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Abstract

Hippo signaling pathway is considered a key regulator of tissue homeostasis, cell prolifera-

tion, apoptosis and it is involved in cancer development. In skeletal muscle, YAP, a down-

stream target of the Hippo pathway, is an important player in myoblast proliferation, atrophy/

hypertrophy regulation, and in mechano-trasduction, transferring mechanical signals into

transcriptional responses. We studied components of Hippo pathway in muscle specimens

from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, limb-

girdle muscular dystrophy type 2A and type 2B and healthy subjects. Only DMD muscles

had decreased YAP1 protein expression, increased LATS1/2 kinase activity, low Survivin

mRNA expression and high miR-21 expression. In light of our novel results, a schematic

model is postulated: low levels of YOD1 caused by increased inhibition by miR-21 lead to an

increase of LATS1/2 activity which in turn augments phosphorylation of YAP. Reduced

amount of active YAP, which is also a target of increased miR-21, causes decreased

nuclear expression of YAP-mediated target genes. Since it is known that YAP has beneficial

roles in promoting tissue repair and regeneration after injury so that its activation may be

therapeutically useful, our results suggest that some components of Hippo pathway could

become novel therapeutic targets for DMD treatment.

Introduction

The Hippo signaling pathway is considered a key regulator of tissue homeostasis, cell prolifera-

tion and apoptosis, and its alterations participate to cancer development. Yes-associated pro-

tein 1 (YAP or YAP1) is a downstream target of the Hippo pathway and acts as a transcription

co-activator [1]. YAP can be down-regulated through phosphorylation by the large tumor sup-

pressor 1/2 (LATS1/2) kinase [2]. Phosphorylated YAP interacts with cytoskeletal proteins and

is maintained in the cytoplasm. Non-phosphorylated YAP translocates to the nucleus where it

exerts its regulatory function on many transcription factors such as TEAD family, being

TEAD and YAP transcriptional coactivators in most of genomic loci [3]. Important target

genes of YAP are Cyclin D1, Birc5, and myogenic transcription factor Myf5 [4].
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In skeletal muscle from different animal models, YAP appeared to be a prominent player in

mechano-transduction, transferring mechanical signals into transcriptional responses. More-

over, YAP is involved in muscle development and regeneration, and regulates activation, pro-

liferation and differentiation of satellite cells [4]. Hippo signaling is similarly crucial in mature

skeletal muscle homeostasis: its misregulation can cause atrophy or hypertrophy. Mammalian

sterile 20-like kinase 1 (MST1), a focal member of Hippo pathway, participates to the develop-

ment of atrophic changes in denervated muscle, as result of the activation of Forkhead box O3

(FOXO3) transcription factors [5].

Very recently, it has been proposed that modulation of the Hippo pathway effectors YAP

and transcriptional activator with PDZ binding motif (TAZ) may, in part, provide a mechanis-

tic explanation for the hypertrophic effects of resistance exercise through changes in the rates

of muscle protein synthesis and satellite cell activity [6]. Resistance exercise affects metabolic,

hormonal and mechanical responsive elements, all mediators of YAP and TAZ activity in epi-

thelial cells [7]. Some, or all, of these inputs also alter YAP and TAZ activity in skeletal muscle

during resistance exercise. Manipulation of the metabolic, hormonal or mechanical pathways

engaged might provide insight into the mechanisms regulating YAP and TAZ activity in skele-

tal muscle that could be exploited for therapeutic benefit in isolation, or combination, with

exercise-based interventions [6].

During muscle differentiation, YAP phosphorylation is augmented, which is important for

myoblast differentiation [8]. YAP expression increases when satellite cells are activated but

declines when differentiation is starting and therefore expression of YAP stimulates prolifera-

tion but prevents differentiation [9]. In contrast, YAP knockdown strongly decreases myo-

blasts proliferation [9]. A microarray study suggested that transcription of many genes

upstream to YAP are amplified in mdx muscle, the murine model of Duchenne muscular dys-

trophy (DMD), and it has been postulated that dystrophic muscle with increase of inflamma-

tory and regenerated/degenerated cells activates the Hippo pathway [10]. The phosphorylation

of YAP increases after myostatin and activin blocking and also in exercised muscle, and mdx
mice display increased content of phosphorylated and especially total amount of YAP protein

[10]. These results suggest that Hippo signaling may have an important but yet uncertain regu-

latory role in dystrophic skeletal muscle.

So far the literature does not report any data about YAP expression in DMD and other

muscular dystrophies. The goal of the present study was to test the hypothesis that altered YAP

signaling may contribute to dystrophic pathogenesis in DMD muscle, becoming a pharmaco-

logical target of dystrophinopaties.

Materials and methods

Study subjects

We studied vastus lateralis muscle samples, stored at −80˚ C, from 5 patients with DMD (age

range: 4–6 years), 5 patients with Becker muscular dystrophy (BMD) (age range: 5–11 years), 5

patients with limb-girdle muscular dystrophy type 2A (LGMD2A) (age range: 14–55 years),

and 5 patients with limb-girdle muscular dystrophy type 2B (LGMD2B) (age range: 26–50

years). DMD, BMD, LGMD2A and LGMD2B had been diagnosed on clinical features, muscle

biopsy including immunocytochemistry and Western blot, and genetic analysis. 5 muscle sam-

ples taken from healthy subjects (age range: 3–50 years), without muscle disorder and under-

going orthopaedic surgery, were used as controls. All adult individuals and the parents of all

participants under age 18 had provided written, informed consent for the use of their muscle

samples in research. The review board of the Department of Neurosciences, University of Mes-

sina, reviewed and approved the study.

Hippo signaling pathway in DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0205514 October 10, 2018 2 / 13

https://doi.org/10.1371/journal.pone.0205514


Western blotting

About 30 mg of muscle specimen were homogenized in a glass tube with Teflon dounce pestle

in 20 volumes of a detergent saline buffer containing lysis buffer (20 mM KCl, 15% SDS and

5% β-mercaptoethanol). Samples were heated 10 min at 100˚C and then centrifuged for 10

min at 12,000 g. Protein concentration of tissue homogenate was determined by Lowry assay.

Protein balanced samples were prepared for sodium dodecyl sulfate polyacrylamide gel elec-

trophoresis (SDS-page) in two-fold loading buffer containing 0.25 M Tris (pH 6.8), 0.2 M

DTT, 10% SDS, 0.02% bromophenol blue, and 20% glycerol in distilled water. Fifty micro-

grams of proteins per line were routinely resolved by 12% SDS-PAGE for 2 h at 130 V.

Following electrophoresis, separated proteins were laterally transferred to nitrocellulose

membranes in transfer buffer containing 0.192 M glycin and 0.025 M Tris at pH 8 with 20%

methanol. At a voltage of 100 V for 1 h at 4˚C, blots were blocked for 1 h at room temperature

(RT) in a saturating solution containing 0.9% NaCl, 1% bovine albumin serum and 0.05%

Tween-20. Membranes were then incubated with monoclonal antibodies against YAP1 (1:400)

(TermoFisher Scientific, Waltham, MA, USA), Survivin (1:2,000) (Santa Cruz Biotechnology,

Inc., Santa Cruz, CA, USA), and human Actin (1:20,000) (TermoFisher Scientific) at 4˚C over-

night. Blots were then washed and the second incubation was performed in blocking buffer

containing, respectively, 1:20,000, 1:10,000 and 1:10,000 dilution of the appropriate HRP-con-

jugated secondary antibody (Sigma-Aldrich, Missouri, USA) at RT for 1h. Membrane were

developed using ECL Plus Western Blotting Detection kit (Amersham Biosciences, Little Chal-

font, UK) following the manufacturer’s protocol. Quantification of the detected protein was

carried out using the Alpha Digi Doc apparatus (Alpha Innotech Corp, San Leandro, CA,

USA) for image acquisition (8 bit gray-scale), and by the ImageJ software for densitometric

analysis. The results were finally expressed as relative density for each sample after β-actin

normalization.

LATS1/2 kinase activity assay

To assess LATS1/2 enzyme activity, immunoprecipitation followed by western blotting of

phosphorylated YAP1 was performed. Muscle specimens were lysed in 1% Nonidet P-40 lysis

buffer supplement containing 1 mM DTT and 1× phosphatase inhibitor (Sigma-Aldrich). For

immunoprecipitation-kinase assay, 100 μg of protein lysate were mixed with 2 μg of monoclo-

nal antibody against YAP1 (1:400) (Santa Cruz Biotechnology, Inc.) together with Protein G

beads and incubated at 4˚C for 3 h. Then, beads were washed twice with 1% Nonidet P-40 lysis

buffer, 1 mM DTT; once for 10 min with 1% Nonidet P-40 lysis buffer, 500 mM NaCl, 1 mM

DTT at 4˚C; and twice with 20 mM Tris-HCl (pH 7.4), 1 mM DTT, 1× phosphatase inhibitor.

The washed beads were mixed with 2 μg of YAP-GST substrates in a kinase buffer (20 mM

Tris-HCl (pH 7.5), 5 mM MgCl2, 5 mM MnCl2, 1× phosphatase inhibitor, 2 mM DTT, 10 μM

ATP, 5 μCi of [γ-32P]ATP) and incubated at 30˚ C for 30 min. The reaction was stopped by

adding 7 μl of 5× SDS sample dye, boiled at 100˚C for 5 min, and subjected to SDS-PAGE.

After electrophoresis, the proteins were transferred to a nitrocellulose membrane, and exposed

to autoradiograph film for 0.5–2 h. to test phosphorylation of YAP1 by LATS1/2.

Animal studies

Quadriceps, biceps, diaphragm, gastrocnemious and extensor digitorum longus (EDL) mus-

cles previously frozen in liquid nitrogen-cooled isopentane and stored at -80˚C were used for

YAP1 western blotting and LATS1/2 kinase activity assay (see procedures above). Muscle spec-

imens had been removed from 10-15-week old male mdx (n. 4) and wild-type C57BJ/10ScSn

(WT) (n. 4) mice from The Jackson Laboratory (Bar Harbor, Maine, USA) as part of our
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previous experiments [11]. Membranes were incubated with monoclonal antibodies against

YAP1 (1:500) (Santa Cruz Biotechnology, Inc.) and mouse Actin (1:5,000) (TermoFisher Sci-

entific) at 4˚C overnight.

Semi-quantitative evaluation

Semi-quantitative evaluation of protein levels detected by immunoblotting was implemented

with computer-assisted densitometry (UN-SCAN-IT gel version 6.1; Silk Scientific, Inc.,

Orem, UT, USA). Data were then acquired and integrated density values expressed as a per-

centage of densitometric levels using arbitrary densitometric units.

RNA, cDNA synthesis and microRNA (miR) isolation

Total RNA was extracted from muscle specimens using TRIzol reagent (Invitrogen; Thermo

Fisher Scientific, Inc., Waltham, MA. USA), according to the manufacturer’s instructions.

Entire RNA concentration and integrity were checked using an Agilent Bioanalyzer (Agilent

Technologies, Inc., Santa Clara, CA, USA). Successively, 300 ng of total mRNA per sample was

reverse transcribed into cDNA using the High Capacity cDNA Reverse Transcription kit

(Applied Biosystems; Thermo Fisher Scientific, Inc.). miRNAs were extracted from muscle

using the miRVana Isolation kit (Ambion; Thermo Fisher Scientific, Inc.), following the man-

ufacturer’s protocol. The enriched miRNAs fraction was converted in cDNA using the Taq-

Man MicroRNA Reverse Transcriptase kit (Life Technologies; Thermo Fisher Scientific, Inc.).

Real Time-quantitative polymerase chain reaction (RT-qPCR) of Survivin

and miR-21

To validate downstream YAP pathway, Survivin (Birc5) which is one of the prominent target

genes of YAP [3,12], and miR-21 which is involved in epigenetic regulation of YAP [13] were

studied. RT-qPCR for Survivin Assay ID Hs01125524_m1 was performed using a standard

TaqMan PCR kit procedure on an AB-7300 RT-PCR system (Thermo Fisher Scientific, Inc.).

Relative fold expression and changes were calculated using 2−ΔΔCtmethod. The expression

levels of Survivin were normalized to β-actin housekeeping gene and indicated as fold expres-

sion (<0.3 downregulation and>3 upregulation) compared to control normal muscle. Results

were represented as Log10 relative quantitative (RQ).

For miRNA quantification, 2 μl of cDNA were used for each specific miRNA TaqMan assay

(hsa-miR-21) according to the manufacturer’s instructions. All reactions were performed in

triplicate. RNU6 small nuclear RNA was used to normalize miRNA expression levels due to its

claimed expression stability and its wide use as loading control in published studies [14–16].

Target prediction tools

miR-21 that target YAP1 was identified by examining the YAP 30-untranslated region (UTR)

with bioinformatics algorithms predicting miRNA target sites [17]. Specifically, four online

databases, miRDB (http://mirdb.org/miRDB/), TargetScanHuman (www.targetscan.org),

microRNA.org (www.microrna.org) and PicTar (http://pictar.mdc-berlin.de), were used.

Statistical data analysis

Statistical analysis was performed by GraphPad Prism, version 7.00 (GraphPad Software, La

Jolla, CA, USA). Results are expressed as mean ± standard deviation (SD). Statistical multiple

comparison between groups was performed by Kruskal-Wallis ANOVA test followed by

Dunn’s post hoc test. The relationship between variables was studied using Spearman

Hippo signaling pathway in DMD
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correlation test. Comparison between groups was performed by Mann-Whitney test for

unpaired non-parametric data. A level of significance of p< 0.05 was considered.

Results

Western blot analysis revealed a 4-fold decrease of non-phosphorylated YAP1 expression in

muscle specimens from DMD patients (p< 0.001 vs control normal muscles). No difference

was found in BMD, LGMD2A and LGMD2B patients vs. control (Fig 1A).

LATS1/2 kinase activity, assessed by immunoprecipitation followed by western blotting of

phosphorylated YAP1, resulted 2-fold increased in DMD patients (p< 0.04 vs control normal

muscles). No difference was found in BMD, LGMD2A and LGMD2B patients vs. control (Fig

1B).

Experiments in mdx mice showed no significant change of YAP1 expression in quadriceps

and EDL muscles compared to WT animals, a 26% decrease in gastrocnemious and 5% and

16% increase in biceps and diaphragm muscles respectively (all p< 0.03) (Fig 2A). LATS1/2

kinase activity, assessed by western blotting of phosphorylated YAP1, resulted significantly

increased (p< 0.03) in all five muscles vs. WT mice, with variable degree from 5% in gastro-

cnemious to 57% in quadriceps (Fig 2B).

Since transcription of Survivin is regulated by YAP [3,12,18], its expression was studied.

Survivin protein was decreased in DMD (p< 0.0001) and at lower amount also in BMD

(p< 0.01) vs control muscles (Fig 3A). RT-qPCR revealed that Survivin mRNA level was

3-fold lower in the muscles from DMD patients (p< 0.0001 vs control muscles) (Fig 3B). Fig 4

Fig 1. Western blot analysis of YAP1 (A) and LATS1/2 kinase activity assay performed by immunoprecipitation followed by western blotting of phosphorylated YAP1

(B) in human muscular dystrophies (DMD, BMD, LGMD2A, LGMD2B) and normal controls (CTR). Lower panel shows graphs with quantitative data; upper panel

shows representative autoradiograms. �p< 0.04; ��p< 0.001.

https://doi.org/10.1371/journal.pone.0205514.g001

Hippo signaling pathway in DMD

PLOS ONE | https://doi.org/10.1371/journal.pone.0205514 October 10, 2018 5 / 13

https://doi.org/10.1371/journal.pone.0205514.g001
https://doi.org/10.1371/journal.pone.0205514


shows the significant correlation between Survivin protein and YAP1 protein levels in all

twenty-five muscle specimens from patients and normal controls (r: 0.69; p< 0.0001).

miR-21 is involved in epigenetic regulation of YAP1 at two levels: i) miR-21 suppression

results in elevated levels of LATS1/2, which down-regulates YAP through phosphorylation

[13]; ii) computational target prediction identifies homology between miR-21 and 3’-UTR of

human YAP1 mRNA (www.targetscan.org). RT-qPCR revealed that miR-21 expression was

significantly more than 3-fold increased in the muscles from DMD patients (p< 0.0001 vs

control muscles). A lower increase was found in BMD patients vs. controls (p< 0.03) (Fig 5).

No correlation has been found, within the single disease type, between severity, duration

and progressiveness of myopathy and altered Hippo pathway activation.

Discussion

The best studied role of YAP in skeletal muscle is as a regulator of myoblast proliferation and

terminal differentiation. Several studies together demonstrate that YAP and TAZ activity are

increased as satellite cells/myoblasts proliferate and that further increasing their activity, by

over-expression of mutant YAP/TAZ proteins that cannot be inhibited by LATS1/2, results in

an enhanced rate of myoblast proliferation [8,9,19]. Moreover, Hippo signaling pathway is

similarly crucial in mature skeletal muscle homeostasis, its misregulation causing atrophy or

hypertrophy [5], and in mechano-transduction, transferring mechanical signals into transcrip-

tional responses [4].

Fig 2. Western blot analysis of YAP1 (A) and LATS1/2 kinase activity assay performed by immunoprecipitation followed by western blotting of phosphorylated YAP1

(B) in quadriceps (Quad.), biceps (Bic.), diaphragm (Dia.), gastrocnemious (Gastro.) and EDL muscles of WT and mdx mice. Lower panel shows graphs with

quantitative data; upper panel shows representative autoradiograms. �p< 0.03.

https://doi.org/10.1371/journal.pone.0205514.g002
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Very little is known about YAP expression in human skeletal muscle. A recent proteomics

study using single muscle fibres has reported that YAP protein expression in slow-twitch

Fig 3. Survivin protein (A) and mRNA (B) levels in human muscular dystrophies (DMD, BMD, LGMD2A, LGMD2B) and normal controls (CTR).
�p< 0.01; ��p< 0.0001.

https://doi.org/10.1371/journal.pone.0205514.g003

Fig 4. Correlation analysis between Survivin protein and YAP1 protein levels in human muscular dystrophies (DMD, BMD,

LGMD2A, LGMD2B) and normal controls. r: 0.69; p< 0.0001.

https://doi.org/10.1371/journal.pone.0205514.g004
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muscle fibres is ~ 2-fold higher than in fast-twitch 2A fibres from young subjects [20]. In the

same study, it was also shown that YAP is ~50% lower in both these muscle fibre types in aged

subjects compared to younger controls. Possible fibre type-dependent differences in the regu-

lation of YAP, and a potential role played by reduced YAP in the age-dependent loss of skeletal

muscle mass (i.e. sarcopenia) have been suggested.

Levels of total YAP and phosphorylated YAP are elevated in the mdx mouse model of

DMD, supporting a role for YAP in the setting of skeletal muscle degeneration/regeneration

[10]. These findings are of particular interest given recent studies linking Hippo signalling to

Agrin, an essential element regulating stability and organisation of the neuromuscular junc-

tion and the dystroglycoprotein complex (DGC) in cardiac tissue [21–23]. DMD, a progressive

muscle wasting disease, is due to the absence of dystrophin protein, leading to recurrent mus-

cle fibre damage during contraction and to loss of ambulation by the 13th year and to death,

usually in early adulthood [24]. Although the primary genetic defect is known, the cellular and

molecular mechanisms which characterize the disease are not completely understood and a

successful treatment remains to be developed. Pathological hallmarks of the dystrophic process

include necrosis, phagocytosis, inflammation and initial efficient regeneration followed by

exhaustion, and connective and adipose tissues replacement [25]. The inflammatory response

to fibre damage in DMD is an engaging candidate mechanism for disease worsening and dif-

ferent steps of inflammatory cascade, such as B-4, COX, LOX, MAPK, TNF-α, reactive oxygen

species, and nuclear factor-κB signaling factors, are considered possible therapeutic targets to

be joined with exon skipping therapy or protein restoration therapy [11, 26–28].

We demonstrated for the first time that YAP1 expression is decreased and LATS1/2 kinase

activity increased in DMD muscles but not in muscles from patients with other types of mus-

cular dystrophy, stressing the specificity of the results. Besides, DMD results were fairly con-

firmed in mdx mice with increased LATS1/2 kinase activity in five different muscles and

variable results of YAP1 expression in them, from a decrease to no difference and to a mild

increase when compared to WT mice. Our mdx results resulted also in agreement with previ-

ous report [10]. In mammals, LATS1/2 binds and phosphorylates YAP1 affecting its transcrip-

tion regulation. As a result, phosphorylated YAP1 is retained in the cytoplasm, undergoing

proteasomal degradation. Different stimuli may inhibit LATS1/2-mediated YAP1

Fig 5. miR-21 expression in human muscular dystrophies (DMD, BMD, LGMD2A, LGMD2B) and normal controls (CTR). Right panel: Aligment details with 30-

UTR region of YAP1. YAP1 is direct target of miR-21, according to computational target prediction (www.targetscan.org). �p< 0.03; ��p< 0.0001.

https://doi.org/10.1371/journal.pone.0205514.g005
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phosphorylation and permit YAP1 to enter the nucleus and activate the transcriptional pro-

grams involved in cell survival and proliferation [29]. Moreover, YAP activity may be also

modulated by other regulators such as deubiquitinase YOD1. YOD1 stabilizes ITCH, facilitat-

ing ITCH-mediated LATS1/2 ubiquitination and degradation, and as result YAP level

increases [30].

Consistent with decreased YAP1 expression and increased LATS1/2 kinase activity, we

found Survivin protein and mRNA under-expressed and mir-21 over-expressed in DMD mus-

cles in a specific manner. In accordance with these results, a lower decrease of Survivin protein

and a lower increase of mir-21 expression were found in BMD, which is the allelic milder form

of the same disease [24,25]. Survivin is able to promote cell cycle and inhibit apoptotic caspase

Fig 6. Proposed schematic model of Hippo pathway alterations in DMD. Low YOD1 resulting from increased

inhibition by miR-21 leads to an increase of LATS1/2 activity which in turn augments phosphorylation of YAP.

Reduced amount of active YAP, which is also a target of increased miR-21, causes decreased nuclear expression of

YAP-mediated target genes.

https://doi.org/10.1371/journal.pone.0205514.g006
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functions, and is mainly found in developing tissue and cancer [31–32]. Since YAP and Survi-

vin increase in a parallel way in liver tumors [18], it is interesting to ascertain if YAP comple-

ments with Survivin in other diseases. We found a strong correlation between Survivin protein

and YAP1 protein levels also in normal and diseased skeletal muscles.

miRs are non-coding, small RNAs, able to destroy mRNA of target genes through binding

to a specific region, so regulating the expression and function of downstream genes. miRs con-

tribute to the control of development, cell apoptosis, proliferation, differentiation and other

essential cell activities [33,34]. Recently, it was discovered that many miRs play a crucial role in

the development of cancer and other diseases [35]. The YOD1- ITCH-LATS1/2-YAP/TAZ sig-

naling axis has been found to be under the control of the differential expression of miR-21

[30]. Moreover, the increase of miR-21 levels appeared to be essential for down-regulation of

YOD1 and the following destabilization of ITCH, which in turn augments the amount of

LATS1/2 [30]. miRNA target prediction bioinformatics tools permit to recognize YAP1 also as

a direct target of miR-21 (www.targetscan.org).

The relation between dystrophin and Hippo pathway could be more complex than thought,

embracing not only the known structural mechanical role played by dystrophin, but also its

signaling role. Dystrophin, as component of DGC, participates in transferring forces or loads

produced in the muscle sarcomeres to extracellular matrix and integrates cell signaling in

response to mechanical strain [36,37]. Moreover, YAP activity is regulated by mechanical sig-

naling [38], YAP is a key-player in mechano-trasduction [4], and numerous YAP target genes

encode proteins which link the cytoskeleton to sarcolemma and extracellular matrix [39].

Our novel results permit to postulate a schematic model of what might occur in the Hippo

pathway in DMD muscles (Fig 6). Low levels of YOD1 resulting from increases in the level of

miR-21 lead to an increased level of LATS1/2. Higher LATS1/2 activity enhances the potential

for YAP phosphorylation, which reduces the amount of active YAP, which in turn is also a tar-

get of increased miR-21. The final consequence is that the nuclear expression of YAP-mediated

target genes is reduced or shut down, with a negative result in proliferation, anti-apoptosis

action and cell survival. Since YAP is involved in muscle development and regeneration [4],

and regeneration features are progressively increased in DMD muscles until 6 years of age

[40], our results are somewhat counterintuitive and increased activation of Hippo pathway

should be expected. However, reduced YAP activity might be related to the known defective

regenerative potential. In DMD necrotic changes are always found more numerous compared

to regenerating fibres [36], and an inefficient regeneration is believed to rely on replicative

senescence of satellite cells because of increased muscle fibre turnover and telomere shortening

[41,42].

The proposed model suggests that several steps of the Hippo pathway may become thera-

peutic targets to treat DMD by using agonists or antagonists. Indeed, two faces of Hippo path-

way have been identified for regenerative medicine and cancer treatment: whereas

pharmacological inhibition of YAP activity might be a useful anticancer strategy, on the con-

trary YAP has beneficial roles in stimulating tissue repair and regeneration after injury so that

its activation may be therapeutically beneficial [43]. Moreover, the Hippo pathway has been

linked to various inflammatory modulators such as FoxO, TNFα, IL-6, COX2, AP-1, JAK and

STAT, known to be involved in dystrophin-deficient pathogenic cascade, and both pre-clinical

and clinical drugs of these signalling pathways have been recently reviewed [44]. The present

study reports for the first time that Hippo signaling pathway is altered in DMD muscles, sug-

gesting that some components could become novel therapeutic targets for DMD treatment.

Further studies should investigate Hippo pathway in cultured dystrophic muscle cells and ani-

mal models after potential useful treatments.
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