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Abstract

Single-molecule localization microscopy (SMLM), such as stochastic optical reconstruction 

microscopy and (fluorescence) photoactivated localization microscopy, has enabled 

superresolution microscopy beyond the diffraction limit. However, the temporal resolution of 

SMLM is limited by the time needed to acquire sufficient sparse single-molecule activation events 

to successfully construct a superresolution image. Here, a novel fast SMLM technique is 

developed to achieve superresolution imaging within a much shortened duration. This technique 

does not require a faster switching rate or a higher activation density, which may cause signal 

degradation or photodamage/bleaching, but relies on computational algorithms to reconstruct a 

high-density superresolution image from a low-density one using the concept of blind image 

inpainting. Our results demonstrate that the technique reduces the acquisition time by up to two 

orders of magnitude compared to the conventional method while achieving the same high 

resolution. We anticipate our technique to enable future real-time live cell imaging with even 

higher resolution.
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1. INTRODUCTION

Single-molecule localization microscopy (SMLM), such as stochastic optical reconstruction 

microscopy (STORM) [1] and (fluorescence) photoactivated localization microscopy 

[(F)PALM] [2,3], is able to break the diffraction limit in optical fluorescence microscopy. 

Behind various SMLM methods, there lies a common principle: the localization precision of 

a single fluorophore is much lower than the width of the point spread function (PSF), given 

enough photons. To exploit this property, the specimen is labeled with photoswitchable (or 

photoactivatable) fluorophores, of which only a random sparse subset is fluorescent (on) at a 

time. After detecting and localizing the activated fluorophores, an artificial subdiffraction 

image is synthesized from a fluorophore localization list accumulated from different camera 

frames. In this context, both localization precision and localization density contribute to the 

spatial resolution of the final subdiffractive image [4], but the latter is always the limiting 

factor. According to the Nyquist criterion, the minimum required molecular density of 

localized fluorescent probes in order to achieve a certain spatial resolution needs to be 

(2∕spatial resolution)D, where D = 1, 2, or 3 for one-dimensional (1D), two-dimensional 

(2D), or three-dimensional (3D) imaging, respectively [5,6]. In order to ensure that the 

localization density satisfies the Nyquist criterion, a large number of sequential frames are 

necessary to acquire, suggesting long acquisition time and thus low imaging speed. This 

restriction not only limits the time resolution of SMLM but can also result in light-induced 

perturbations in biological samples. Therefore, there exists a strong demand for fast SMLM 

techniques.

Currently, there are two types of methods to accelerate the imaging speed without 

compromising the spatial resolution. One is to apply a fast switching rate, along with high 

excitation power. Using organic fluorophores and high power lasers, Jones et al. reduced the 

image acquisition time down to 1–2 s while still maintaining the 3D spatial resolution of 30 

nm lateral and 50 nm axial [7]. Huang et al. achieved video-rate SMLM using scientific 

complementary metal-oxide semiconductor (sCMOS) cameras and a new localization 

algorithm accounting for the pixel-dependent sCMOS noises [8]. Another popular approach 

is to increase the activation density at each camera frame so that more molecules can be 

localized and the required number of frames is thus reduced. Because conventional 

localization methods fail to resolve such partially overlapping fluorescent spots, several 

advanced algorithms have been proposed to address this issue [9–16]. Despite the 

acceleration in imaging speed, these fast SMLM techniques have their limitations: high 

excitation intensity may increase photodamage, and a fast switching rate can cause signal 

degradation [11].

Here we report a novel approach to fast SMLM, which tackles the problem from a different 

perspective. This approach does not require a faster switching rate or a higher activation 

density, thereby reducing signal degradation or photodamage/bleaching. The experimental 

setup and data acquisition remain the same as conventional methods, except that fewer 

camera frames are acquired, which in turn increases the imaging speed. For conventional 

SMLM, such a low number of frames causes the density of the fluorophore localization list 

to be far below the Nyquist criterion (called the low-density image) and the synthesized 

image to fail in resolving fine structures in the sample. The novelty of the proposed method 
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lies in the capability to recover an image with a resolution that satisfies the Nyquist criterion 

(called the Nyquist-density image) from the low-density image such that those otherwise 

unresolvable fine structures can be resolved. It is worth noting that the desired Nyquist-

density image is not necessarily the same as the image synthesized by the full fluorophore 

localization list obtained from a large number of camera frames (called the high-density 

image) in conventional SMLM. The Nyquist-density image directly reveals the structures of 

the specimen rather than providing a full fluorophore list because the ultimate goal of 

SMLM is to visualize the specimen structure.

2. RECONSTRUCTION ALGORITHM

We formulate the problem as an image inpainting task, which restores the unknown pixels 

based on certain known regions in an image. Specifically, the incomplete fluorophore 

localization list (from much fewer frames than required in conventional SMLM) is first 

projected onto a discrete grid whose spacing is one-half of the desired spatial resolution. 

Each fluorophore location is assigned to its nearest grid and the intensities of different 

fluorophores in the same grid are summed up. As a result, the localization list is converted to 

a pixelated image, i.e., a low-density image. The complete fluorophore localization list will 

generate a high-density image. We further assume that the low-density image partially 

captures the Nyquist-density image to be reconstructed. Mathematically, the relationship 

between the vectorized low-density image xQ from the localization list acquired in Q camera 

frames and the desired Nyquist-density image vector x is modeled as

xQ = PQx (1)

where PQ is a diagonal matrix with elements of either 1, meaning the information of x is 

acquired at this location, or 0, meaning the information is missing. When Q is small, the 

density in xQ is below the Nyquist criterion. With increased Q, a high-density image can be 

obtained but requires longer acquisition time. Our goal is to reduce the acquisition time by 

reconstructing a Nyquist-density image x faithfully from its low-density counterpart xQ with 

a small Q. Figure 1 uses an X-shaped structure as an example to illustrate the difference 

between the proposed method and the conventional SMLM. It is seen that the proposed 

method directly reveals the sample structure, while the conventional SMLM shows the 

localized fluorophores. Ideally, the images from both methods should provide the same 

capability of resolving fine structures.

To solve Eq. (1), our approach first estimates the unknown measurement matrix PQ (called 

“blind”) based on the low-density image xQ and then estimates x from xQ. This is different 

from the conventional inpainting task, where PQ is known a priori. Estimating PQ is 

challenging because the zero-valued pixels in the low-density image xQ can represent either 

the grids without any fluorophores such as background (corresponding elements of PQ 

should be 1) or those with fluorophores but not activated or detected in the acquired Q 
frames (corresponding elements of PQ should be 0).
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To estimate PQ, we set the corresponding diagonal elements of PQ to 1 for locations of 

either fluorescing molecules captured in Q frames or the background. To determine the 

locations of fluorescing molecules captured in Q frames, we perform hard-thresholding on 

the low-density image xQ. Specifically, if the intensity of a pixel is greater than a threshold, 

then PQ is set to 1 and 0 otherwise. The threshold can be determined from the histogram of 

xQ to account for the noises and disturbances. To determine the location of the background, 

we identify a connected group of zero-valued pixels and assume the region as background. It 

is worth noting that fluorescing molecules in the background or a large region of missed 

molecules in xQ can both affect the accuracy of PQ and thus the reconstruction accuracy.

After PQ is obtained, we estimate x from xQ, which is still nontrivial because there are 

infinite possibilities. Prior information has to be exploited as a constraint to obtain a unique 

reconstruction with good fidelity to the true structures. We employ sparseness as the image 

prior, which has shown promising performances [17,18] and a theoretical guarantee. 

Specifically, the desired Nyquist-density image is assumed to be sparse (i.e., have few 

significant entries) in a transformation domain. As a result, the desired image can be 

reconstructed from the low-density image by enforcing such sparseness. With this model, 

the Nyquist-density image is reconstructed by solving an L1 minimization problem:

min
x

Φx 1 + λ
2 PQx − xQ 2

2, (2)

where λ is a weight parameter and Φ is a sparsifying transform. In the objective function, 

the first term enforces the sparsity in the transform domain and the second term ensures the 

data consistency, with || • ||1 and || • ||2 representing L1-norm and L2-norm, respectively.

The sparsifying transform plays an important role and is dependent on the image contents. 

Here, we employ the curvelet transform [19] because many biological organizations (e.g., 

cytoskeleton) consist of anisotropic filaments and the curvelet transform uses anisotropic 

needle-shaped elements that possess superdirectional sensitivity. Such anisotropic features of 

the curvelet transform are preferred to the isotropic ones of the well-known wavelet 

transform when representing curve-like features. More details about the curvelet transform 

can be found in Ref. [19] and Supplement 1.

The weight parameter λ balances the sparsity constraint and data consistency. In general, 

smaller λ weights the sparsity constraint more, leading to a smoother image, while larger λ 
penalizes data consistency more, preserving more acquired information. It is difficult to 

determine the optimal value of λ without any prior information. Although methods have 

been proposed in the literature to tune λ automatically, we still tune λ manually in our 

implementation. For all normalized xQ, we find that the reconstruction is insensitive within 

the neighborhood of λ = 500, which is thereby set as the default value.

The convex optimization problem in Eq. (2) can be solved by any standard linear 

programming methods. However, most conventional linear programming methods are 

known to converge slowly. Here, we adopt the alternating direction method of multipliers 
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optimization scheme [20]. The detailed algorithm is described in Supplement 1. We have 

implemented the algorithm in MATLAB. The code as well as a set of example data are 

included in Code 1, Ref. [21]. The overall flow chart of the proposed method is provided in 

Supplement 1.

3. THEORETICAL BASIS

When PQ is given exactly, the image inpainting problem is fundamentally the same as that of 

compressed sensing [22–25], and the theoretical results can be drawn accordingly. 

Specifically, the sparse curvelet transform coefficients Φx can be exactly recovered from the 

reduced measurement xQ using the above L1 minimization problem because the curvelet 

transform and the random sampling matrix PQ are incoherent [25]. However, in the proposed 

method, PQ is unknown and its estimation may be inaccurate, which contributes to the major 

source of reconstruction errors. While theoretical analysis of the error bound is challenging 

in such a blind scenario, we provide error bounds for the reconstruction in Supplement 1 

when the location of the acquired region PQ is known.

It is also worth noting that although compressed sensing (CS)-STORM [11] also uses the 

concept of compressed sensing, the sensing matrix, the sparse signal to be recovered, and the 

measurements are completely different. In CS-STORM, compressed sensing is used to 

reconstruct the molecule localizations for a single camera frame, where the spatial 

distribution of active molecules is supposed to be sparse. In such case, the sensing matrix 

describes the convolution operation of the molecule distribution and the PSF. However, in 

our method, compressed sensing is used to reconstruct a high-density image from a low-

density image synthesized using the localization results of multiple camera frames, where 

the high-density image can be sparsely represented in a certain transformation domain. The 

sensing matrix is thus a sampling operator denoting the known part of the image. Such 

difference makes CS-STORM and blind inpainting complementary to each other and thus 

can be combined to reduce the acquisition time even more.

4. RESULTS

A. Simulation Results

To validate and evaluate our blind inpainting method, we performed simulations using a 

numerical phantom image as the “ground-truth” specimen. The “true” image was 3072 × 

3072 pixels, and the pixel size was 5 nm (nominal spatial resolution was 10 nm). The 

phantom consisted of 40 equally distributed Gaussian-shaped radial bars, each with a width 

of approximately 80 nm. The inner ends of these bars were uniformly located on a circle 

with a radius of 700 nm, which meant the minimum peak-to-peak distance of two adjacent 

bars was 110 nm. We simulated a localization list by randomly selecting some locations on 

the radial bars as the activated molecules and recording their coordinates and intensities for 

each camera frame. The two-dimensional activation density was set to 0.58 μm−2 as in CS-

STORM [11]. No multiple activations of molecules were simulated. Because the list was 

directly obtained from the true image (instead of from diffraction-limited images using 

localization algorithms), there were no localization errors or background emission. Each 

location in the list was then projected onto the nearest pixel of an image with a given 
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nominal resolution. Combining the lists from increasing numbers of frames, we synthesized 

images with increasing density, which described the fluorescence intensity of molecules on a 

grid. We applied our blind inpainting method on images from different numbers of frames at 

various nominal resolutions (twice that of the pixel size) in order to understand when the 

nominal resolution becomes the same as the Nyquist resolution and how many frames are 

needed for the proposed method to achieve a certain Nyquist resolution.

To understand the minimum number of frames needed for the proposed method to recover 

the structures in the phantom, we applied our blind inpainting algorithm on the low-density 

images synthesized from different numbers of frames at a nominal resolution (twice that of 

the pixel size) of 40 nm (see Fig. S3 in Supplement 1). The results in Fig. 2 show that in the 

case of 40 nm nominal resolution, the blind inpainting reconstruction from 400 frames 

(~9.3% fluorophores) is visually equivalent to the control high-density image from 4310 

frames (100% fluorophores). Such a nominal resolution becomes about the same as the 

Nyquist resolution. We can thereby claim that blind inpainting needs as few as 400 frames to 

achieve a resolution of 40 nm.

We also reduced the nominal resolutions with decreasing the number of frames such that the 

density in the blind inpainting image is high enough to meet the Nyquist criterion (i.e., the 

nominal resolution is equal to the Nyquist resolution; see Fig. S4 in Supplement 1). Figure 2 

shows that at a nominal reconstruction of 40 nm, the blind inpainting image from 150 frames 

(~3.5% fluorophores) has a density too low to satisfy the Nyquist criterion, whereas at a 

nominal resolution of 80 nm, the density becomes sufficiently high such that the nominal 

resolution becomes the Nyquist resolution. Therefore, although the nominal resolution can 

be chosen to be arbitrarily high, the Nyquist resolution is limited by the labeling density—in 

this case, the capability of the blind inpainting algorithm to recover the unknown pixels. 

According to the theoretical results of sparse inpainting [24], when the measurement 

location is known exactly, the minimum number of known pixels required for exact recovery 

is proportional to the logarithm of the total number of pixels. Therefore, with smaller pixel 

size, the blind inpainting method requires more frames to recover the Nyquist-density image. 

As a rule of thumb, the pixel size is chosen to be half of the desired spatial resolution.

As a means of quantitative evaluation, we calculated the true positive rate and the false 

positive rate. The true positive rate was defined as the ratio between the number of nonzero 

pixels in the foreground region that were correctly recovered by blind inpainting and the 

number of those that were actually in the phantom. The false positive rate was defined as the 

ratio between the number of falsely recovered nonzero pixels that actually belonged to the 

background region and the number of those that were actually in the phantom. The true 

positive rate measures the capability of capturing and recognizing the true structures of the 

specimen. It can be regarded as the normalized localization density that affects the Nyquist 

spatial resolution. When the true positive rate reaches 100%, the reconstructed image 

reaches the Nyquist density and thus the nominal resolution becomes the Nyquist resolution. 

On the other hand, the false positive rate indicates the level of errors that false locations are 

generated outside the labeled structure. This type of error mainly occurs near the true 

molecule locations and thus may degrade the capability of resolving close-by structures. It 

needs to be low to ensure the structures are resolvable. Because of the randomness in 
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generating the localization list, we performed 50 Monte Carlo simulations and calculated the 

average true positive rates and false positive rates for the reconstructions from different 

numbers of frames [Fig. 3(a)]. The true positive rate improves with increasing number of 

frames, while the false positive rate remains low (mostly below 5%) but not zero due to the 

errors in estimated PQ. With 400 frames, blind inpainting was able to achieve a true positive 

rate of 95%, suggesting only a 2.6% loss of Nyquist resolution compared to the nominal 

resolution. Because the ground truth is known for simulation, we also calculated the 

normalized mean square error (NMSE) as the number of frames increases, as shown in Fig. 

3(b). It is seen that the major improvement occurs when the acquired number of frames 

increases from 3% to 10%.

In order to examine how blind inpainting can improve the temporal resolution, we further 

estimated the required number of frames to achieve a certain Nyquist resolution, which was 

determined by the minimum number of frames for the blind inpainting reconstruction to 

reach above 95% in the true positive rate and below 5% in the false negative rate. The curves 

in Fig. 4 indicate that for Nyquist resolutions of 40 nm to 120 nm, blind inpainting allows a 

faithful reconstruction of superresolution images with around 10-fold reduction in the 

number of needed frames.

B. Experimental Results with Microtubules

We demonstrated the performance of blind inpainting in three sets of experimental 

microtubule STORM data.

1. Sample Preparation—Immunostaining was performed using BS-C-1 cells 

(American Type Culture Collection) cultured with Eagle’s Minimum Essential Medium 

supplemented with 10% fetal bovine serum, penicillin, and streptomycin and incubated at 

37°C with 5% CO2. Cells were plated in LabTek 8-well coverglass chambers at ~20; 000 

cells per well 18–24 h prior to fixation. The immunostaining procedure for microtubules 

consisted of fixation for 10 min with 3% paraformaldehyde and 0.1% glutaraldehyde in 

phosphate buffered saline (PBS), washing with PBS, reduction for 7 min with 0.1% sodium 

borohydride in PBS to reduce background fluorescence, washing with PBS, blocking and 

permeabilization for 20 min in PBS containing 3% bovine serum albumin and 0.5% (v/v) 

Triton X-100 [blocking buffer (BB)], staining for 40 min with a primary antibody [rat anti-

tubulin (ab6160, Abcam) for tubulin or rabbit anti-TOM20 (sc-11415, Santa Cruz) for 

mitochondria] diluted in BB to a concentration of 2 μg/mL, washing with PBS containing 

0.2% bovine serum albumin and 0.1% (v/v) Triton X-100 (washing buffer, WB), incubation 

for 30 min with secondary donkey anti-rat antibodies (~1 − 2 Alexa 647 dyes per antibody) 

at a concentration of ~2.5 μg∕mL in BB, washing with WB and sequentially with PBS, 

postfixation for 10 min with 3% paraformaldehyde and 0.1% glutaraldehyde in PBS, and 

finally washing with PBS.

2. Imaging Setup—Microtubule imaging was performed on an inverted microscope 

(Nikon Eclipse Ti-U) configured for either total internal reflection fluorescence or oblique 

incidence excitation. The microscope utilized a 100×, 1.45 NA oil-immersion objective lens 

(Nikon 100×, 1.45 NA). Activation of the Alexa 647 dye was provided by a 405 nm solid-
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state laser (CUBE, Coherent) and excitation of the activated dye molecules was provided by 

a 647 nm solid-state laser (MPB). A 660 nm long-pass dichroic mirror (Z660DCXRU, 

Chroma) was used to reflect the 405 nm and 647 nm lasers, and the transmitted fluorescence 

light was passed through a 700/75 emission filter (ET700/75m, Chroma). Fluorescent 

images were recorded on an electron-multiplying CCD camera (iXon897, Andor).

All imaging was performed in a solution that contained 100 mM Tris (pH 8.0), an oxygen 

scavenging system[0.5 mg/mL glucose oxidase (Sigma-Aldrich), 40 μg/mL catalase (Roche 

or Sigma-Aldrich), and 5% (w/v) glucose] and 143 mM beta mercaptoethanol. For 647 nm 

illumination, an intensity of 2 kW∕cm2 was used. Under this illumination condition, all dye 

molecules are typically in the fluorescent state initially but rapidly switch to a dark state. All 

STORM movies were recorded at a frame rate of 60 Hz using home-written Python-based 

data acquisition software. The movie recording was started once the majority of the dye 

molecules were switched off and individual fluorescent molecules were clearly discernible. 

The movies typically consisted of 30,000–100,000 frames. During each movie, a 405 nm 

laser light (ramped between 0.1 and 2 W∕cm2) was used to activate fluorophores and to 

maintain a roughly constant density of activated molecules. In STORM imaging of in vitro 

microtubules, a weak 561 nm laser (~20 W∕cm2) was used to illuminate fiducial markers.

3. Reconstruction Results—The fluorophore list of fixed microtubules obtained by 

STORM was converted to a subdiffraction image with a pixel size of 53 nm. For the first 

dataset, a total of 34,000 camera frames were acquired and the subdiffraction image using all 

camera frames provided a high-density image that was regarded as a reference for 

comparison. Blind inpainting was used to recover a Nyquist-density image from a low-

density image with much fewer frames. As noted earlier, the high-density image provided as 

the reference is not the ground truth of the reconstruction; the ground truth is not available in 

real experiments. Therefore, the NMSE with the reference image is not a proper metric for 

quantitative evaluation of the reconstruction anymore, as the pixel value difference can be 

large even for a perfect reconstruction. Instead, we used the mean structural similarity 

(SSIM) index [26] between the reconstruction and reference as a metric to evaluate the 

capability of the reconstruction in capturing the structural information in the reference. In 

addition, the Fourier ring correlation (FRC) [27] was also used to estimate the image 

resolution. It splits the image into two subsets and computes their correlation in the Fourier 

domain, and it takes both localization precision and localization density into account without 

the need for any prior information on the ground truth. Figure 5 shows the image generated 

by blind inpainting using only 400 frames. The reconstructed image preserves the 

subdiffraction superresolving capability of the reference high-density image while 

significantly improving the localization density as compared to the low-density image. In 

Fig. 5, the larger average SSIM index of the inpainting image than that of the low-density 

image indicates higher similarities to the reference high-density image. The FRC resolution 

of inpainting image is comparable to high-density image, which also indicates the proposed 

method preserves the resolving capabilities. The transversal profiles of adjacent tubulins 

[Fig. 5(b)] indicate that the spatial resolution of the blind inpainting reconstruction is 

comparable to that of the high-density image. Note that the images and curves were 

normalized respectively for better visualization.
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Figure 6 shows the results for another set of microtubule data where a total number of 

36,000 camera frames were acquired. The same blind inpainting procedure was followed, 

and the reconstructed image using only 300 frames was compared against the reference 

high-density image from 36,000 frames. Blind inpainting had already resolved most close-

by fine structures. The high SSIM index of the blind inpainting result indicated high 

similarities to the reference high-density image, in contrast to the low SSIM of the low-

density image. The FRC resolution of the inpainting image is also close to the high-density 

image. For adjacent tubulins with a relatively large distances, the subdiffractive resolving 

capability was well preserved (indicated by white arrows) by blind inpainting, whereas 

dense or close-by features could not be resolved as well as by the high-density reference 

(indicated by yellow arrows) due to the errors in estimated PQ. Results for a third set of 

microtubule data can be found in Fig. S5 in Supplement 1.

Figure 7 demonstrates how the weight parameter λ in Eq. (2) affects the results. Small λ 
enforces image sparsity in the curvelet domain, which suppresses the noise and disturbances. 

However, the areas with low regional localization density can be suppressed as well. 

Consequently, the reconstruction loses a lot of information. Large λ enforces data 

consistency but lacks the capability of suppressing the background disturbances, so the 

reconstruction looks “noisy.” The result of λ 500 balances the resolution and visual effects. 

The same phenomenon can be observed in other datasets as well. Thus, we adopt λ = 500 as 

the default value in this paper.

C. Experimental Results with Actin

We also applied blind inpainting on single-molecule data of actin, which is more challenging 

due to the denser structures.

1. Sample Preparation—To prepare the sample, COS-7 cells were washed in PBS 

twice, fixed, and permeabilized using 0.3% glutaraldehyde and 0.25% Triton X-100 in a 

cytoskeleton buffer (CB: 10 mM MES pH 6.1, 150 mM NaCl, 5 mM EGTA, 5 mM glucose, 

and 5 mM MgCl2) for 2 min in the first step, followed by the second fixation step using 2% 

glutaraldehyde in CB for 10 min. To reduce the background, they were reduced by 0.1% 

NaBH4 in PBS for 7 min. Following washing with PBS for 1 hr, they were incubated with 

~0.5 μM of Alexa 647-phalloidin at 4°C overnight and briefly washed once with PBS right 

before STORM imaging.

2. Imaging Setup—Actin imaging was performed on a dual-objective microscope. 

Briefly, the sample was mounted between two opposing objective lenses (Olympus Super 

Apochromat UPLSAPO 100×, oil immersion, NA 1.40) by combining the 2D translation 

stage with a 1D translation stage for 3D control of the sample position. Alexa 647 dyes were 

excited using the 647 nm line from a Kr/Ar mixed gas laser (Innova 70C Spectrum, 

Coherent) and activated using the 405 nm solid-state laser (CUBE 405–50C, Coherent). 

Fluorescence from Alexa647 collected by the two objectives were filtered separately with 

two 647 nm notch filters (Semrock NF01–543/647) and then imaged on two different areas 

of the same EMCCD camera (Andor iXon DU-897) at a frame rate of 60 Hz using two pairs 

of relay lenses. The two split movies from the two objectives were analyzed separately, and 
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after mapping the localizations from the second movie to the coordinates of the first movie, 

the final image was reconstructed by determining each localization as a weighted average of 

the coordinates from each movie.

3. Reconstruction Results—We converted the fluorophore list to a subdiffraction 

image with a pixel size of 35 nm for actin data. A reference high-density image was 

generated with 115,000 frames. With as few as 1000 frames, blind inpainting was able to 

largely recover the structures that are unrecognizable in the low-density image (Fig. 8). The 

high SSIM index of the inpainting image also indicates high similarities to the high-density 

image when compared to the low-density image. The FRC resolution of the inpainting image 

is slightly worse but still comparable to the high-density image. However, some fine features 

in the high-density STORM image were not yet recapitulated well in the inpainting image 

because the sparse inpainting model adapts to the dominant high-contrast structures while 

treating the activations from low-contrast structures as background noise.

D. Experimental Results of Integrating with Existing Fast SMLM Methods

Finally, we applied blind inpainting on a set of single-molecule data of microtubules 

analyzed by the compressed sensing algorithm [11,16]. The compressed sensing data were 

published in Ref. [16]. Subdiffraction images with a pixel size of 40 nm were generated 

from the fluorophore list. The inpainting images from 50 frames recapitulated the features 

that are separated by a relatively large distance (with respect to the feature size), whereas 

some close-by features could not be resolved in the inpainting image as well as in the 5000 

frame reference image (Fig. 9). This is because the low-density image from CS-STORM has 

relatively low quality, resulting in inaccurate estimation for the location of the missing data 

and thus poor image quality for inpainting.

5. CONCLUSION

The above results have proven that blind inpainting is able to recapture the microtubule 

structures using up to one hundredth of the frames typically needed in STORM, suggesting a 

potential one to two orders of magnitude of reduction in acquisition time. Results from the 

actin data have also shown promising potential for time reduction. It is worth noting that a 

higher reduction in frame number was observed for blind inpainting in experiments than in 

simulations. While simulation results indicate a reduction factor around 10% (which 

conforms to the results in the image inpainting field), experimental results demonstrate even 

higher acceleration rates up to 100-fold. The difference mainly comes from two aspects. On 

one hand, a single fluorophore may be activated several times and thus generate the same 

localizations, which is redundant in the inpainting framework. On the other hand, when the 

pixel size is larger than the spacing between two adjacent fluorophores, several localizations 

may be projected onto the same pixel, leading to another kind of redundancy. Besides, one 

may expect to improve the image contrast by accumulating more frames. In conjunction 

with the existing fast SMLM approaches (e.g., high-density activation such as compressed 

sensing), blind inpainting can offer further improvement in acquisition time. Although we 

have only analyzed 2D data, our method can also be applicable to 3D data by employing a 

3D sparsifying transform. Moreover, the proposed method can also reduce the time required 
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for scanning-based imaging techniques, such as confocal, two-photon, and stimulated 

emission depletion microscopy. To make the proposed method better preserve fine features 

in a variety of cell structures and experimental conditions, future work will improve the 

accuracy of the PQ estimation in the presence of background noise and will extend the 

inpainting model to be adaptive to features of different fineness and shapes. While 

challenging, future work will also investigate some theoretical results on the number of 

required frames.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment.

We thank Zeyu Yu for computing the FRC of the images. Authors L. Y. and S. J. are partly supported by the NSF. 
Author X. Z. is supported by NIH and HHMI Investigator.

Funding. National Science Foundation (NSF) (CBET-1604531, CBET-1604565); Howard Hughes Medical 
Institute (HHMI); National Institutes of Health (NIH); Defense Advanced Research Projects Agency (DARPA) 
(D16AP00108); National Institute of General Medical Sciences (NIGMS) (1R35GM12484601).

REFERENCES

1. Rust MJ, Bates M, and Zhuang X, “Sub-diffraction-limit imaging by stochastic optical 
reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006). [PubMed: 16896339] 

2. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S,Bonifacino JS, Davidson MW, 
Lippincott-Schwartz J, and Hess HF, “Imaging intracellular fluorescent proteins at nanometer 
resolution,” Science 313, 1642–1645 (2006). [PubMed: 16902090] 

3. Hess ST, Girirajan TPK, and Mason MD, “Ultra-high resolution imaging by fluorescence 
photoactivation localization microscopy,” Biophys. J 91, 4258–4272 (2006). [PubMed: 16980368] 

4. Huang B, Babcock H, and Zhuang X, “Breaking the diffraction barrier: superresolution imaging of 
cells,” Cell 143, 1047–1058 (2010). [PubMed: 21168201] 

5. Shannon CE, “Communication in the presence of noise,” Proc. IRE 37, 10–21 (1949).

6. Shroff H, Galbraith CG, Galbraith JA, and Betzig E, “Live-cell photo-activated localization 
microscopy of nanoscale adhesion dynamics,” Nat. Methods 5, 417–423 (2008). [PubMed: 
18408726] 

7. Jones SA, Shim SH, He J, and Zhuang X, “Fast, three-dimensional super-resolution imaging of live 
cell,” Nat. Methods 8, 499–505 (2011). [PubMed: 21552254] 

8. Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird 
MA, Mothes W, Davidson MW,Toomre D, and Bewersdorf J, “Video-rate nanoscopy using sCMOS 
camera-specific single-molecule localization algorithms,” Nat. Methods 10, 653–658 (2013). 
[PubMed: 23708387] 

9. Holden SJ, Uphoff S, and Kapanidis AN, “DAOSTORM: an algorithm for high-density super-
resolution microscopy,” Nat. Methods 8, 279–280 (2011). [PubMed: 21451515] 

10. Quan T, Zhu H, Liu X, Liu Y, Ding J, Zeng S, and Huang Z-L, “High-density localization of active 
molecules using structured sparse model and Bayesian information criterion,” Opt. Express 19, 
16963–16974 (2011). [PubMed: 21935056] 

11. Zhu L, Zhang W, Elnatan D, and Huang B, “Faster STORM using compressed sensing,” Nat. 
Methods 9, 721–723 (2012). [PubMed: 22522657] 

12. Mukamel EA, Babcock H, and Zhuang X, “Statistical deconvolution for superresolution 
fluorescence microscopy,” Biophys. J 102, 2391–2400 (2012). [PubMed: 22677393] 

Wang et al. Page 11

Optica. Author manuscript; available in PMC 2018 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



13. Huang F, Schwartz SL, Byars JM, and Lidke KA, “Simultaneous multiple-emitter fitting for single 
molecule super-resolution imaging,” Biomed. Opt. Express 2, 1377–1393 (2011). [PubMed: 
21559149] 

14. Babcock H, Sigal YM, and Zhuang X, “A high-density 3D localization algorithm for stochastic 
optical reconstruction microscopy,” Opt. Nanoscopy 1, 6 (2012).

15. Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT,Lippincott-Schwartz J, Jones 
GE, and Heintzmann R, “Bayesian localization microscopy reveals nanoscale podosome 
dynamics,” Nat. Methods 9, 195–200 (2012).

16. Babcock HP, Moffitt JR, Cao Y, and Zhuang X, “Fast compressed sensing analysis for super-
resolution imaging using L1-homotopy,” Opt. Express 21, 28583–28596 (2013). [PubMed: 
24514370] 

17. Elad M, Starck JL, Querre P, and Donoho DL, “Simultaneous cartoon and texture image inpainting 
using morphological component analysis (MCA),” Appl. Comput. Harmonic Anal 19, 340–358 
(2005).

18. Fadili MJ, Starck JL, and Murtagh F, “Inpainting and zooming using sparse representations,” 
Comput. J 52, 64–79 (2009).

19. Candès E, Demanet L, Donoho DL, and Ying L, “Fast discrete curvelet transforms,” Multiscale 
Model. Simul 5, 861–899 (2006).

20. Boyd S, Parikh N, Chu E, Peleato B, and Eckstein J, “Distributed optimization and statistical 
learning via the alternating direction method of multipliers,” Found. Trends Mach. Learn 3, 1–122 
(2011).

21. The implementation of the proposed algorithm and the data to generate Fig. 1, 10.6084/
m9.figshare.5229943.

22. Candès EJ, Romberg JK, and Tao T, “Robust uncertainty principles: exact signal reconstruction 
from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

23. Donoho DL, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

24. Candès E and Tao T, “Near-optimal signal recovery from random projections: universal encoding 
strategies?” IEEE Trans. Inform. Theory 52, 5406–5425 (2006).

25. Candès EJ and Wakin M, “An introduction to compressive sampling,” IEEE Signal Process. Mag 
25(2), 21–30 (2008).

26. Wang Z, Bovik AC, Sheikh HR, and Simoncelli EP, “Image quality assessment: from error 
visibility to structural similarity,” IEEE Trans. Image Process 13, 600–612 (2004). [PubMed: 
15376593] 

27. Nieuwenhuizen RPJ, Lidke KA, Bates M, Puig DL, Grünwald D,Stallinga S, and Rieger B, 
“Measuring image resolution in optical nanoscopy,” Nat. Methods 10, 557–562 (2013). [PubMed: 
23624665] 

Wang et al. Page 12

Optica. Author manuscript; available in PMC 2018 October 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Schematic comparison of the proposed blind sparse inpainting method with the conventional 

SMLM method.
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Fig. 2. 
Simulation results showing (from left to right) a high-density image from 4310 frames, a 

low-density image from 400 frames, blind inpainting reconstructions from 400 frames and 

150 frames, all at 40 nm nominal resolution, and blind inpainting reconstruction from 150 

frames but at 80 nm nominal resolution. Top: full field of view. Bottom: top-left region. 

Scale bars: 2 μm.
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Fig. 3. 
Simulation results for the case of 40 nm nominal resolution.(a) Plots of true positive and 

false positive rates with respect to the number of frames. (b) Normalized mean square error 

curve with respect to the number of frames.
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Fig. 4. 
Simulation results. Minimum number of frames to achieve a given Nyquist resolution for the 

phantom simulation.
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Fig. 5. 
Results from real microtubule STORM data. (a) Images of the full field of view (top) and a 

selected region of interest (ROI, bottom). From left to right: diffraction-limited image, low-

density STORM image using 400 frames, blind inpainting reconstruction from the 400 

frame image, and high-density STORM image taken using 34,000 frames, respectively. 

Scale bars: 2.5 μm. Pixel size: 53 nm. (b) Line profiles of two segments indicated by the 

white lines in (a), left for segment 1 and right for segment2. Low: low-density image. High: 

high-density image. Inpainting: blind inpainting reconstruction. Diffract.: diffraction-limited 

image.
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Fig. 6. 
Results from a second set of real microtubule STORM data showing images of the full field 

of view (top) and selected ROI (bottom). From left to right: diffraction-limited image, low-

density STORM image using 300 frames, blind inpainting reconstruction from the 300 

frame image, and high-density STORM image using 36,000 frames, respectively. Scale bars: 

2.5 μm. Pixel size: 53 nm.
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Fig. 7. 
Effect of λ on a real STORM dataset. The results of λ = 50 and 100 are seen to lose 

structural information, while that of λ = 500 maintains the resolution and structure when 

suppressing noise.
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Fig. 8. 
Results from real actin STORM data showing images of the full field of view (top) and 

selected ROI (bottom). See Fig. S6 in Supplement 1 for other ROIs. From left to right: low-

density STORM image using 1000 frames, blind inpainting reconstruction from the 1000 

frame image, and high-density STORM image using 115,000 frames, respectively. Scale 

bars: 1.25 μm. Pixel size: 35 nm.
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Fig. 9. 
Results from real CS-STORM data showing images of the full field of view (top) and 

selected ROI (bottom). From left to right: low-density STORM image using 50 frames, blind 

inpainting reconstruction from the 50 frame image, and high-density STORM image using 

5000 frames, respectively. Scale bars: 2 μm. Pixel size: 40 nm.
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