi) are queenless. Although H. saltator is 

not queenless, the data compared reproductive and non-reproductive workers (Table S1). 

The dot plots show variance-stabilized transformed read counts for ilp2. Blue and orange 

dots indicate reproductive and non-reproductive ants, respectively. Horizontal bars indicate 

means, and asterisks indicate statisically significant differences between groups (Wald test: * 

p<0.05; *** p<0.001). All images except for A. echinatior are from A. Nobile, S. Hartman, 

and E. Prado (www.antweb.org). Scale bars represent 2mm. The phylogeny is based on (30). 

Species numbers are from (6).
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Figure 2: Larvae regulate ilp2 in adults.
(A-C) Immunohistochemistry with anti-ILP2 antibody on an O. biroi brain localizes ILP2 

peptide to a single cluster of insulin-producing cells (IPCs) in the pars intercerebralis (body-

axis dorsal view). Green: anti-ILP2; blue: DAPI; magenta: phalloidin. MB: mushroom body; 

AL: antennal lobe. (D) Total intensity of ILP2 in the insulin-producing cells is higher in the 

brood care phase than in the reproductive phase (n≥14, t-test; p=0.046). (E) RNA-Seq time 

course shows that the addition of larvae downregulates ilp2, whereas the removal of larvae 

upregulates ilp2 (n≥4, time:transition interaction, Likelihood Ratio Test with 5% FDR 

correction; p<10−15). The black arrow indicates when ants with larvae were fed, i.e. changes 

in expression beyond that time point are confounded by differences in nutrition. Error bars 

depict SEM. Data from (28). (F) RNA-Seq on ant brains shows that under nutritionally 

controlled conditions, ilp2 is upregulated eight days after larvae are removed from O. biroi 
workers in the brood care phase (n=4, Wald test with 5% FDR correction; p<10−6). Data are 

variance-stabilized transformed read counts. Horizontal bars indicate means.
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Figure 3: ILP2 supplementation overrides larval suppression of adult reproduction.
(A) Workers injected with 100 µM ILP2 in the brood care phase activate their ovaries 

relative to controls injected with 100 µM ILP2 B chain despite being in contact with larvae 

(n≥10, Welch’s t-test with Bonferroni correction (related data in Fig. S8); p=0.0005). (B and 

C) Confocal images of ovaries from ants injected with either 100 µM ILP2 (B) or 100 µM 

ILP2 B chain (C). Shown are the pairs of ovaries closest to the mean value from each 

treatment; the largest oocyte in each pair is circled in blue.

Chandra et al. Page 11

Science. Author manuscript; available in PMC 2019 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4: Intercastes respond less to larvae and have more ILP2 than regular workers.
(A) Intercastes have more active ovaries than age-matched regular workers in the brood care 

phase, despite both being in contact with larvae (n≥16, Welch’s t-test; p<0.0001). (B) In the 

brood care phase (n=19, Mann-Whitney U test; p<0.0001) and (C) in the reproductive phase 

(n≥12, Mann-Whitney U test; p=0.0043), intercastes have more ILP2 in their insulin-

producing cells than age-matched regular workers. Horizontal bars indicate means on all dot 

plots.
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