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ABSTRACT
Tightly controlled communication among the various resident and recruited cells in the intestinal tissue is
critical for maintaining tissue homeostasis, re-establishment of the barrier function and healing responses
following injury. Emerging evidence convincingly implicates extracellular vesicles (EVs) in facilitating this
important cell-to-cell crosstalk by transporting bioactive effectors and genetic information in healthy
tissue and disease. While many aspects of EV biology, including release mechanisms, cargo packaging,
and uptake by target cells are still not completely understood, EVs contribution to cellular signaling and
function is apparent. Moreover, EV research has already sparked a clinical interest, as a potential
diagnostic, prognostic and therapeutic tool. The current review will discuss the function of EVs
originating from innate immune cells, namely, neutrophils, monocytes and macrophages, as well as
intestinal epithelial cells in healthy tissue and inflammatory disorders of the intestinal tract. Our
discussion will specifically emphasize the contribution of EVs to the regulation of vascular and epithelial
barrier function in inflamed intestines, wound healing, as well as trafficking and activity of resident and
recruited immune cells.
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Mucosal integrity

Maintenance of the intestinal barrier integrity and rapid
resealing of mucosal wounds is critical for proper func-
tion of the gastrointestinal (GI) tract. Intestinal epithelial
cells (IECs) lining the intestinal lumen form a selectively
permeable barrier to separate luminal contents from the
underlying tissues. Through complex communication
with the microbiome and the immune system, IECs
maintain gut homeostasis. Dysregulation of the immune
cell composition during gut injury results in impairment
of the intestinal barrier and underlies a wide spectrum of
inflammatory disorders of the GI tract, including Inflam-
matory Bowel Disease (IBD).1,2

Basis of epithelial healing

IECs are constantly exposed to a repertoire of dietary
substances, foreign antigens, commensal and pathogenic
bacteria, and thus are susceptible to injury.3 Rapid reseal-
ing and repair of mucosal wounds is essential for rees-
tablishing the intestinal barrier and limiting antigen
leakage into underlying tissues. If not efficiently repaired,

bacterial translocation and antigenic exposure associated
with a breached barrier inevitably results in aberrant
immune response and augmentation of epithelial injury.3

Wound healing requires efficient tissue remodeling,
where IECs proliferate and migrate into the wound bed
to cover denuded surfaces.4 Epithelial cells migrate as
cohesive sheets and require actin cytoskeleton-driven
depolarization and dynamic turnover of focal cell-matrix
associations.4 To reestablish barrier function and tissue
homeostasis, wound healing is terminated by resolution
of inflammation and removal of damaged cells, a process
in which resident and recruited immune cells are key
players (summarized in).5

Innate immune cells are key contributors to the
healing process

It is well-established that an innate immunity is a critical
component of wound healing and gut homeostasis.
Coordinated recruitment of leukocytes in response to
chemotactic gradient generated at injury site is critical
for host defense, resolution of inflammation, and tissue

CONTACT Ronen Sumagin, PhD. ronen.sumagin@northwestern.edu Northwestern University, Tarry Research Building, Room: 3–707, 303 E. Chicago
Avenue, Chicago, IL 60611, USA.
yEqual contribution.
© 2018 Taylor & Francis

TISSUE BARRIERS
2018, VOL. 6, NO. 2, e1431038 (14 pages)
https://doi.org/10.1080/21688370.2018.1431038

https://crossmark.crossref.org/dialog/?doi=10.1080/21688370.2018.1431038&domain=pdf&date_stamp=2018-02-08
mailto:ronen.sumagin@northwestern.edu
https://doi.org/10.1080/21688370.2018.1431038


regeneration.6 Among the immune cells, neutrophils
(polymorphonuclear, PMNs) are the first to respond to
insult and the ensuing chemotactic cues.7,8 As the pre-
dominant players during the onset of injury-induced
inflammation, tissue-infiltrating PMNs elicit “in-danger”
cues that amplify and sustain inflammation by promot-
ing recruitment of other inflammatory effector cells,
including monocytes/macrophages and T helper 17
(Th17) cells.9 At the site of injury, PMNs produce reac-
tive oxygen species (ROS) and lytic enzymes critical for
host defense,10 but harmful to surrounding tissues.11 As
a consequence, the presence of PMNs in tissues is often
viewed as detrimental and regarded as the hallmark of
many inflammatory diseases, including IBD. However,
emerging evidence demonstrates increased PMN plastic-
ity, life-span, and phenotypic heterogeneity in inflamed
tissues.12 As such, in addition to their phagocytic activity
that protects against pathogens and removes apoptotic/
necrotic cells and cellular debris, PMNs are capable of
producing a milieu of pro-resolving mediators, including
antibacterial peptides,13 resolvins,14 defensins,15 and cat-
ionic peptides such as LL-37,16 nitric oxide,17 and trans-
forming growth factor beta (TGFb)18 in order to
promote epithelial repair.19 PMNs can further physically
interact with epithelial receptors such as intercellular
adhesion molecule-1 (ICAM-1) to direct IEC prolifera-
tion,20 repair of blood vessels,21 and sequential recruit-
ment of pro-resolving macrophages to assist wound
closure.22 Macrophages replace PMNs at the late phase
of the healing process and provide additional protection
against pathogens, contributing to wound debridement,
clearance of dead and inflammatory cells, and resolution
of inflammation.23 In this regard, PMNs and macro-
phages play a context-dependent role in wound repair
and tissue regeneration. It is important to note that as
with the innate immune cells, adaptive immunity coun-
terparts also contribute significantly to intestinal homeo-
stasis, where regulatory T-cells, for example, play key
roles in resolution of inflammation and wound repair as
seen in ulcerative colitis and Crohn’s disease.24

The biogenesis and composition of extracellular
vesicles (EVs)

To maintain tissue homeostasis, immune cells com-
municate with IECs via physical interaction or in a
paracrine fashion by exchanging soluble effectors such
as, cytokines, chemokines, small peptides, and lipid
mediators.2,22 Intriguingly, substantial evidence

supports an emerging way of cell-to-cell crosstalk in
the form of extracellular vesicles (EVs).25,26 EVs are
secreted by almost every cell type, and serve to shuttle,
and protect bioactive effectors as well as transport
genetic information between cells, in healthy tissue
and disease.25,26,27 As such, EVs emerged as important
contributors to the coordinated signaling events and
communication between the microbiota,28 IECs,29

endothelial cells,30 and immune cells31 during homeo-
stasis, immune activation, and inflammation.

EVs are lipid vesicles with sizes ranging from 50 to
1000 nm in diameter.32,33 Based on size and biogene-
sis, EVs can be further subdivided into exosomes and
microvesicles, or in the case of immune cells often
referred to as ectosomes or microparticles (MPs).33

Exosomes are vesicles with diameter of 40–150 nm
and are derived during the inward budding of early
endosomes to form multivesicular bodies (MVBs) and
later released when these compartments fuse with the
plasma membrane (Fig. 1A).33,34 Recent proteomic
analyses of exosomes suggested enrichment of tetra-
spanin proteins, as well as different classes of lipids,
including cholesterol, sphingomyelin, ceramide, and
phosphatidylserine.34,35 Similarly, endosomal proteins
(ESCRT, ALIX), tetraspanins (CD9, CD63, and
CD81), and heat-shock proteins (HSP-70, HSP-90)
were shown to be highly concentrated in exosomes of
various cell types, and are currently used as universal
markers for these vesicles.35,36,37 Possibly, one of the
key functions of exosomes is to transport regulatory
microRNAs (miRNAs),38,39,40 which are otherwise
extremely unstable and are rapidly degraded in the
tissues.41

Ectosomes or MPs, on the other hand, are larger
particles with diameters ranging from 200 to 1000 nm
that are generated by the outward budding of the
plasma membrane33,34,37 (Fig. 1B). Since ectosomes
are primarily membrane-derived, they contain lipids
and many of the surface molecules characteristic of
parental cells they were originated from.34 Electron
microscopy and proteomic analyses confirmed size
and composition heterogeneity of ectosomes42,43,44

and established phosphatidylserine as a reliable ecto-
some marker.45,46 Importantly, while the heteroge-
neous content of EVs reflects the parental cell
phenotype, the composition, including, levels and the
bioactivity of specific mediators is stimulus-dependent
and is dramatically altered as a result of stimulatory
conditions and the environmental milieu.34,40,42 Thus
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not surprisingly, EV contribution to cell function is
context-dependent, and has been assigned both pro-
and anti-inflammatory effects.47,48 Finally, EVs by yet
unknown mechanism can bind target cells to modu-
late the expression and localization of surface proteins
by way of MMPs49 and/or be internalized by target
cells, resulting in the release of their content. The pro-
cesses of EVs uptake is dependent on the recipient cell
type, and involves clathrin-, cholesterol- and lipid
raft-dependent endocytosis by immune cells.34,37

The biological activity of EVs in healthy
and inflamed intestine

Proteins, lipids, mRNAs and miRNAs that are shut-
tled by EVs among neighboring cells serve as second-
ary messengers to temporally and spatially modulate
and coordinate cellular responses.33,34 As such, EV-
associated matrix metalloproteinases (MMPs), growth
factors, chemokines and miRNA can rapidly and in a
localized fashion help reorganize the extracellular
matrix and junctional complexes, promote cell growth
and migration, as well as facilitate recruitment of
immune cells. The specific contribution of EV-associ-
ated miRNAs to the regulation of these key processes
mediating tissue injury and repair47 are summarized
in Table 1. EVs can be readily isolated from bodily flu-
ids, such as serum,50 saliva,51 urine,52 and in the intes-
tine from luminal aspirates.53 The number of EVs and
their composition can reflect both healthy and patho-
logical states.54 Specifically, in IBD an increased num-
ber of EVs in the serum and the intestinal lumen53

was correlated with disease severity and were shown
to contain immune cell- and IEC-specific markers as

well as many inflammatory markers associated with
the diseases.55 PMN-derived MPs, in particular, have
been shown to be highly enriched at sites of inflamma-
tion.56,57,58 Since EVs can be released by immune cells,
endothelial, and epithelial cells, understanding the
biogenesis and function of EVs in inflamed tissue will
help decipher mechanisms governing the complex
interplay of these cells in maintaining barrier integrity
and facilitating tissue repair. In the following sections,
we will discuss the contribution of EVs to intestinal
homeostasis and immune cell function, specifically
focusing on epithelial barrier, wound healing, and leu-
kocyte recruitment to sites of inflammation.

EVs regulate epithelial barrier integrity

IECs via apical junctional complexes (AJCs) form a bar-
rier to separate luminal content from the underlying tis-
sue. Disruption of IEC junctions leads to loss of barrier
integrity, a feature that underlies intestinal injury and
IBD. PMN migration across IECs is a hallmark of
intestinal inflammation, and is often associated with
the loss barrier function.59,60As such, mislocalization/
loss of several key components of the AJCs including,
E-cadherin, Occludin, Claudin-1, Zonula Occluden-1
(ZO-1), and Junctional Adhesion Molecule-A (JAM-A)
adjacent to clusters of transmigrating neutrophils was
reported in clinical samples obtained from patients with
IBD and cultured IECs.59,61,62 Importantly, while most
of the pathological effects of PMNs were attributed to
PMN-derived soluble mediators, recently PMN-derived
EVs have been implicated in contributing to these pro-
cesses.56,57 We recently reported abundant association
of MMP-9 with PMN-derived MPs, released during

Figure 1. Characterization of PMN-derived EVs. (A-B) PMNs were stimulated with fMLF (1mM) to produce EVs. EVs were isolated by serial
centrifugation and analyzed by transmission electron microscopy. (A) A representative EV with the size of exosomes (< 100 nm). (B) A
representative microparticle/ectosome with the size of»600 nm. (C) PMNs (immunolabeled for CD11b, red and myeloperoxidase, green)
release myeloperoxidase-containing EVs (shown by arrows) following adhesion to and migration across IECs (surface stain, blue).
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transepithelial migration (TEM).49 PMN-MPs were
found to bind IECs and potently cleave desmoglein-2
(Dsg-2), a key desmosomal cadherin, and destabilize
epithelial cell-to cell adhesions.49 Loss of Dsg-2 has been
previously correlated with perturbed epithelial perme-
ability63 and mislocalization of other IEC junctional
components associated with known function in regulat-
ing epithelial permeability,64 including ZO-1 and cox-
sackie and adenovirus receptor (CAR).65 Thus, tissue-
infiltrating PMNs via the release of EVs can exacerbate
barrier dysfunction and drive acute inflammatory
responses and tissue injury in inflamed intestines. Simi-
larly, MMP-9 was shown to degrade/cleave key adhe-
rens junction protein, E-cadherin.66,67 Since assembly of
adherens junctions is required for proper organization
of barrier regulating tight junctional proteins,68 PMNs
via the release of EVs can affect the assembly of IEC
junctional complexes and IEC permeability. In contrast,
tissue macrophages that contribute to tissue homeostasis
release EVs during differentiation that contain high lev-
els of galectin-3.69 Galectin-3 functions to stabilize Dsg-

2 at cell junctions, enhancing the integrity of the IEC
monolayer.70 Intriguingly, PMN-derived ectosomes
were found to be taken up by macrophages, inducing
NFkB inhibition, and polarizing them to pro-resolving
phenotype.71,72 Thus, during injury, tissue-infiltrating
PMNs may contribute to the reestablishment of epithe-
lial barrier through reprograming of macrophages.

As with MMPs, inflammatory cytokines can pro-
mote epithelial damage and barrier dysfunction. Gran-
ulocyte-derived MPs that were isolated from intestinal
luminal aspirates of IBD patients were found to con-
tain inflammatory cytokines, including IL-6, IL-8 and
TNFa.53 IL-6 and TNFa are known to increase epithe-
lial permeability via downregulation or mislocalization
of tight junction proteins, including ZO-1, Claudins,
Occludins and JAM-A.73,74,75 As we have discussed
above, EVs serve to transport regulatory miR-
NAs,38,39,40 which can post-transcriptionally alter pro-
tein expression in target cells. As such, EV-associated
miRNAs have been implicated in targeting IEC junc-
tional components and modulating barrier function

Table 1. A summary of miRNAs that have been shown to be transported by immune, epithelial, and endothelial cell-derived EVs and
their contribution to cellular signaling and intestinal homeostasis.

Target genes Effects Reference

miR-146 TLR4, TRAF6, IkBa – Suppressed NFkB signaling 87, 88, 89, 125, 14
– Increased cell survival. 2
– Increased monocytic IL-10 production
– Decreased IL-8 and CCL5 production

miR-21 RhoB, Cdc42 – Increased colonic epithelial permeability. 82, 83
PTEN, PDCD4 – Modulate PTEN/ PI3K/ Akt axis. 80

– Decreased tight junction proteins, i.e. occluding
and E-cadherin

– Increased IL-6 and IL-8 production
miR-29a Glutamine synthetase,

integrin-b1, claudin-1
– Impaired intestinal barrier functions. 77, 78

LRP6, HuR – G1-phase arrest and impaired proliferation
Mcl-1 – -IEC apoptosis

miR-16 Cingulin, claudin-2, occludin – Impaired tight junction integrity 90, 91
– Altered cytokine secretion by degradation of

TNFa, IL-8, and IL-6 mRNAs.
miR-223 IKKa – Suppressed NFkB signaling 110, 111

STAT3 – Decreased IL-6 and IL-1b production
NLRP3 – Decreased NLRP3 inflammasome activity
ARNT – - Suppressed AHR-mediated Notch signaling

miR-155 SOCS1 – Increased cytokine production of IL-6/ IL-8 124, 128
– Upregulation of VCAM1 and ICAM1, followed by

Increased adhesion of monocytes/T-cells to
endothelial cells

miR-206 A3AR – Increased NFkB/p65 signaling 138, 139
– Increased IL-8/ IL-1b secretion
– Increased DSS-induced colitis severity

miR-141 CXCL12b – Reduced leukocyte trafficking 141
– Alleviated experimental colitis

miR-221 p27 – Increased cell growth 143
DDIT4 – Dysregulation of mTOR signaling
TIMP2 – Increased MMP-2/MMP-9 expression followed by

remodeling of junctions and ECM
miR-320 NOD2 – Suppressed NFkB/p65 signaling 143

– Decreased cytokine production

e1431038-4 T. M. BUI ET AL.



during intestinal inflammation.76 For example,
increased intestinal permeability in a subset of patients
with Irritable Bowel Syndrome (IBS) has been corre-
lated with an increased number of miR-29a-rich EVs
in blood and the intestinal tissue.77 Increased intesti-
nal permeability in these patients was suggested to be
due to miR-29a-mediated downregulation of gluta-
mine synthetase.77 miR-29a was further shown to
downregulate Claudin-1, causing increases in epithe-
lial permeability.78 miR-29a was also found in EVs
released by dendritic cells (DCs) into the extracellular
environment during cognate T-cell-DC interactions.79

Since DCs act as sentinels in the intestinal mucosa to
prime T cells activation in the case of injury or bacte-
rial infection, EVs and miR-29a can contribute to
intestinal function and barrier integrity.

miR-21 is another miRNA that is released within
EVs by DCs, macrophages, and PMNs (unpublished
observations) during intestinal inflammation, and can
have profound effects on IEC permeability. Increases
in miR21 were reported in mucosa and serum of IBD
patients.80,81 In cultured Caco-2 IECs, miR-21
impaired intestinal permeability by targeting Ras-
related small GTP-binding protein B (RhoB) and cell
division control protein 42 (CDC42).80 miR-21 has
also been suggested to increase intestinal epithelial
tight junction permeability through activation of
PTEN/PI3K/Akt signaling pathway, and knockout of
miR-21 in mice led to increased intestinal permeabil-
ity and apoptosis of epithelial cells.82,83 Furthermore,
miR-21 overexpression significantly downregulated
Occludin and E-Cadherin, while increased IL-6 and
IL-8 production,83 confirming an important contribu-
tion of miR-21 to barrier integrity and immune cell
recruitment.

Immune cells and IEC-derived miRNAs trans-
ported by EVs can further alter IEC function and
intestinal barrier by modulating the activity of inflam-
matory transcription genes, such as NFkB and cyto-
kine production. For example, miR-146a released in
EVs by monocytes and macrophages can target inter-
leukin-1 receptor-associated kinase 1 (IRAK1) and
TNF receptor-associated factor 6 (TRAF6) to suppress
NFkB signaling.84,85,86 If taken up by either gut
immune cells or IECs, miR-146a can potently sup-
press the release of barrier-altering cytokines, includ-
ing TNFa and IL-6, reducing the inflammatory
response and improving intestinal barrier.86,87 Indeed,
in IECs, miR-146a protects small intestine against

ischemia/reperfusion injury by downregulating Toll-
like Receptor 4 (TLR4)/TRAF6/NF-kB pathway.88

Epithelial cell-derived miR-146a was further found to
promote IL-10 released by monocytes and limit nasal
inflammation.89 Similarly, miR-16 expressed by epi-
thelial cells91 and released in EVs can facilitate rapid
degradation of RNAs containing AU-rich elements
within their 30UTRs, causing downregulation of
inflammatory cytokine, such as TNFa, IL-8 and IL-
6.90,91

IEC-derived EVs help protect against pathogenic
infections

Enteropathogenic infections and the resulting inflam-
mation can present itself with symptoms similar to
IBD, causing epithelial injury and barrier disrup-
tion.92,93 Rapid activation of the immune system is
required for pathogen clearance and reestablishment
of the barrier integrity.3 Interestingly, emerging evi-
dence suggest that EVs may confer the ability of static
epithelial cells to act at a distance to both limit bacte-
rial spreading and inform local innate and adaptive
immune responses to luminal pathogens. Indeed, the
release of exosomes from the epithelium into the
intestinal lumen was increased following infection by
the protozoan parasite Cryptosporidium parvum.94

IEC-derived exosomes carried antimicrobial peptides,
including cathelicidin-37 and beta-defensin 2, and
were found to bind and help eliminate invading
pathogens.94 Thus, IEC-derived EVs can help protect
against pathogenic infections. Intriguingly, electron
microscopy examination of the luminal IEC surface
revealed a layer of EVs up to 50 nm in diameter
between the microvilli and mucous gel, suggesting
that EV layer can act as an additional barrier to limit
adherence by both commensal and pathogenic
bacteria.95

EVs released apically or basolaterally by IECs were
also found to contain MHC class II and other acces-
sory molecules involved in antigen presentation, sug-
gesting that they can act as antigen-presenting vesicles
to prime adaptive immune cells for immunogenic
responses in the mucosa.29,96 Similarly, epithelial cell-
derived exosomes entrapped and transported avb6
integrin and food antigens to DCs, resulting in pro-
duction of active TGFb by DCs and generation of
antigen-specific regulatory T cells.97 In contrast, EVs
released by an enteric pathogen, Giardia intestinalis,
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can potentially promote inflammation and IEC injury
by facilitating attachment of Giardia to IECs.98

EVs contribution to intestinal injury and repair

Emerging evidence suggests that following injury and
the ensuing inflammation, immune cell, stroma cell,
and IEC-derived EVs can locally alter the production
of cytokines, growth and transcription factors in
wounded mucosa to regulate cell migration, prolifera-
tion, and differentiation. As such, EVs have been sug-
gested to both impede and promote resolution of
inflammation and tissue repair.

PMNs are the first immune cells to infiltrate the
intestinal mucosa following injury. During TEM,
PMNs were found to release microparticles (MPs)
that contain abundant levels of myeloperoxidase
(MPO).99 The binding of PMN derived, and MPO
containing EVs to IEC is shown in (Fig. 1C). While
MPO primarily functions in bacterial killing, during
PMN activation, it is mobilized to the cell surface and
is released in association with MPs. MP-associated
MPO is enzymatically active, and when delivered to
IECs, can impair actin dynamics, migration, and pro-
liferation, significantly impeding IEC wound closure.99

PMN-derived EVs were further suggested to potenti-
ate endothelial cell injury via deposition of MPO-rich
EVs,100 increased production of reactive oxygen spe-
cies,101 and increased pro-inflammatory activity of
metalloproteinase domain containing proteins 10 and
17 (ADAM10 and ADAM17).102 PMN-derived EVs
binding to endothelial cells facilitated leukocyte
recruitment by inducing IL-6, IL-8 and MCP-1 release
and upregulating adhesion molecules by inflamed
endothelial cells, thus aggravating tissue injury.103,104

In contrast, granulocytic myeloid-derived suppres-
sor cells (MDSC)-derived exosomes were found to
attenuate dextran sulfate sodium (DSS)-induced epi-
thelial injury by reducing the number of Th1 cells and
increasing T regulatory cells in a TGFb-dependent
manner.105 DC-derived EVs may similarly act to sup-
press inflammation and tissue damage, as they contain
abundant amounts of milk fat globule EGF/factor VIII
(MFG-E8),106 which has been shown to promote dead
cell clearance and inhibition of NFkB-dependent
release of pro-inflammatory cytokines in experimental
colitis.107 Intriguingly, given the well-established
cross-communication between various immune cells
in inflammation,108 PMN-derived EVs were suggested

to suppress inflammatory responses and promote pro-
repair function of macrophages in injured tissue.
PMN-derived EVs were shown to inhibit NFkB signal-
ing and increase the release of TGFb71 and pro-resolv-
ing lipid mediators, such as Resolvin D1 and Resolvin
E2.109 Moreover, in addition to serving as an impor-
tant source of pro-resolving mediators and their role
in wound debridement, macrophages via the release of
miR-223-containing EVs can potentially promote
wound healing by enhancing epithelial cell migratory
behavior, as has been shown for breast cancer cells.110

Indeed, miR-223¡/y mice presented exacerbated, mye-
loid cell-driven experimental colitis with heightened
clinical, histopathological, and inflammatory cytokine
readouts.111 Injured IECs were also shown to release
EVs, which served to promote resolution of inflamma-
tion and healing. A recent work elegantly demon-
strated that IEC-derived exosomes containing
Annexin A1 (ANXA1), promoted wound closure by
binding to formyl peptide receptors (FPRs) and FPR-
dependent generation ROS.19 Physiological relevance
of these findings was confirmed by the observation of
elevated ANXA1-containing EVs in patients with
active IBD.19 Interestingly, in the circulation, PMNs
were similarly shown to release MPs containing
ANXA1, where they served to limit PMN adhesion to
the endothelial cells and inhibit inflammatory recruit-
ment of PMNs.112 Because the release of MPs by
PMNs is stimulus-dependent, whether this is also true
in the setting of intestinal injury, and whether by func-
tion of ANXA1 PMN-MPs could promote IEC repair
remains to be determined. Similarly, TGFb-containing
exosomes from injured epithelial cells were found to
activate fibroblasts and promote tissue repair by
increased matrix deposition and fibrosis.113 TGFb
mRNA transported by exosomes induced prolifera-
tion, a-smooth muscle actin expression, and F-actin
expression in fibroblasts. It is reasonable to speculate
that if taken up by neighboring IECs, these exosomes
could similarly promote IEC migration and prolifera-
tion; however, this would need to be experimentally
confirmed. Furthermore, fibroblasts in the wound bed
can promote epithelial cell motility, which is an essen-
tial component of wound healing,114 via the release of
CD81-containing EVs, as has been shown for breast
cancer cells.115 Epithelial exosomes also contain the
A33 antigen, which is a transmembrane protein
expressed predominantly in intestinal epithelium and
is associated with the regulation of IEC migration and
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proliferation.116 Mice lacking A33 antigen expression
were compromised in their ability to resolve hapten-
induced mucosal damage, exhibiting impaired IEC
proliferation.116 Thus, through the activity of A33,
IEC-derived EVs may promote intestinal wound
repair. Finally, Wnt5a, which is significantly increased
at the wound bed and contributes to epithelial heal-
ing,117,118 has been detected in the exosomal fraction
of Caco-2 IECs.119

EVs contribution to leukocyte trafficking in inflamed
tissue

Immune cells in the intestinal mucosa and other tis-
sues play critical roles in host defense, and as dis-
cussed above contribute significantly to tissue injury
and resolution of inflammation. Recruitment of
immune cells is dependent upon the generation of
local gradients of chemokines, growth factors, and
cytokines produced by resident and recruited cells.
EVs by way of miRNAs can regulate the expression of
these chemotactic factors, or directly shuttle them to
the surrounding tissue to promote/limit leukocyte
recruitment. Leukocytes recruited to sites of inflam-
mation must first cross the endothelial barrier, a pro-
cess that is mediated by several classes of adhesion
molecules and chemotactic cues.120 In the circulation,
EVs released by activated monocytes were found to
induce expression of ICAM-1 (a key leukocyte adhe-
sion molecule)121 and the release of CCL2 (a potent
monocyte chemoattractant)122 to promote leukocyte
recruitment.123 These effects were attributed to the
presence of pro-inflammatory miR-155 in these EVs
and its delivery to endothelial cells. Indeed, endothe-
lial miR-155 has been confirmed to positively regulate
expression of ICAM-1 and VCAM-1.124 miR-155 is
one of several miRNAs, that were found to be highly
enriched in IBD and was further suggested to regulate
cytokine production.125,126 As such, miR-155 was
found to inhibit suppressor of cytokine signaling 1
(SOCS1), an important anti-inflammatory gene,127

resulting in elevated production of leukocyte agonists
and chemoattractants, including IL-6 and IL-8, by
intestinal myofibroblasts.128 Similarly, serum EVs,
presumably produced by the immune and endothelial
cells in a mouse model of colitis were found to pro-
mote inflammatory activation of gut macrophages
and increased production of TNFa.129 TNFa can
impair both endothelial130 and epithelial barriers131,132

and enhance leukocyte recruitment.133,134 Macrophage
activation by EVs, leading to pro-inflammatory cyto-
kine release and increased recruitment of inflamma-
tory cells, was also substantiated in lung injury.135 EV
numbers were found to be increased in Crohn’s
patients, with an elevated disease score, which
includes quantification of inflammatory cell infil-
trate,53 providing further clinical relevance of these
observations.

In contrast to anticipated pro-inflammatory func-
tions, EVs released by circulating PMNs upon adhesion
to vascular endothelium were shown to be enriched with
Annexin A1, an anti-inflammatory protein.112 In this
setting, EVs exerted an anti-inflammatory effect by
inhibiting PMN adhesion and recruitment to inflamed
tissue.112 Similarly, ICAM-1 released in association with
EVs has been suggested to competitively inhibit leuko-
cyte adhesion to endothelium.136 Endothelial and mesen-
chymal cell can also release EVs containing miR-206.137

MiR-206 is significantly elevated in IBD,138 and acts to
suppress NFkB signaling and the release of leukocyte
chemoattractants, IL-8, CXCL1 and CXCL2,139 thus lim-
iting immune cell infiltration. Several other miRNAs
were similarly implicated in dampening inflammatory
cell recruitment and the resulting tissue injury. For
example, miR-141 that is released in EVs was suggested
to keep inflammatory cytokine production in check.140

Downregulation of miR-141 in Crohn’s patients and
experimental models of colitis resulted in increased
CXCL12b production by IECs and enhanced leukocyte
infiltration of the intestinal mucosa.141 miR-146 expres-
sion in epithelial cells has been shown to decrease IL-8
and RANTES/CCL5 release,142 suggesting its role in leu-
kocyte trafficking during colonic inflammation. Follow-
ing injury, IEC-derived EVs143 are enriched with
hypoxia-induced miRNAs, miR-221 and miR-320a,
which induce upregulation and activation of matrix met-
taloproteinase-9 (MMP-9), a protease known to be
involved in macrophage and PMN trafficking by facili-
tating reorganization of junctional complexes and the
extracellular matrix.49

Finally, in addition to regulating cytokine expression,
EVs can transport various chemokines and lipids, and
can locally generate chemotactic gradients for migrating
leukocytes. Indeed, in a Trans-well setup, macrophage-
derived EVs were shown to induce granulocyte migra-
tion.144 Moreover, IL-8145 and IL-18146 encapsulated in
EVs can act as chemoattractants of PMNs in various dis-
ease settings. Macrophage and DC-derived EVs were
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found to contain biologically active enzymes for leuko-
trienes biosynthesis (LTA4 and LTB4) and promote
granulocyte recruitment.144 Granulocytic peripheral
blood cells (RBL-2H3) were shown to release exosomes
containing prostaglandins, such as, PGE2,147 which
among other functions can promote calcium and CCR7-
dependent migration of monocyte-derived DCs.148

Concluding remarks and future perspectives

As our knowledge of EV biogenesis and content
expands, the contribution of EVs to intercellular com-
munication and regulation of cellular processes in
healthy and inflamed tissue become apparent. Many
aspects of EV biology still remain unanswered, includ-
ing active versus passive release by parent cells, cargo
protection, uptake by target cells, content release, and
importantly, pro- versus anti-inflammatory function
of EVs. However, as we have outlined in this review,
particularly in the gut, EVs contribute to the regula-
tion of vascular and epithelial barrier function, wound
healing, and function of resident and recruited
immune cells (EVs release by various cell types, con-
tent and effects on cell function are summarized by
schematic representation, Fig. 2). EVs research has
already sparked a clinical interest, as EVs were found
to be elevated in the serum and tissues of patients with
IBD and other multifactorial disorders. Moreover,
given that the cargos associated with EVs often reflect
diverse healthy and pathogenic states of the releasing
cells and tissues, ongoing efforts are dedicated to

exploring the possibility in which EVs can be used as
biomarkers to diagnose and assess the therapeutic suc-
cess of complex disorders, including IBD. For exam-
ple, analysis of serum EV microRNA content in the
clinic could be easily achieved by next-generation
sequencing or digital PCR techniques, potentially
yielding diseases specific gene signatures.38,39 Further-
more, since EVs are specifically equipped to mediate
the transfer of regulatory short RNA molecules
between cells, the possibility of exploiting these
vesicles for therapeutic purposes is now being investi-
gated. As such, ongoing efforts are being made to
develop techniques that encapsulate therapeutic pepti-
des, nucleic acids, and small molecule inhibitors into
EVs, and protect them and increase their bio-availabil-
ity and delivery to disease tissues.149 This new line of
therapy is a great premise for treatment of inflamma-
tory diseases, such as IBDs.
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