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Abstract

To ensure reproductive success, Canis species establish contiguous mosaics of territories

in suitable habitats to partition space and defend limiting resources. Consequently, Canis

species can exert strong effects on prey populations locally because of their year-round

maintenance of territories. We assessed prey use by coyotes (Canis latrans) by sampling

scats from within known territories in southeastern Alabama and the Savannah River area

of Georgia and South Carolina. We accounted for the size and habitat composition of coyote

home ranges to investigate the influence of space use, vegetation density, and habitat type

on coyote diets. Coyote use of prey was influenced by a combination of mean monthly tem-

perature, home range size, vegetation density, and hardwood forests. For example, coyote

use of adult white-tailed deer (Odocoileus virginianus) was associated with cooler months

and smaller home ranges, whereas use of rabbits (Sylvilagus spp.) was associated with

cooler months, larger home ranges, and less vegetation density. Coyotes in our study relied

primarily on nutritionally superior mammalian prey and supplemented their diet with fruit

when available, as their use of mammalian prey did not appreciably decrease with increas-

ing use of fruit. We suggest that differential use of prey by coyotes is influenced by habitat

heterogeneity within their home ranges, and prey-switching behaviors may stabilize local

interactions between coyotes and their food resources to permit stable year-round territo-

ries. Given that habitat composition affects coyote prey use, future studies should also incor-

porate effects of habitat composition on coyote distribution and abundance to further identify

coyote influences on prey communities.

Introduction

Understanding prey selection by predators is a fundamental goal in ecology because it repre-

sents an essential ecological process influencing behavior, community structure, and ecosys-

tem productivity. Coyotes (Canis latrans), the most widely distributed Canis species in North
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America, exhibit frequency-dependent switching strategies [1,2] under which their moderate

body size (9–23 kg; [3]) permits them to use a broad range of mammalian prey that vary from

small mammals and lagomorphs to ungulates [4–8]. Although coyotes can exploit a diversity

of mammalian prey, they often supplement their summer and fall diet with fruit, such as

prickly pear (Opuntia littoralis) and American persimmon (Diospyros virginiana). In the east-

ern United States, white-tailed deer (Odocoileus virginianus) are thought to be an important

food resource for coyotes and there is considerable concern among wildlife managers that coy-

ote predation on deer neonates (i.e.,�3 mo old) may be significant enough to affect deer pop-

ulations [9–11]. However, coyote predation of adult deer is believed to be low with most use of

adults resulting from scavenging of carcasses made available by human hunters and road kill

[12–15].

In the southeastern United States, recent research suggests scavenging by coyotes does not

fully explain their use of white-tailed deer and that coyotes are capable of preying on adult

deer year-round [7,16]. For example, Hinton et al. [16] suggested that coyotes in eastern North

Carolina procured deer through predation rather than scavenging for several reasons. First,

they observed a positive correlation between coyote body mass and occurrence of deer in coy-

ote diets, suggesting that body size was an important trait for coyotes to acquire deer through

predation since scavenging is opportunistic and should be less affected by body mass. Second,

they observed intra- and interspecific segregation of coyote and red wolf (Canis rufus) home

ranges and suggested that strong site fidelity and defense of territories reduced opportunities

for coyotes to scavenge outside their home ranges. Finally, they suggested that energetic

returns from carrion did not outweigh increased mortality risks for coyotes when scavenging

along roadways and that avian scavengers, such as American crows (Corvus brachyrhynchos),
black vultures (Coragyps atratus), and turkey vultures (Cathartes aura), likely reduced oppor-

tunities to scavenge roadkill.

Scat analysis is the most commonly used method to determine carnivore diets because it is

a noninvasive method with low financial costs that provides a broad picture of food habits

[17–19]. However, coyote predation is influenced by intrinsic, social, and environmental fac-

tors that are difficult to account for in diet studies that analyze scats. Because coyotes are coop-

erative breeders with packs spatially segregated on the landscape [20–22], effects of predation

on prey species are greatest in areas where territories exist. Accordingly, studies using scat

analysis to assess coyote diets should account for packs and defended territories because stud-

ies conducted across small study sites (e.g.,�500 km2) may artificially inflate sample sizes and

incorporate pseudo-replication in their analyses by treating scats, rather than packs, as sam-

pling units [16,23]. Despite advances in genotyping to discriminate coyote scats from those of

other species and to identify unique individuals in populations, pooling scats continues to be a

common practice when studying coyote diets [24–27]. By using Global Positioning Satellite

(GPS) data from collared coyotes, researchers can spatially target known home ranges of mon-

itored animals to assign scats to meaningful sampling units, such as packs and defended terri-

tories, and avoid pseudo-replication and inflated sample sizes. For example, Hinton et al. [16]

were able to assess effects of intrinsic (breeder body mass), social (pack size), and environmen-

tal (season, agricultural habitat, white-tailed deer abundance) factors on coyote and red wolf

diets by collecting scats from known territories and treating packs as sampling units. There-

fore, using spatial data to identify home ranges of resident coyotes could improve scat analyses

via targeted sampling.

We conducted a broad-scaled assessment of prey use by resident coyotes in two separate

populations in southeastern Alabama and the Savannah River area of Georgia and South Caro-

lina. By monitoring approximately 140 GPS-collared coyotes and accounting for residency, we

were able to assess the influence of size and habitat composition of home ranges on prey use
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by coyote packs via scat analysis. In particular, it is difficult to know if occurrences of white-

tailed deer in scats were acquired through predation or scavenging. However, diversity of prey

use and home range size should provide insights into coyote foraging behaviors. For example,

wild pigs (Sus scrofa) are a common non-native ungulate in the southeastern United States

and, like white-tailed deer, are a popular large game species throughout the region [28,29].

Indeed, coyotes in our study area were reported to be a primary scavenger of wild pig carcasses

[30]. If resident coyotes rely on scavenging hunter-killed ungulate carcasses to supplement

their diet during winter, we should expect similar seasonal trends of deer and wild pig occur-

rence in coyote scats. Because scavenging is opportunistic, we should also expect coyote home-

range size to be positively correlated with occurrence of deer in their diet. The availability and

accessibility of deer carcasses varies spatially and temporally across the landscape and larger

home range sizes should increase the probability that resident coyotes locate deer carcasses.

By assessing coyote prey use over broad geographic regions and using packs as our sampling

units, we sought to better understand how size and habitat composition of home ranges influ-

enced coyote predation on local prey species, such as white-tailed deer.

Materials and methods

Study area

The study area encompassed a broad region on private and public lands in southeastern

Alabama (Barbour, Macon, and Pike Counties), east-central Georgia (Columbia, Jefferson,

Lincoln, McDuffie, and Warren Counties), and western South Carolina (Aiken, Edgefield,

McCormick, and Saluda Counties) totaling approximately 16,200 km2 (Fig 1). Coyotes cap-

tured in Georgia and South Carolina commonly dispersed into each respective study area, and

likely represented one population [hereafter the Savannah River area (SRA) population]. Both

study areas were situated at the interface of the Piedmont and Southeastern Plains ecoregions

and experienced a mild sub-tropical climate with all four seasons. Summers were generally hot

and humid with an average high temperature of 20˚C, and winters were generally mild with an

average low temperature of 1˚C [31]. The Piedmont received an average yearly rainfall of 123

cm, whereas the Southeastern Plains received an average of 136 cm [31].

Habitats in the Alabama and SRA contained a mix of early successional, agricultural, for-

ested, and urban habitats. The Piedmont was dominated by loblolly (Pinus taeda) and shortleaf

(P. echinata) pine plantations, and successional pine and hardwood forests containing oak

(Quercus spp.), hickory (Carya spp.), sweetgum (Liquidambar styraciflua), loblolly pine, and

shortleaf pine, and pastures and agricultural fields were also intermittent on the landscape.

The Southeastern Plains shared similar characteristics to the Piedmont, consisting of pastures

and agricultural fields, pine plantations, and oak-hickory-pine woodlands. Furthermore, the

Southeastern Plains contained southern mixed forests with various pines, beech (Fagus spp.),

sweetgum, southern magnolia (Magnolia grandiflora), laurel oak (Q. laurifolia) and live oak

(Q. virginiana), and floodplains were characterized by oaks, red maple (Acer rubrum), sweet-

gum, American elm (Ulmus americana), and areas of cypress (Taxodium spp.). Agriculture in

these regions included cotton, corn, tobacco, soybeans, and peanuts.

Potential food items for coyotes included rabbits (Sylvilagus spp.), wild turkeys (Meleagris
gallopavo), white-tailed deer, wild pig, eastern woodrats (Neotoma floridana), hispid cotton

rats (Sigmodon hispidus), mice (Peromyscus spp.), shrews (Blarina spp., Sorex spp.), voles

(Microtus spp.), armadillos (Dasypus novemcinctus), opossums (Didelphis virginiana), squirrels

(Sciurus spp.), insects, persimmons (Diospyros virginiana), blackberry (Rubus spp.), wild

plums (Prunus spp.), pokeweed (Phytolacca americana), wild grape (Vitis spp.), muscadine

(Vitis rotundifolia), and black cherry (Prunus serotina) [7,14,32]. Other carnivores in
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competition for these food items included raccoons (Procyon lotor), red fox (Vulpes vulpes),
gray fox (Urocyon cinereoargenteus), and bobcat (Lynx rufus).

We recognize that coyotes could directly prey on white-tailed deer via take of fawns and

adults, or through opportunistic use of carcasses and animals wounded by hunters. Availability

of deer in these two populations differed somewhat due to different hunting season dates and

timing of deer reproduction (e.g., breeding and parturition dates). Across our study areas, neo-

nate fawns were available to coyotes for eight months (March—October) of the year. Deer

hunting occurred throughout both study sites. In Alabama, hunting began on 15 October and

ended on 10 February. In Georgia, hunting began on 10 September and ended on 8 January.

Finally, in South Carolina, hunting began 15 September and ended 1 January. Consequently,

human hunting provided a seasonally available source of deer to coyotes across six months

during fall and winter.

Data collection

We captured coyotes using foothold traps (Victor #3 Softcatch, Woodstream Corporation,

Lititz, Pennsylvania, USA) with offset jaws during January—February 2015–2016. Animals

Fig 1. Map of counties (noted as shaded area) in Alabama, Georgia, and South Carolina, USA, where coyotes were trapped during 2015–2016.

https://doi.org/10.1371/journal.pone.0203703.g001

Environmental factors influencing prey use by coyotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203703 October 10, 2018 4 / 22

https://doi.org/10.1371/journal.pone.0203703.g001
https://doi.org/10.1371/journal.pone.0203703


were restrained using a catchpole, muzzle, and hobbles. We determined sex and weight, and

estimated age by tooth wear [33]. We categorized coyotes�2 years old as adults, 1–2 years old

as juveniles, and <1-year-old as pups. Prior to release at capture sites, we fitted coyotes with

mortality-sensitive G2110E satellite collars (Iridium; Advanced Telemetry Systems, Isanti,

Minnesota, USA). Collars were programmed to record animal locations at 4-hour intervals

that were transmitted via the Iridium satellite system every three days to an Advance Telemetry

Systems website center for access. No endangered or threaten species were involved in our

study and all coyote handling procedures were approved by the University of Georgia Institu-

tional Animal Care and Use Committee (A2014 08-025-R2) and adhered to guidelines pub-

lished by the American Society of Mammalogists [34]. To access lands to trap and collect scat,

state agencies granted permission for publicly owned properties while we obtained permission

from landowners to collect data from privately owned lands.

Because our goal was to evaluate prey use by resident coyotes, we determined stability of

space use using a rarefaction curve for each animal by calculating monthly home ranges [35].

Similar to Hinton et al. [36,37], we identified resident coyotes as animals that resided in an

area and showed stable space use for�4 months. We then calculated home ranges and core

use areas using 95% and 50% fixed kernel density estimates from utilization distributions per-

formed in Geospatial Modelling Environment using the h-plugin smoothing parameter [38]

and ArcMap 10.3 [39].

Once we identified resident coyotes after four months of monitoring, we estimated home

ranges and began collecting scats along roads and trails within and proximate to core areas of

known territories at least once a month during January 2016–December 2016. We collected

scats from packs with� 1 GPS collar and ceased collecting scats from packs when they no lon-

ger consisted of individuals with working collars. This approach minimized the chance of col-

lecting scats from transients, as residents typically exclude unrelated conspecifics from their

territories [16,22]. For example, Dellinger et al. [40] matched 96% of 196 scats to the genotypes

of individual red wolves in territories they sampled, showing inclusion of non-pack member

scats was low. Nevertheless, we recognize that our sample likely included scats not belonging

to resident coyotes maintaining each territory, but we offer that this occurred infrequently.

We placed scats in plastic bags labeled with the date and a unique identification number

and then stored them at -20.0˚C for future analysis. We dried scats in an oven at 85˚C for 48 h

and then recorded dry weights. We then bagged individual scats in nylon stockings with water-

proof labels and soaked them in water for 24 h prior to washing. We washed scats in a washing

machine twice on the regular cycle with detergent. This separated hair, bone, and other undi-

gested food items from fecal material. We subsequently dried scats in a drying oven at 50˚C

for 48 h to destroy any zoonotic parasites prior to examining scat contents. To identify prey

remains in scat, we visually analyzed each scat for prey items, which we assigned to one of six

categories: white-tailed deer, rabbits, small mammals (mice, rats, shrews, and voles), wild pig,

plants, and other food items (birds, insects, opossum, raccoon, armadillo, cattle, reptiles and

anthropogenic trash). As needed, we examined food items microscopically or compared them

to reference collections for identification [41]. To further assess the use of deer, we differenti-

ated adult deer hair in scats from fawns. We measured hair widths using an eyepiece reticule

with a microscope and categorized hairs� 80 micrometers as fawns and hairs >80 microme-

ters as adults [42].

Statistical analyses

We recorded frequency of occurrence (FO) of each prey category for each scat. When an item

constituted� 1% of a single scat it was treated as a trace item and excluded from analyses

Environmental factors influencing prey use by coyotes
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[19,43]. Because FO is known to overestimate importance of small prey and underestimate

importance of large prey [19,44], we estimated percent volume (to the nearest 5%) of each prey

item in scats via visual examination and converted percent volume diet estimates to percent

biomass to calculate relative total biomass (RTB) of prey in scats. We then used RTB from

scats to calculated mean monthly biomass (MMB) ingested by coyote packs for each prey cate-

gory according to the linear regression model of Weaver [44]. The model converts dry mass of

undigested remains of prey in scats into biomass ingested and provides the relative total weight

of each type of prey consumed based on the number of scats sampled. Mean body mass esti-

mates for species were necessary to use Weaver’s [44] equation and, because only two prey cat-

egories (white-tailed deer and wild pig) consisted of a single species, we used the mean body

mass of a common species in each prey category comprising >1 species that was frequently

reported as a prey item in coyote diet studies. We used the mean body mass of hispid cotton

rats (Sigmodon hispidus, 0.1 kg) [45] to calculate RTB of small mammals consumed by coyotes.

For rabbits, we used the mean body mass of eastern cottontail rabbits (Sylvilagus floridanus,
1.2 kg) [46] to calculate RTB of rabbits consumed. To calculate RTB of fruit consumed by

coyotes, we used the mean mass of persimmon fruit (0.05 kg) [47]. Body mass of white-tailed

deer in our study ranged between 30–100 kg [48,49]. Body mass of female deer (does) ranged

between 30–50 kg, whereas males (bucks) ranged between 40–100 kg. Fawns typically weigh

approximately 2 kg at birth during spring and summer and increase in weight until they

achieve adult-like sizes in during fall and winter [48,49]. To calculate RTB of deer consumed

by coyotes, we used a mean body mass of 35 kg to account for the considerable differences in

mass observed for fawns, sub-adults, and adult deer. Because we could distinguish fawn hair

from sub-adult and adult hair, we used a mean body mass of 10 kg for fawns and 45 kg for

adult deer to calculate the differences in RTB of fawn and adults consumed by coyotes. We

used a mean body mass of 85 kg for wild pigs because mass of adult wild pigs ranged between

70–100 kg [50]. We did not calculate RTB consumed by coyotes for other food items because

the wide variety of prey (e.g., birds, insects, mammals, reptiles, amphibians) made it impracti-

cal to estimate a mean body mass to calculate RTB consumed. Finally, we used FO and MMB

estimates for coyote packs to analyze the effect of month on coyote food habits using repeated

measures analyses of variance (ANOVAs) and Tukey tests for multiple comparisons.

To assess environmental factors influencing coyote prey use, we included data on season,

vegetation density, habitats, and predicted prey distribution in our analysis. Because biological

seasons are influenced by phenology, which is largely driven by temperature and known to

vary spatially, we incorporated mean monthly temperatures to create a continuous variable

that better captured seasonal variation than calendar months. To calculate vegetation density,

we estimated vegetation biomass in our study areas using the United States Forest Service

National Forest Inventory and Analysis (FIA) dataset, which was created by modeling forest

biomass as functions of over 60 predictor layers such as digital elevation models (DEM) and

the 1992 National Land Cover Dataset (NLCD).

Within coyote home ranges, we accounted for habitat composition and predicted habitat

models of primary prey. We estimated predominant types of vegetation cover using a 30-m

resolution digital landscape map of vegetative communities developed by the Southeast Gap

Analysis Project [51]. We reduced these predominant vegetation communities to seven pri-

mary habitat types and calculated the extent of home ranges consisting of these habitats. We

assigned forested habitats to one of three categories: hardwood forests, pine forests, and mixed

forests that comprised both hardwood and pine species. We combined grassland, savanna, and

early successional habitats into an open and early successional habitat category. We combined

herbaceous wetlands, forested wetlands, and riparian habitats into a wetland and riparian habi-

tat category. We categorized agricultural crops and pasturelands as agriculture. Finally, we

Environmental factors influencing prey use by coyotes
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categorized developed open space, low intensity developed, medium intensity developed, and

high intensity developed areas as developed habitats.

To create raster maps of predicted prey distribution for coyotes, we used 30-m resolution

digital maps of predicted habitat models for primary prey species available to coyotes devel-

oped by the Southeast Gap Analysis Project [51]. Using Spatial Analyst in ArcMap 10.3, we

merged raster maps of predicted habitat for common rodents to create a raster map of pre-

dicted habitat for small mammals. Similarly, we merged raster maps of predicted habitat for

common lagomorphs to create a raster map of predicted habitat for lagomorphs. Finally, we

used the Southeast Gap Analysis Project’s raster map of predicted habitat for white-tailed deer

as our map of predicted habitat for deer.

After classification of habitat types and predicted prey distributions, we evaluated the

degree of redundancy among 12 environmental factors (home range size, extent of 7 habitats

in home ranges, extent of predicted habitat for 3 prey types in home ranges, and vegetation

density) using principal components analysis (PCA; JMP software; SAS institute; S1 Dataset).

Ordination techniques, such as PCA, are popular with community and landscape ecologists

because they can identify different types of underlying data structure [52–55]. We used PCA to

compress our highly dimensional data set into a lower dimensional one to extract the domi-

nant, underlying gradients of variation (principal components). The principal components

(PCs) are weighted linear combinations of the original variables ordered according to the

amount of variation each PC explained. We used the latent root criterion (PCs with eigenval-

ues�1) as a stopping rule to determine the number of significant PCs to retain and interpret

[52]. We then based our interpretation of each PC on those variables with loadings�0.40 or

�-0.40, and placed most emphasis on those with loadings�0.60 or�-0.60 [52]. We used the

variables with the strongest loadings to interpret the ecological meaning of each PC. The PCs

were then used to as indicators of landcover complexes and synthetic variables of landcover

gradients existing in our study areas, in which prey consumption either increased or decreased

with the value of each of the latent environmental variables.

We used FO of each prey category in scats as a binary response variable (1 = present in scat,

0 = absent from scat) in generalized linear mixed models with a logit link using Program R

[56] to determine which environmental factors influenced FO of each category observed in

scats (S2 Dataset). These factors included mean monthly temperature and ecologically mean-

ingful PCs consisting of habitats and predicted prey distribution. We then included random

intercepts for coyote packs, nested within study area, to account for pack variation. Prior to

modeling, we rescaled mean monthly temperature values by subtracting the mean and divid-

ing by one standard deviation. We then used Akaike’s information criterion adjusted for small

sample sizes (AICc) and used ΔAICc to select which models best supported factors influencing

FO of prey in coyote scats [57].

Results

We captured and monitored 164 coyotes across Alabama, Georgia, and South Carolina with

GPS collars during 2015–2016. We excluded 17 coyotes from space use analyses due to an

insufficient number of relocations. Of the remaining 147 coyotes, 60 coyotes (40.8%) were

residents and 48 (26.5%) were transients for the entire time they were monitored, whereas 39

(26.5%) coyotes exhibited both residency and transiency. We collected 1,126 scats from 29 ter-

ritories during January 2016–December 2016. The number of GPS-collared coyotes in each

pack ranged between 1–6 individuals. The mean number of packs monitored each month

was 13.4 (SD = 4.8) and ranged between 6–22. The mean number of scats collected per pack

each month was 6.9 (SD = 1.8). Mean home range size was 13.5 km2 (SD = 7) and varied from
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5.4 km2 to 39.2 km2. Mean core area size and standard deviation across populations was 3.2

km2 (SD = 1.3) and varied from 1.0 km2 to 6.1 km2.

Mean vegetation density within coyote home ranges was 67.5 MG/ha (SD = 18.4) and var-

ied between 32.7 and 92.8 MG/ha. Average percentage of predicted small mammal habitat

within coyote home ranges was 51.5 (SD = 15.3) and varied between 19.8%–79.0%. Mean

predicted lagomorph habitat within home ranges was 35.8 (SD = 10.3) and varied between

15.0%–55.3%. Average percentage of predicted white-tailed deer habitat within home ranges

was 61.6 (SD = 8.9) and varied between 32.7%–73.2%.

Mean percentage of agriculture habitats within coyote home ranges was 15.7 (SD = 11.6)

and varied between 0.7%–37.7%. Average percentage of developed areas within home ranges

was 6.3 (SD = 4.0) and varied between 0.0%–19.7%. Mean percentage of hardwood forests

within coyote home ranges was 8.9 (SD = 13.2) and varied between 0.0%–64.1%. Average per-

centage of pine forests within home ranges was 31.7 (SD = 18.2) and varied between 0.2%–

79.2%. Mean percentage of mixed forests within home was 10.6 (SD = 15.2) and varied

between 0.0%–64.1%. Average percentage of open and early successional habitats was 17.3

(SD = 4.4) and varied between 6.5%–26.5%. Finally, mean percentage of wetland habitats was

7.2 (SD = 7.1) and varied between 0.5%–23.4%.

The first three principal components (PC1, PC2, and PC3) of our PCA, which explained

53.2%, 17.0%, and 11.9% of the cumulative variation, respectively, were the only PC scores

with eigenvalues�1 (Table 1). Since the first three axes explain about 82% of the total variance,

we deemed the 3-dimensional solution adequate. PC1 allowed us to distinguish the effect of

home range size (extent of space use), as it consisted of all positive loadings (Table 1). PC2

allowed us to distinguish areas dominated by low vegetation density, as it was characterized by

negative loadings for vegetation density and habitats typically characterized with understory

(mixed forests, and developed areas and roads), and positive loadings for habitats with low

vegetation structure (wetland and riparian habitats, and agricultural habitats; Table 1). PC3

allowed us to distinguish between pixels characterized by forested and non-forested areas,

as it consisted of positive loadings for hardwood forests, and developed areas and roads, and

Table 1. Eigenvalues, eigenvectors, and factor loadings of environmental factors assessed within home ranges of coyotes in Alabama, Georgia, and South Carolina

of the United States.

Environmental factors Principal component 1 Principal component 2 Principal component 3

Eigenvector Loading Eigenvector Loading Eigenvector Loading

Home range size 0.39 0.99 0.01 0.02 -0.05 -0.06

Small mammal distribution 0.38 0.97 0.03 0.04 0.06 0.08

Lagomorph distribution 0.37 0.93 0.17 0.24 -0.01 -0.01

White-tailed deer distribution 0.39 0.98 0.01 0.02 0.02 0.03

Vegetation density 0.11 0.27 -0.49 -0.71 -0.38 -0.45

Wetland/riparian habitat 0.11 0.29 0.53 0.76 -0.19 -0.23

Agriculture 0.19 0.47 0.52 0.75 0.17 0.21

Hardwood forests 0.07 0.18 -0.13 -0.18 0.65 0.78

Mixed forests 0.26 0.66 -0.29 -0.41 0.07 0.09

Pine forest 0.26 0.66 -0.04 -0.06 -0.48 -0.57

Open/early successional habitat 0.38 0.95 -0.05 -0.07 -0.05 -0.06

Developed areas/roads 0.27 0.68 -0.27 -0.38 -0.26 0.43

Eigenvalue 6.38 2.04 1.43

% of total variance 53.16 17.04 11.92

Description Home range size Vegetation density Hardwood forests

https://doi.org/10.1371/journal.pone.0203703.t001
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negative loadings for pine forests and vegetation density (Table 1). Collectively, these PC

scores indicated that once PC1 accounted for home range size and extent of habitat types, PC2

and PC3 accounted for variation in vegetation density and hardwood forest, respectively. A

disadvantage of PCA is that PCs can be difficult to interpret [58]. However, our interpretation

of PCs characterizing habitats within coyote home ranges is aligned with results obtained by

other studies suggesting that coyote habitat selection is associated with low vegetation and

non-forested habitats [36,59–62].

Overall, white-tailed deer (40.7%), rabbits (25.1%), small mammals (24.5%), and fruits

(27.5%) comprised most prey identified in scats of coyote packs, and since occurrence of

wild pig was rare (0.05%), we categorized them with other food items (Table 2). We found

that FO differed across months for small mammals (F11,149 = 2.070, P = 0.026) and fruit

(F11,149 = 9.751, P� 0.001), but not for rabbits (F11,149 = 1.340, P = 0.208; Fig 2). Although we

observed a weak difference in monthly FO of white-tailed deer (F11,149 = 1.670, P = 0.086; Fig

2), monthly difference was more pronounced for adult deer (F11,149 = 3.558, P� 0.001) and

Table 2. Mean (±SD) frequency of occurrence of primary prey for coyote packs (n = 29) in Alabama and the Savannah River area of Georgia and South Carolina,

January 2016–January 2017.

# of scats White-tailed deer Rabbita Small mammalb Fruitc Otherd

Total Adult Fawn

Alabama (n = 9) 313 36.2±19.0 32.3±19.4 3.8±3.8 17.4±7.3 29.2±14.7 35.1±25.2 14.5±7.6

Savannah River area (n = 20) 813 42.8±16.7 28.7±10.5 14.2±10.9 28.6±19.1 22.3±9.9 24.1±20.1 13.3±8.5

aCottontail and swamp rabbit;
bRat, mouse, shrew, and vole species
c Persimmon, wild grape, muscadine, blackberry, dewberry, and pokeweed
dInsects (i.e., grasshoppers and beetles), armadillo, livestock, opossum, raccoon, birds, reptiles, and human trash

https://doi.org/10.1371/journal.pone.0203703.t002

Fig 2. Frequency of occurrence by month of 4 primary prey categories for coyotes in Alabama, Georgia, and South Carolina, USA, 2016–2017.

Error bars represent 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0203703.g002
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fawns (F11,149 = 4.825, P� 0.001; Fig 3). Tukey tests for multiple comparisons of monthly

means indicated small mammal consumption was similar among all months. Additionally,

Tukey tests revealed FO of fruits peaked during June—December and was lowest during Janu-

ary—May. Consumption of deer peaked during May and was lowest during September but

remained similar for all other months. Consumption of adult deer peaked during November—

December and was lowest during June—September (Fig 3). Unsurprisingly, FO of fawns was

greatest during March—August, as those were the only months fawns were available to coyotes

(Fig 3).

We found that MMB differed across months for small mammals (F11,149 = 1.893, P = 0.044)

and fruit (F11,149 = 4.445, P� 0.001), but not for rabbits (F11,149 = 1.449, P = 0.157). For small

mammals, MMB suggested that packs consumed approximately 2.5 kg (SD = 2.0) of small

mammals per month (range = 0.1–6.9 kg). For fruit, MMB indicated that packs consumed

approximately 7.9 kg (SD = 9.7) of fruit per month (range = 0.0–33.9 kg). The MMB for

rabbits suggested that packs consumed approximately 3.4 kg (SD = 2.5) of rabbits per month

(range = 1.0–9.5 kg). For white-tailed deer, MMB suggested that packs consumed approxi-

mately 12.6 kg (SD = 12.1) of adult deer per month (range = 0.9–29.8 kg). For the 8 months

that fawns were available, MMB indicated that coyote packs consumed approximately 2.2 kg

(SD = 2.2) of fawns per month (range = 0.0–6.0 kg).

For FO of deer observed in coyote scats, home range size (PC1), mean monthly temperature

and, to a lesser extent, vegetation density (PC2) had the strongest effect on model performance

(Tables 3 and 4). Coyote use of deer was greatest during cooler months, and consumption of

deer was negatively correlated with home-range size and vegetation density (Tables 3 and 4).

For FO of adult deer, mean monthly temperature and home range size had the strongest effect

on model performance, as coyotes consumed more adult deer during cooler months (late fall

—early spring) and coyotes with smaller home-ranges consumed more adult deer than those

with larger home-ranges (Tables 3 and 4). For FO of fawns, only mean monthly temperatures

Fig 3. Frequency of occurrence by month of adult and fawn white-tailed deer in coyote scats collected from Alabama,

Georgia, and South Carolina, USA, 2016–2017.

https://doi.org/10.1371/journal.pone.0203703.g003

Environmental factors influencing prey use by coyotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203703 October 10, 2018 10 / 22

https://doi.org/10.1371/journal.pone.0203703.g003
https://doi.org/10.1371/journal.pone.0203703


had a strong effect on model performance, as fawns were consumed more during warmer

months (spring—summer; Tables 3 and 4). For FO of rabbits, home range size and mean

monthly temperatures had the strongest effects on model performance, whereas vegetation

density exerted a weak effect. Consumption of rabbits occurred more frequently during cooler

months, was positively correlated with home-range size and negatively correlated with vegeta-

tion density (Tables 3 and 4). Vegetation density and hardwood forest (PC3) exerted weak

effects on coyote use of small mammals. Consumption of small mammals was positively corre-

lated with vegetation density and negatively correlated with hardwood forests (Tables 3 and 4).

For fruit, mean monthly temperature had the greatest effect on model performance, whereas

vegetation density had a weak effect (Tables 3 and 4). Use of fruit by coyotes was greatest

Table 3. Summary of the top 5 generalized linear mixed models used to predict frequency of occurrence of each prey category corresponding to different factors

affecting use by coyotes in Alabama, Georgia, and South Carolina during 2016–2017. Shown are differences among Akaike’s Information Criteria for small sample

sizes (ΔAICc).

Prey category Model K Deviance ΔAICc ω
White-tailed deer Tempa+PC1b+PC2c 5 1496.2 0 0.23

Temp+PC1 4 1496.7 0.4 0.18

Temp+PC1+PC2+ PC3d 6 1497.1 0.9 0.15

Temp+PC1+PC3 5 1497.9 1.6 0.10

Temp+PC2 4 1498.8 2.6 0.06

Adult deer Temp+PC1 4 1306.2 0 0.46

Temp+PC1+PC2 5 1307.4 1.2 0.25

Temp+PC1+PC3 5 1308.2 2.0 0.17

Temp+PC1+PC2+PC3 6 1309.3 3.1 0.10

Temp 3 1314.2 8.0 0.01

Fawn Temp 3 652.3 0 0.26

Temp+PC2 4 652.6 0.4 0.22

Temp+PC3 4 653.7 1.5 0.13

Temp+PC2+PC3 5 653.8 1.5 0.12

Temp+PC1 4 654.3 2.0 0.10

Rabbit Temp+PC1+PC2 5 1178.7 0 0.28

Temp+PC1 4 1178.7 0.1 0.27

Temp+PC1+ PC3 5 1180.6 1.9 0.11

Temp+PC1+PC2+PC3 6 1180.6 2.0 0.10

Temp+PC2 4 1181.7 3.1 0.06

Small mammal PC2+PC3 4 1279.7 0 0.21

PC3 3 1280.4 0.7 0.15

PC1+PC2+PC3 5 1281.2 1.5 0.10

NULL 2 1281.6 1.9 0.08

Temp+PC2+PC3 5 1281.7 2.0 0.08

Fruit Temp+PC2 4 1255.3 0 0.29

Temp+PC1+PC2 5 1255.5 0.2 0.26

Temp+PC1+PC2+ PC3 6 1257.2 1.8 0.11

Temp+PC2+PC3 5 1257.2 1.8 0.11

Temp 3 1257.6 2.3 0.09

aMean monthly temperature.
bHome range size.
cVegetation density.
dHardwood forest.

https://doi.org/10.1371/journal.pone.0203703.t003
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during warmer months (late Spring—early Fall) and was positively correlated with vegetation

density (Tables 3 and 4).

Discussion

Prey use by coyotes in Alabama and the SRA of Georgia and South Carolina was dominated by

white-tailed deer, rabbits, small mammals, and fruit (e.g., persimmon, blackberry, plums, and

muscadine). Although these results are consistent with previous studies of coyote prey use in

the southeastern United States [7,27,32,63,64], we believe our findings provide important

insights because we addressed the problem of pseudo-replication that is common to scat analy-

sis studies [23]. By using coyote packs as our sampling unit, we believe we provided more

accurate inferences of coyote prey use than previous studies by accounting for inter-pack vari-

ability and correlating prey consumption with size and habitat composition of coyote home

ranges. For instance, Schrecengost et al. [14] studied coyote diets proximate to SRA and

reported similar use and seasonal changes in mammalian prey and fruit by coyotes. However,

they reported that rabbits were not an important food item for coyotes because FO of rabbits

only peaked at 31% during February and was<17% during other months. Conversely, our

results indicated that rabbits were important prey for coyotes, as monthly FOs for rabbits ran-

ged between 13.8–34.3% and was greatest during January—April (28.7–34.3%), which coin-

cides with coyote breeding and whelping seasons. Our findings differ from Schrecengost et al.

[14] because our study area in SRA was considerably larger in size than theirs (10,530 km2 vs.

Table 4. Results from top generalized linear mixed models for predicting frequency of occurrence of 6 primary prey corresponding to different environmental fac-

tors affecting use by coyote packs in Alabama, Georgia, and South Carolina, 2016. Shown are β coefficients, standard error (SE), 95% confidence intervals (CI), z-
scores, and P-values.

Prey Category Model Variables β SE 95% CI z P
White-tailed Deer Intercept -0.457 0.112 -0.689, -0.230 -4.076 <0.001

Tempa -0.148 0.069 -0.284, -0.013 -2.145 0.032

PC1b -0.149 0.061 -0.281, -0.034 -2.432 0.015

PC2c -0.129 0.082 -0.298, 0.034 -1.581 0.114

Adult deer Intercept -0.999 0.090 -1.192, -0.828 -11.151 <0.001

Temp -0.570 0.072 -0.712, -0.431 -7.964 <0.001

PC1 -0.151 0.051 -0.262, -0.056 -2.940 0.003

Fawn Intercept -2.744 0.244 -3.289, -2.284 -11.248 <0.001

Temp 1.336 0.178 1.002, 1.714 7.506 <0.001

Rabbit Intercept -1.242 0.126 -1.511, -0.995 -9.826 <0.001

Temp -0.180 0.079 -0.336, -0.024 -2.274 0.023

PC1 0.155 0.061 0.036, 0.283 2.547 0.011

PC2 -0.132 0.093 -0.329, 0.049 -1.425 0.154

Small mammal Intercept -1.109 0.097 -1.316, -0.922 -11.399 <0.001

PC2 0.120 0.071 -0.025, 0.262 1.681 0.093

PC3d -0.169 0.082 -0.342, -0.007 -2.058 0.039

Fruit Intercept -1.120 0.188 -1.537, -0.763 -5.958 <0.001

Temp 0.482 0.085 0.316, 0.651 5.670 <0.001

PC2 0.281 0.130 0.017, 0.553 2.157 0.031

aMean monthly temperature.
bHome range size.
cVegetation density.
dHardwood forest.

https://doi.org/10.1371/journal.pone.0203703.t004
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800 km2) and we correlated consumption of rabbits to habitat composition of coyote home

ranges, finding a negative correlation with vegetation density and use of rabbits. This indicates

that rabbit predation by coyotes was greatest in territories with more open habitats and during

cooler months of the year. This is an important distinction because 97% of Schrecengost

et al.’s [14] study area consisted of forested habitat, whereas our study area comprised 51% of

forested habitat. Therefore, we believe our findings demonstrate the importance of accounting

for coyote packs and assessing prey use broadly on the landscape to accurately characterize

coyote diets.

Territoriality is a behavioral tactic for partitioning space and defending food sources

[65–67] that plays a fundamental role in coyote ecology and is rarely accounted for in diet

studies (but see [4,16,68,69]). Space use by resident coyotes is constrained by their territorial

behavior, as they rarely venture outside their home ranges unless they are dispersing offspring

[20,36,70]. Because coyote home ranges contain a finite potential of resources, home ranges

reflect a compromise between the cost of energy expenditure to patrol, scent mark, and con-

front transgressors and the benefits of protecting sufficient resources (e.g., food, dens, refugia)

that enabled coyotes to maintain stable breeding territories [71–75]. Our findings suggest that

size and habitat composition of home ranges influenced coyote use of prey. Specifically, coyote

home ranges consisted of a mixture of open and densely vegetated habitats (Fig 4) and it is

likely that heterogeneity of habitat types within home ranges provide alternative prey for coy-

otes [59,61,76–78]. For example, coyote use of small mammals was positively associated with

vegetation density and negatively associated with hardwood forest, whereas consumption of

rabbits was negatively correlated with vegetation density. Likewise, deer were an important

food resource year-round in both study areas, although consumption of white-tailed deer var-

ied considerably among packs. Coyote use of deer was associated with cooler months, small

home-range sizes, and less vegetation density. This was not surprising as coyotes exhibit strong

selection for open habitats that improve foraging capabilities, such as improved vision and

olfaction, and reduced vegetation to allow pursuit of deer and rabbits [7,36,59,61,79,80].

Therefore, we suggest that heterogeneity in habitat composition of home ranges may increase

the proportion of available prey to coyotes through spillover of prey populations colonizing

sink habitats [81–83]. In other words, spatial heterogeneity within their home ranges allows

coyotes to acquire environmental factors (e.g., food, breeding habitat, bed sites) responsible

for the distribution of prey, and the continued occurrence of prey within coyote territories is

likely supported through dispersal of prey from proximate source habitats [84,85].

Searching for prey involves important costs per unit of time [86–89], and the observed neg-

ative correlation between home-range size and use of white-tailed deer suggests that resident

coyotes are likely confronted with an important energetic balance. Preying on deer may pro-

vide coyotes with greater net energy per unit of search time than smaller prey, and we noted

coyote use of rabbits was positively correlated with home-range size. Nevertheless, to maxi-

mize net energy gains from diets consisting mostly of small particle-sized food, such as inverte-

brates and small mammals, coyotes may require larger home ranges to satisfy mass-related

energetic requirements, as smaller prey have lower absolute energy than larger prey and are

relatively patchy and temporally limited in distribution and availability [90]. Indeed, it is well

established that home-range size is inversely correlated with habitat quality [91,92]. Hence, the

correlation of relatively larger home ranges and greater use of rabbits may indicate that these

resident coyotes were inhabiting lower quality habitat than coyotes with smaller home ranges

and greater use of deer.

Previous studies suggested that coyote predation of white-tailed deer in the southeastern

United States occurred primarily on fawns during summer [10,93–97], that predation on

adult deer was low [98–100], and most consumption of deer during winter was a result of
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Fig 4. Map showing habitats within 95% kernel density estimated home ranges of 6 GPS-collared coyotes in Alabama, Georgia,

and South Carolina 2015–2016.

https://doi.org/10.1371/journal.pone.0203703.g004
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scavenging of carcasses discarded by deer hunters [14,101,102]. Overall, our MMB estimates

suggested that the average coyote pack consumed approximately 270 kg of deer per year and

annual consumption of deer per pack varied between 55 kg and 490 kg. We observed consis-

tent use of deer throughout the year; adult deer were consumed during all months, and factors

influencing deer use differed among adults and fawns. Specifically, use of adult deer was

associated with cooler months and smaller home ranges, whereas use of fawns was strongly

associated with only warmer months. The strong seasonal influence on use of fawns was

not surprising, as fawns were an available prey source only during 8 months of the year and

occurred significantly in coyote scats during the height of the fawning season (April—August;

Fig 3), when they were most susceptible to coyote predation during their first few weeks of life

[10,95,103,104]. However, the observed use of adult deer by coyotes is contrary to previous

studies, and year-round use of adult deer suggests that predation plays an important role for

coyotes to acquire deer.

Although coyotes will opportunistically consume white-tailed deer killed or wounded by

hunters, the availability of carcasses depends on the location of deer mortality [105], and the

spatial distribution of hunted lands varies across the landscape, as does hunting pressure and

hunting activity [106]. Consequently, coyotes would require large foraging radii to track tem-

poral and spatial variation in carrion availability. Therefore, we believe the negative correlation

between coyote home-range size and use of adult deer suggests that coyotes acquired deer

through predation. Additionally, despite the widespread distribution of feral pigs across our

study areas and the availability of pig carcasses, we rarely observed pig remains in coyote scats,

nor did we commonly detect species frequently found as roadkill, further suggesting that scav-

enging is not an important foraging strategy for resident coyotes in the southeastern United

States.

Coyote use of white-tailed deer during the hunting season may relate to seasonal changes in

deer movements due to breeding activities, as evidenced by increased deer-vehicle collisions

during fall and winter [107–109]. Deer are known to increase movements to exploit mating

opportunities and use riskier habitats to avoid human hunters [108–112]. Consequently,

changes in deer space use patterns may increase deer presence in areas occupied by coyotes

and expose adults and juveniles to greater risk of predation, likely explaining use of deer we

observed during peak deer breeding seasons across both study areas. Coyote use of adult deer

could be influenced by decreased body condition and rut-related injuries of male deer, making

them more susceptible to predation [113]. Likewise, we suspect that predation of juvenile deer

accounted for some of the observed use of deer, particularly those that are not members of

matriarchal family groups (i.e., males, orphaned females) may suffer greater mortality to pre-

dation than adults, as they are solitary individuals encountering seasonal changes in human

activity and resource availability for the first time and may be prone to riskier decision-making

[114]. Despite studies reported that predation on juveniles was a relevant source of mortality

[6,113,115–117], there is a dearth of information detailing mortality and predation rates of

juvenile deer, as most studies focus on fawns or deer�1.5 years of age. Therefore, we suspect

that some adult hair (based on diameter) we recovered from scats belonged to juvenile deer

and speculate that perhaps coyote predation on juvenile deer is more common than previously

thought.

We noted that differential use of white-tailed deer, rabbits, small mammals, and fruit was

influenced by season, and size and habitat composition of coyote home ranges, indicating that

resident coyotes can exploit a fluctuating prey base despite constrained space use. For example,

it is well known that coyotes consume fruit during summer and some studies suggest that fruit

may buffer coyote predation of fawns [7,13,63]. Similarly, we observed seasonal use of fruits, as

mean monthly temperature had a strong association with coyote use of fruit. However, we also
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observed a positive association of fruit consumption with vegetation density. This is not sur-

prising as coyotes exhibit broad use of fruits (i.e., persimmons, blackberry, pears, plums, mus-

cadine, peaches, Smilax spp.) that become available during spring through fall and occur in

a diversity of habitats. Additionally, our findings suggest that use of fruit was opportunistic

as use of mammalian prey did not appreciably decrease with increasing use of fruit. Mean

monthly FO of mammalian prey was 78.6% and varied between 60.0–95.8%, whereas mean

monthly FO of fruit was 33.8% and ranged between 0.7–71.1%. This pattern suggests that coy-

otes in the southeastern United States rely primarily on nutritionally superior mammalian

prey and supplement their diet with fruit when available, as mammalian prey provide > 3.75

times more energy (KJ/g dry wt) than fruit [118–120].

The presence of coyotes facilitates complex ecological interactions by exerting cascading

effects on prey populations, and their predation on white-tailed deer creates conflicts with sus-

tained harvests of deer in regions of the southeastern United States [9–11]. Furthermore, coy-

otes do not coexist with other large carnivores throughout most of the southeastern United

States and contend with lower medium-to-large prey diversity relative to western counterparts

[1,16,121]. Consequently, coyotes may exert strong top-down effects on southeastern ecosys-

tems, and recent studies in these ecosystems suggest the presence of coyotes may negatively

influence white-tailed deer foraging behaviors and recruitment [7,10,122,123]. Despite these

top-down effects on local prey populations, strong site fidelity by resident coyotes, as exhibited

by the relative spatial stability of home ranges [36,124], indicates they are defending a finite

area while foraging commensurate with the distribution and availability of prey in their territo-

ries [73,74]. Because coyotes experience saturation and depletion relationships with their prey

[125–127], we offer that differential use of prey by coyotes is influenced by habitat heterogene-

ity within home ranges, and prey-switching behaviors may stabilize local interactions between

coyotes and their prey to permit maintenance of stable territories. Indeed, heterogeneous land-

scapes and density-dependence are known to stabilize predator-prey interactions through fre-

quency-dependent prey-switching [1,5] and by providing refugia for prey [77,128]. Future

assessment of the effects of these factors on distribution and abundance of coyotes is essential

to understand effects of coyote predation on mammalian communities in the southeastern

United States.
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59. Dumond M, Villard MA, Tremblay É. Does coyote diet vary seasonally between a protected and an

unprotected forest landscape? Ecoscience. 2001; 8: 301–310. https://doi.org/10.1080/11956860.

2001.11682657

60. Cherry MJ, Howell PE, Seagraves CD, Warren RJ, Conner LM. Effects of land cover on coyote abun-

dance. Wildl Res. 2016; 43: 662–670. https://doi.org/10.1071/WR16052

61. Thibault I, Ouellet J-P. Hunting behaviour of eastern coyotes in relation to vegetation cover, snow con-

ditions, and hare distribution. Ecoscience. 2005; 12: 466–475. https://doi.org/10.2980/i1195-6860-12-

4-466.1

62. Richer MC, Crête M, Ouellet JP, Rivest LP, Huot J. The low performance of forest versus rural coyotes

in northeastern North America: Inequality between presence and availability of prey. Ecoscience.

2002; 9: 44–54. https://doi.org/10.1080/11956860.2002.11682689

63. Andelt WF, Kie JG, Knowlton FF, Cardwell K. Variation in coyote diets associated with season and

successional changes in vegetation. J Wildl Manage. 1987; 51: 273–277. https://doi.org/10.2307/

3801002

64. Hoerath JD, Causey MK. Seasonal diets of coyotes in western central Alabama. Proc Annu Conf

Southeast Assoc Fish Wildl Agencies. 1991; 45: 91–96.

65. Verner J. On the adaptive significance of territoriality. Am Nat. 1977; 111: 769–775.

66. Losin N, Drury JP, Peiman KS, Storch C, Grether GF. The ecological and evolutionary stability of

interspecific territoriality. Ecol Lett. 2016; 19: 260–267. https://doi.org/10.1111/ele.12561 PMID:

26757047

67. Maher CR, Lott DF. A review of ecological determinants of territoriality within vertebrate species. Am

Midl Nat. 2000; 143: 1–29. https://doi.org/10.1674/0003-0031(2000)143[0001:aroedo]2.0.co;2

68. Gese EM, Ruff RL, Crabtree RL. Social and nutritional factors influencing the dispersal of resident coy-

otes. Anim Behav. 1996; 52: 1025–1043. https://doi.org/10.1006/anbe.1996.0250

69. Seidler RG, Gese EM, Conner MM. Using sterilization to change predation rates of wild coyotes: A

test case involving pronghorn fawns. Appl Anim Behav Sci. 2014; 154: 83–92. https://doi.org/10.1016/

j.applanim.2014.02.006

70. Kamler JF, Gipson PS. Space and habitat use by resident and transient coyotes. Can J Zool. 2000;

78: 2106–2111. https://doi.org/10.1139/z00-153

71. Schoener TW. Theory of feeding strategies. Annu Rev Ecol Syst. 1971; 2: 369–404. https://doi.org/10.

1146/annurev.es.02.110171.002101

72. Schoener TW. Simple models of optimal feeding-territory size: A reconciliation. Am Nat. 1983; 121:

608–629. https://doi.org/10.1086/284090

73. Swihart RK, Slade NA, Bergstrom BJ. Relating body size to the rate of home range use in mammals.

Ecology. 1988; 69: 393–399. https://doi.org/10.2307/1940437

74. Basset A. Body size-related coexistence: An approach through allometric constraints on home-range

use. Ecology. 1995; 76: 1027–1035. https://doi.org/10.2307/1940913

75. Tucker MA, Ord TJ, Rogers TL. Evolutionary predictors of mammalian home range size: Body mass,

diet and the environment. Glob Ecol Biogeogr. 2014; 23: 1105–1114. https://doi.org/10.1111/geb.

12194

76. Gorini L, Linnell JDC, May R, Panzacchi M, Boitani L, Odden M, et al. Habitat heterogeneity and mam-

malian predator-prey interactions. Mammal Rev. 2012; 42: 55–77. https://doi.org/10.1111/j.1365-

2907.2011.00189.x

77. Kauffman MJ, Varley N, Smith DW, Stahler DR, MacNulty DR, Boyce MS. Landscape heterogeneity

shapes predation in a newly restored predator-prey system. Ecol Lett. 2007; 10: 690–700. https://doi.

org/10.1111/j.1461-0248.2007.01059.x PMID: 17594424

78. Kareiva P. Habitat fragmentation and the stability of predator—prey interactions. Nature. 1987; 326:

388–390. https://doi.org/10.1038/326388a0

79. Van Valkenburgh B. Locomotor diversity within past and present guilds of large predatory mammals.

Paleobiology. 1985; 11: 406–428. https://doi.org/10.1017/S0094837300011702

80. Van Valkenburgh B. Major patterns in the history of carnivorous mammals. Annu Rev Earth Planet

Sci. 1999; 27: 463–493. https://doi.org/10.1146/annurev.earth.27.1.463

81. Oksanen T, Oksanen L, Gyllenberg M. Exploitation ecosystems in heterogeneous habitat complexes

II: Impact of small-scale heterogeneity on predator-prey dynamics. Evol Ecol. 1992; 6: 383–398.

https://doi.org/10.1007/BF02270699

82. Holt RD. Spatial heterogeneity, indirect interactions, and the coexistence of prey species. Am Nat.

1984; 124: 377–406. https://doi.org/10.1086/284280 PMID: 29519131

Environmental factors influencing prey use by coyotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203703 October 10, 2018 20 / 22

https://doi.org/10.1080/11956860.2001.11682657
https://doi.org/10.1080/11956860.2001.11682657
https://doi.org/10.1071/WR16052
https://doi.org/10.2980/i1195-6860-12-4-466.1
https://doi.org/10.2980/i1195-6860-12-4-466.1
https://doi.org/10.1080/11956860.2002.11682689
https://doi.org/10.2307/3801002
https://doi.org/10.2307/3801002
https://doi.org/10.1111/ele.12561
http://www.ncbi.nlm.nih.gov/pubmed/26757047
https://doi.org/10.1674/0003-0031(2000)143[0001:aroedo]2.0.co;2
https://doi.org/10.1006/anbe.1996.0250
https://doi.org/10.1016/j.applanim.2014.02.006
https://doi.org/10.1016/j.applanim.2014.02.006
https://doi.org/10.1139/z00-153
https://doi.org/10.1146/annurev.es.02.110171.002101
https://doi.org/10.1146/annurev.es.02.110171.002101
https://doi.org/10.1086/284090
https://doi.org/10.2307/1940437
https://doi.org/10.2307/1940913
https://doi.org/10.1111/geb.12194
https://doi.org/10.1111/geb.12194
https://doi.org/10.1111/j.1365-2907.2011.00189.x
https://doi.org/10.1111/j.1365-2907.2011.00189.x
https://doi.org/10.1111/j.1461-0248.2007.01059.x
https://doi.org/10.1111/j.1461-0248.2007.01059.x
http://www.ncbi.nlm.nih.gov/pubmed/17594424
https://doi.org/10.1038/326388a0
https://doi.org/10.1017/S0094837300011702
https://doi.org/10.1146/annurev.earth.27.1.463
https://doi.org/10.1007/BF02270699
https://doi.org/10.1086/284280
http://www.ncbi.nlm.nih.gov/pubmed/29519131
https://doi.org/10.1371/journal.pone.0203703


83. Holt RD. From metapopulation dynamics to community structure some consequences of spatial het-

erogeneity. In: Hanski I, Gilpin ME, editors. Metapopulation Biology: Ecology, Genetics, and Evolution.

1997. pp. 149–164.

84. Pulliam HR, Danielson BJ. Sources, sinks, and habitat selection: A landscape perspective on popula-

tion dynamics. Am Nat. 1991; 137: S50–S66. https://doi.org/10.1086/285139

85. Pulliam HR. Sources, sinks, and population regulation. Am Nat. 1988; 132: 652–661. https://doi.org/

10.1086/284880

86. MacArthur R, Pianka E. On optimal use of a patchy environment. Am Nat. 1966; 100: 603–609.

https://doi.org/10.1086/282454

87. Werner EE, Hall DJ. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis

macrochirus). Ecology. 1974; 55: 1042–1052. https://doi.org/10.2307/1940354

88. Griffiths D. Foraging costs and relative prey size. Am Nat. 1980; 116: 743–752. https://doi.org/10.

1086/283666

89. Petroelje TR, Belant JL, Beyer DE, Wang G, Leopold BD. Population-level response of coyotes to a

pulsed resource event. Popul Ecol. 2014; 56: 349–358. https://doi.org/10.1007/s10144-013-0413-2

90. Carbone C, Mace GM, Roberts SC, Macdonald DW. Energetic constraints on the diet of terrestrial car-

nivores. Nature. 1999; 402: 286–288. https://doi.org/10.1038/46266 PMID: 10580498

91. Rosenzweig ML. A theory of habitat selection. Ecology. 1981; 62: 327–335. https://doi.org/10.2307/

1936707

92. Rosenzweig ML. Habitat selection and population interactions: The search for mechanism. Am Nat.

1991; 137: S5–S28. https://doi.org/10.1086/285137

93. Saafeld ST, Ditchkoff SS. Survival of neonatal white-tailed deer in an exurban population. J Wildl Man-

age. 2007; 71: 940–944. https://doi.org/10.2193/2006-116

94. Jackson AM, Ditchkoff SS. Survival estimates of white-tailed deer fawns at Fort Rucker, Alabama. Am

Midl Nat. 2013; 170: 184–190. https://doi.org/10.1674/0003-0031-170.1.184

95. Chitwood MC, Lashley MA, Kilgo JC, Pollock KH, Moorman CE, Deperno CS. Do biological and bed-

site characteristics influence survival of neonatal white-tailed deer? PLoS One. 2015; 10. https://doi.

org/10.1371/journal.pone.0119070 PMID: 25734333

96. Gulsby WD, Kilgo JC, Vukovich M, Martin JA. Landscape heterogeneity reduces coyote predation on

white-tailed deer fawns. J Wildl Manage. 2017; 81: 601–609. https://doi.org/10.1002/jwmg.21240

97. Kilgo JC, Vukovich M, Scott Ray H, Shaw CE, Ruth C. Coyote removal, understory cover, and survival

of white-tailed deer neonates. J Wildl Manage. 2014; 78: 1261–1271. https://doi.org/10.1002/jwmg.

764

98. Ditchkoff SS, Welch ER, Lochmiller RL, Masters RE, Starry WR. Age-specific causes of mortality

among male white-tailed deer support mate-competition theory. J Wildl Manage. 2001; 65: 552–559.

99. Chitwood MC, Lashley MA, Moorman CE, Deperno CS. Confirmation of coyote predation on adult

female white-tailed deer in the southeastern United States. Southeast Nat. 2014; 13: N30–N32.

https://doi.org/10.1656/058.013.0316

100. Kilgo JC, Vukovich M, Conroy MJ, Ray HS, Ruth C. Factors affecting survival of adult female white-

tailed deer after coyote establishment in south Carolina. Wildl Soc Bull. 2016; 40: 747–753. https://doi.

org/10.1002/wsb.708

101. Chamberlain MJ, Leopold BD. Dietary patterns of sympatric bobcats and coyotes in central Missis-

sippi. Proc Annu Conf Southeast Assoc Fish Wildl Agencies. 1999; 53: 204–219.

102. Thornton DH, Sunquist ME, Main MB. Ecological separation within newly sympatric populations of

coyotes and bobcats in south-central Florida. J Mammal. 2004; 85: 973–982. https://doi.org/10.1644/

BEH-020

103. Chitwood MC, Lashley MA, Kilgo JC, Moorman CE, Deperno CS. White-tailed deer population dynam-

ics and adult female survival in the presence of a novel predator. J Wildl Manage. 2015; 79: 211–219.

https://doi.org/10.1002/jwmg.835

104. Shuman RM, Cherry MJ, Simoneaux TN, Dutoit EA, Kilgo JC, Chamberlain MJ, et al. Survival of

white-tailed deer neonates in Louisiana. J Wildl Manage. 2017; 81: 834–845. https://doi.org/10.1002/

jwmg.21257

105. DeVault TL, Rhodes OE, Shivik JA. Scavenging by vertebrates: behavioral, ecological, and evolution-

ary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos. 2003; 102:

225–234. https://doi.org/10.1034/j.1600-0706.2003.12378.x

106. Wilmers CC, Stahler DR, Crabtree RL, Smith DW, Getz WM. Resource dispersion and consumer

dominance: Scavenging at wolf- and hunter-killed carcasses in Greater Yellowstone, USA. Ecol Lett.

2003; 6: 996–1003. https://doi.org/10.1046/j.1461-0248.2003.00522.x

Environmental factors influencing prey use by coyotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203703 October 10, 2018 21 / 22

https://doi.org/10.1086/285139
https://doi.org/10.1086/284880
https://doi.org/10.1086/284880
https://doi.org/10.1086/282454
https://doi.org/10.2307/1940354
https://doi.org/10.1086/283666
https://doi.org/10.1086/283666
https://doi.org/10.1007/s10144-013-0413-2
https://doi.org/10.1038/46266
http://www.ncbi.nlm.nih.gov/pubmed/10580498
https://doi.org/10.2307/1936707
https://doi.org/10.2307/1936707
https://doi.org/10.1086/285137
https://doi.org/10.2193/2006-116
https://doi.org/10.1674/0003-0031-170.1.184
https://doi.org/10.1371/journal.pone.0119070
https://doi.org/10.1371/journal.pone.0119070
http://www.ncbi.nlm.nih.gov/pubmed/25734333
https://doi.org/10.1002/jwmg.21240
https://doi.org/10.1002/jwmg.764
https://doi.org/10.1002/jwmg.764
https://doi.org/10.1656/058.013.0316
https://doi.org/10.1002/wsb.708
https://doi.org/10.1002/wsb.708
https://doi.org/10.1644/BEH-020
https://doi.org/10.1644/BEH-020
https://doi.org/10.1002/jwmg.835
https://doi.org/10.1002/jwmg.21257
https://doi.org/10.1002/jwmg.21257
https://doi.org/10.1034/j.1600-0706.2003.12378.x
https://doi.org/10.1046/j.1461-0248.2003.00522.x
https://doi.org/10.1371/journal.pone.0203703


107. Etter DR, Hollis KM, Van Deelen TR, Ludwig DR, Chelsvig JE, Anchor CL, et al. Survival and move-

ments of white-tailed deer in suburban Chicago, Illinois. J Wildl Manage. 2002; 66: 500–510. https://

doi.org/10.2307/3803183

108. Sudharsan K, Riley SJ, Winterstein SR. Relationship of autumn hunting season to the frequency of

deer-vehicle collisions in Michigan. J Wildl Manage. 2006; 70: 1161–1164. https://doi.org/10.2193/

0022-541X(2006)70[1161:ROAHST]2.0.CO;2

109. Steiner W, Leisch F, Hackländer K. A review on the temporal pattern of deer-vehicle accidents: Impact

of seasonal, diurnal and lunar effects in cervids. Accid Anal Prev. 2014; 66: 168–181. https://doi.org/

10.1016/j.aap.2014.01.020 PMID: 24549035

110. Webb SL, Gee KL, Strickland BK, Demarais S, Deyoung RW. Measuring fine-scale white-tailed deer

movements and environmental influences using GPS collars. Int J Ecol. 2010; 2010: 1–12. https://doi.

org/10.1155/2010/459610

111. Foley AM, Deyoung RW, Hewitt DG, Hellickson MW, Gee KL, Wester DB, et al. Purposeful wander-

ings: Mate search strategies of male white-tailed deer. J Mammal. 2015; 96: 279–286. https://doi.org/

10.1093/jmammal/gyv004

112. Simoneaux TN, Cohen BS, Cooney EA, Shuman RM, Chamberlain MJ, Miller KV. Fine-scale move-

ments of adult male white-tailed deer in northeastern Louisiana during the hunting season. J South-

east Assoc Fish Wildl Agencies. 2016; 3: 210–219.

113. Nelson ME, Mech LD. Mortality of white-tailed deer in northeastern Minnesota. J Wildl Manage. 1986;

50: 691–698. https://doi.org/10.2307/3800983

114. Lima SL, Dill LM. Behavioral decisions made under the risk of predation: a review and prospectus.

Can J Zool. 1990; 68: 619–640. https://doi.org/10.1139/z90-092

115. Long RA, Harrison DJ, O’Connell AF Jr. Mortality and survival of white-tailed deer Odocoileus virginia-

nus fawns on a north Atlantic coastal island. Wildlife Biol. 1998; 4: 237–247.

116. Vreeland JK, Diefenbach DR, Wallingford BD. Survival rates, mortality causes, and habitats of Penn-

sylvania white-tailed deer fawns. Wildl Soc Bull. 2004; 32: 542–553. https://doi.org/10.2193/0091-

7648(2004)32[542:SRMCAH]2.0.CO;2

117. Ballard WB, Whitlaw HA, Young SJ, Jenkins RA, Forbes GJ. Predation and survival of white-tailed

deer fawns in northcentral New Brunswick. J Wildl Manage. 1999; 63: 574–579. https://doi.org/10.

2307/3802645

118. Gable TD, Windels SK, Bruggink JG, Barber-Meyer SM. Weekly summer diet of gray wolves (Canis

lupus) in northeastern Minnesota. Am Midl Nat. 2018; 179: 15–27. https://doi.org/10.1674/0003-0031-

179.1.15

119. Usui M, Kakuda Y, Kevan PG. Composition and energy values of wild fruits from the boreal forest of

northern Ontario. Can J Plant Sci. 1994; 74: 581–587.

120. McNab BK. Energy-expenditure and conservation in frugivorous and mixed-diet carnivorans. J Mam-

mal. 1995; 76: 206–222. https://doi.org/10.2307/1382329

121. Harrison DJ. Dispersal characteristics of juvenile coyotes in Maine. J Wildl Manage. 1992; 56: 128–

138. https://doi.org/10.2307/3808800

122. Cherry MJ, Conner LM, Warren RJ. Effects of predation risk and group dynamics on white-tailed deer

foraging behavior in a longleaf pine savanna. Behav Ecol. 2015; 26: 1091–1099. https://doi.org/10.

1093/beheco/arv054

123. Gulsby WD, Cherry MJ, Johnson JT, Conner LM, Miller KV. Behavioral response of white-tailed deer

to coyote predation risk. Ecosphere. 2018; 9. https://doi.org/10.1002/ecs2.2141

124. Ward JN. Space use and resource selection by coyotes in the southeastern United States. University

of Georgia. 2017.

125. Charnov EL. Optimal foraging theory: the marginal value theorem. Theor Popul Biol. 1976; 9: 129–

136. https://doi.org/10.1016/0040-5809(76)90040-X PMID: 1273796

126. Mitchell WA, Lima SL. Predator-prey shell games: Large-scale movement and its implications for deci-

sion-making by prey. Oikos. 2002; 99: 249–259. https://doi.org/10.1034/j.1600-0706.2002.990205.x

127. Mitchell MS, Powell RA. A mechanistic home range model for optimal use of spatially distributed

resources. Ecol Modell. 2004; 177: 209–232. https://doi.org/10.1016/j.ecolmodel.2004.01.015

128. Hebblewhite M, Merrill EH, McDonald TL. Spatial decomposition of predation risk using resource

selection functions: an example in a wolf-elk predator prey system. Oikos. 2005; 111: 101–111.

https://doi.org/10.1111/j.0030-1299.2005.13858.x

Environmental factors influencing prey use by coyotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0203703 October 10, 2018 22 / 22

https://doi.org/10.2307/3803183
https://doi.org/10.2307/3803183
https://doi.org/10.2193/0022-541X(2006)70[1161:ROAHST]2.0.CO;2
https://doi.org/10.2193/0022-541X(2006)70[1161:ROAHST]2.0.CO;2
https://doi.org/10.1016/j.aap.2014.01.020
https://doi.org/10.1016/j.aap.2014.01.020
http://www.ncbi.nlm.nih.gov/pubmed/24549035
https://doi.org/10.1155/2010/459610
https://doi.org/10.1155/2010/459610
https://doi.org/10.1093/jmammal/gyv004
https://doi.org/10.1093/jmammal/gyv004
https://doi.org/10.2307/3800983
https://doi.org/10.1139/z90-092
https://doi.org/10.2193/0091-7648(2004)32[542:SRMCAH]2.0.CO;2
https://doi.org/10.2193/0091-7648(2004)32[542:SRMCAH]2.0.CO;2
https://doi.org/10.2307/3802645
https://doi.org/10.2307/3802645
https://doi.org/10.1674/0003-0031-179.1.15
https://doi.org/10.1674/0003-0031-179.1.15
https://doi.org/10.2307/1382329
https://doi.org/10.2307/3808800
https://doi.org/10.1093/beheco/arv054
https://doi.org/10.1093/beheco/arv054
https://doi.org/10.1002/ecs2.2141
https://doi.org/10.1016/0040-5809(76)90040-X
http://www.ncbi.nlm.nih.gov/pubmed/1273796
https://doi.org/10.1034/j.1600-0706.2002.990205.x
https://doi.org/10.1016/j.ecolmodel.2004.01.015
https://doi.org/10.1111/j.0030-1299.2005.13858.x
https://doi.org/10.1371/journal.pone.0203703

