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Abstract

The composition of the human microbiome is considered a major source of inter-individual 

variation in immunity, and by extension, susceptibility to diseases. Although intestinal bacteria 

have been the major focus of research, diverse communities of viruses that infect microbes and the 

animal host cohabitate the gastrointestinal tract, which collectively constitute the gut virome. 

Although viruses are typically investigated as pathogens, recent studies highlight a relationship 

between the host and animal viruses in the gut that is more akin to host-microbiome interactions 

and includes both beneficial and detrimental outcomes for the host. These viruses are likely 

sources of immune variation, both locally and extra-intestinally. In this review we describe the 

components of the gut virome, in particular mammalian viruses, and their ability to modulate host 

responses during homeostasis and disease.

Introduction

The human body harbors diverse populations of infectious entities, collectively known as the 

microbiome, that interact with each other and with the host to influence health and disease. 

While most commonly studied are the bacterial members of the microbiome, there are vast 

numbers of viruses present in the human body. Together, these viruses form the virome. 

Comprehensive annotation of the human virome is confounded by the staggering diversity of 

viruses detected at multiple anatomical sites that can have ssRNA, dsRNA, ssDNA or 

dsDNA genomes. Despite this challenge, recent advances in sequencing and analysis of 

metagenomic data have facilitated the discovery of new viruses and improved our ability to 

catalog viral communities in an unbiased manner (1, 2). These pioneering efforts reveal 

substantial intestinal virome diversity between individuals likely due to differences in 

bacterial composition and diet (3, 4). Studies comparing the virome between individuals 

have contributed to the growing evidence that differential exposure to viruses influences host 

physiology, either to the detriment or benefit of the host, much like the bacterial 

microbiome.
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Although the study of virology has generally focused on disease-causing animal viruses, a 

large fraction of the virome is comprised of bacteriophages and endogenous retroviral 

elements. Approximately 1015 bacteriophages exist in the human intestine (5). 108-109 

virus-like particles (VLPs) are found in a gram of human stool (6). The majority of these 

contain a DNA genome. Among the DNA viruses that can be matched to an annotated 

genome, 99% are bacteriophages and the remaining 1% are animal viruses such as 

anellovirus, parvovirus, adenovirus, and papillomavirus (6). Intrapersonal bacteriophage 

abundance is mostly stable over time but does show rapid sequence diversification (7). The 

predominant classifiable bacteriophage species in the gut are the dsDNA Caudovirales and 

ssDNA Microviridae (8). However, one uncharacterized dsDNA bacteriophage known as 

crAssphage is present in 73% of fecal metagenomes and predicted to infect Bacteroides 
species that are prevalent in the human gut (9, 10). In addition to directly influencing 

microbiome population dynamics by killing their bacterial hosts during lytic release of viral 

particles, bacteriophages that integrate into bacterial genomes contribute to the coding 

potential of the microbiome to indirectly influence the physiology of the animal host (8).

Endogenous retroviruses (ERVs) resemble present day exogenous retroviruses but are 

integrated in the host genome and transferred vertically between generations. They are 

estimated to comprise 8% of the human genome (11). The syncytin proteins that mediate 

placental development are derived from ERV env genes, and ERVs have dispersed 

interferon-inducible enhancer elements throughout mammalian genomes, suggesting that 

retroviral integration played a substantial role in mammalian evolution (12). Although most 

ERVs have accumulated many changes to their sequence over time that have rendered them 

defective, there are a limited number of ERVs with the potential to produce viral products 

that activate immune response or promote tumorigenesis (12–15). ERVs can also facilitate 

insertional mutagenesis and chromosomal rearrangements that affect cellular gene 

expression (16). The virome can also include plant viruses, likely introduced through food, 

and viruses that infect archaea and eukaryotic members of the microbiome such as fungi 

(mycobiome). One study showed that 97% of VLPs from the healthy human gut that harbor 

an RNA genome represent pathogenic plant viruses, with the remaining 3% belonging to 

animal viruses (17). How these viruses affect animal hosts is unknown.

The remainder of the virome consists of RNA and DNA animal viruses that are not 

integrated into the germ-line. At any given time, an individual human harbors multiple 

animal viruses, many of which establish chronic infections (18–20). The prevalence of 

animal viruses that cause transient infections, also considered part of the virome, can be 

more difficult to investigate, especially if the infection is asymptomatic. In contrast to 

serological methods that capture the infectious history of an individual (21), metagenomic 

studies may miss the contribution of a virus that is no longer present in a patient or diseased 

tissue. Additionally, chronic infections are often difficult to detect because certain viruses 

can exist in a quiescent state (latency), and the immune system may restrict replication to 

levels that are undetectable by conventional methods. In one of the few longitudinal virome 

studies performed to date, fecal samples from healthy human infants were shown to harbor 

RNA and DNA animal viruses belonging to 16 distinct families during the first 24 months of 

life (22). By adulthood, a typical individual will have been infected by at least 10 different 

viruses, with some individuals showing evidence of infection by 50-100 viral species (21).
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The traditional paradigm of host-pathogen interactions, where infection by an individual 

agent directly produces immediate disease, fails to fully capture our relationship with many 

of these animal viruses. The necessity of the host machinery for their life cycle suggests that 

these viruses are unlikely to be silent passengers. Recent studies highlight how the 

gastrointestinal tract is an important site for virus-microbiome and virus-host interactions 

that likely contribute to inter-individual variation in immunity and disease susceptibility 

(Figure 1). Therefore, in this article we will focus on the impact of intestinal animal viruses 

as modifiers of the immune system. We will first review the pathways involved in 

recognition and responding to intestinal infection, and provide evidence of functional 

interactions between animal viruses and the bacterial microbiome. We will next discuss the 

beneficial and detrimental impact of intestinal infections by viruses beyond their role as 

pathogens. At the end, we use examples of how knowledge gained from the study of viral 

infections at non-intestinal sites can guide future research into the gut virome.

Immune responses to enteric viruses

Unlike bacteria, viruses need to infect host cells within the gastrointestinal tract to support 

their propagation. Target cells include the one-layer thick epithelial cells that serve the dual 

function of facilitating nutrient exchange and a physical barrier against invasion (23). 

Dendritic cells (DCs) and macrophages within the lamina propria (tissue underlying the 

epithelium) and gut-associated lymphoid tissue (GALT, such as Peyer’s patches) also 

commonly encounter viruses (24). Nucleic acid derived from enteric viruses are sensed by 

these cells through many of the same pattern recognition receptors (PRRs) that are important 

at other sites. These include endosomal toll-like receptors (TLRs) that signal through 

MYD88 and TRIF, and the cytosolic sensors retinoic acid inducible gene–I (RIG-I) and 

melanoma differentiation-associated protein 5 (MDA5) that signal through MAVS, to 

stimulate the expression of type I (IFN-I) and type III (IFN-III) interferons (24). Both RIG-I 

and MDA5 are necessary for optimal antiviral responses to rotavirus, a dsRNA virus that 

infects the small intestinal epithelium to cause diarrheal disease in children (25). Sensing of 

ssRNA noroviruses, which also cause gastroenteritis in humans, can occur through MDA5, 

TLR7, and TLR3 in myeloid cells (26, 27). Although best known for responding to bacteria, 

recent studies suggest that cytosolic Nod-like receptors (NLRs) have an intestine-specific 

role in restricting viruses. Mice deficient in NLRP6, which can serve as a co-factor for RNA 

helicase DHX15 to signal through MAVS, display a blunted IFN-I/III response and are 

susceptible to oral infection by encephalomyocarditis virus (ECMV) and murine norovirus 

(MNV) (28). The multiple pathways involved in norovirus recognition may reflect inter-

strain differences or their ability to infect broad cell types including myeloid cells, 

lymphocytes, and the specialized sensory epithelial cell known as tuft cells (29–32). 

Inhibiting the ability of MNV to engage these rare tuft cells prevents infection, highlighting 

the importance of an exquisitely specific cell tropism and remarkable adaptation of enteric 

viruses (30). Rotavirus RNA is sensed by NLRP9b and another RNA helicase DHX9 in the 

intestinal epithelium and is essential for inflammasome-mediated cell death (pyropotosis). 

Given that rotaviruses antagonize IFN signaling, this pathway may explain why other PRRs 

are inadequate for controlling this virus (33).
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Despite the ability of certain viruses to evade IFN responses, numerous studies highlight the 

essential role of these cytokines during intestinal infection. IFN-I (IFNα and IFNβ) binds 

the interferon-α/β receptor (IFNAR1 and IFNAR2 complex) while IFN-III (IFNλ) binds the 

interferon lambda receptor (IFNLR1 and IL10R2 complex) to induce an antiviral gene 

expression program. Although the exact effector mechanisms in the gut remain obscure, they 

are presumably similar to other sites of infection and involve interferon stimulated genes 

(ISGs) that reduce viral replication (e.g., modification of viral RNA) and induce a refractory 

state in neighboring uninfected cells. IFNAR1 is broadly expressed on a variety of cell types, 

and is necessary for preventing systemic dissemination of MNV, rotavirus and reovirus (34). 

In contrast, the relatively restricted expression of IFNLR1 to epithelial cells suggests it has a 

more defined role in controlling mucosal viral replication (35). IFNλ, in combination with 

IL-22 production by group 3 innate lymphoid cells (ILC3s), effectively controls intestinal 

rotavirus infection (36). IFNλ signaling in epithelial cells is also required to regulate fecal 

shedding and viral replication in mice infected with MNV and reovirus (37). IFNs also 

promote adaptive immune responses (38), which are critical for control of enteric viruses 

(39–42). Suboptimal CD8+ T cell responses and avoidance of CD8+ T cell detection are 

associated with MNV persistence (43, 44). Furthermore, successful vaccination against 

rotavirus directly correlates with IgA production (45). Although we emphasize the role of 

cytokines downstream of PRRs in subsequent sections as a common means by which viruses 

affect host physiology, understanding how adaptive immunity functions or fails to control 

enteric viruses remains an important topic with direct relevance to vaccine efforts.

Boosting innate immunity may be an effective strategy for overcoming insufficient antiviral 

immunity in the gut. Treatment with bacterially-derived flagellin prevents and cures chronic 

rotavirus infection of mice by triggering IL-22 and IL-18 production through TLR5 and 

NLRC4, respectively (46). For noroviruses, effective antivirals and vaccines currently do not 

exist, and there is increased concern that persistent norovirus infection may be contributing 

to morbidity in immunocompromised individuals or facilitating transmission (47, 48) 

Remarkably, administration of recombinant IFNλ is sufficient to clear infection of a 

persistent strain of MNV independently of the adaptive immune response (29, 49). As we 

discuss throughout this article, the induction of IFNs is a hallmark of viral infection, and 

likely mediates many of the consequences of enteric viruses on host physiology.

Impact of bacteria on enteric virus infection

Depletion of intestinal bacteria often reduces the replication of enteric viruses, as the 

bacterial microbiome is known to facilitate viral infection and modify anti-viral immune 

responses (50, 51). Optimal poliovirus infectivity is dependent on the stabilization of virions 

upon binding to bacterial surface polysaccharides (52, 53). Binding to bacteria also 

promotes poliovirus attachment to target cells, which can enhance viral fitness by facilitating 

co-infection with multiple virions and genetic recombination events between viral strains 

(54). For similar reasons, intestinal titers and pathology are reduced following infection of 

antibiotics-treated Ifnar1−/− mice with reovirus (52). During vertical transmission of mouse 

mammary tumor virus (MMTV) through maternal milk, LPS bound to virions from the 

mother stimulates the production of the immunosuppressive cytokine IL-10 in the pups to 

allow the establishment of infection (55). Treatment of mice with antibiotics also decreases 
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intestinal MNV replication (32, 56, 57). Here, bacteria reduce the efficacy of IFNλ-

mediated viral clearance and enhance infection of B cells (32, 56). During rotavirus 

infection, bacteria reduce systemic and intestinal anti-rotavirus IgA titers to support 

increased rotavirus replication (58). These studies indicate that animal viruses that infect the 

gastrointestinal tract have adapted to the presence of bacteria.

Beneficial impact of viruses in the gut

The importance of the microbiome to the intestinal environment is apparent in germ-free 

mice, which display numerous intestinal and immune abnormalities due to the lack of 

microbial communities (59). Germ-free mice and mice treated with antibiotics also show 

increased susceptibility to models of intestinal damage, peanut allergy, allergic asthma and 

bacterial infections (60–64). Although in some cases intestinal bacteria are sufficient to 

modulate these responses, in many models a role for the virome cannot be ruled out, 

especially given that antiviral signaling has a prominent role in diseases involving the gut. 

Non-hematopoietic expression of MAVS is required to protect mice against colitis following 

intestinal injury by dextran sodium sulfate (DSS) (65). Similarly, IFN-I signaling following 

stimulation of the MAVS and RIG-I pathways improves intestinal barrier function and 

protects mice from graft-vs-host disease (GVHD), a complication that occurs following 

allogeneic stem cell transplantation (66). In another example, administration of a TLR7 

agonist enhances colonization resistance to vancomycin-resistant Enterococcus (VRE), a 

common hospital-acquired opportunistic pathogen, by stimulating dendritic cells that induce 

IL-22 production by ILC3s (27). Another example where intestinal viruses potentially 

promote colonization resistance was observed during fecal microbiome transplantation in 

patients harboring Clostridium difficile. Surprisingly, filtrated feces (to remove the bacterial 

component and retain viruses) have the same efficacy as un-filtrated feces in treating the 

patients (67). It is possible that the active component of the fecal microbiome transplantation 

(FMT) consists of bacteriophages because patients with C. difficile infection had altered 

bacteriophage abundance and richness compared to healthy controls, and successful 

transplantation was associated with transfer of Caudovirales species (68). These and other 

observations indirectly suggest that enteric viral infections fortify the intestinal barrier in 

certain situations via triggering beneficial immune responses or influences the bacterial 

microbiome.

Mechanistic experiments in mice, especially with MNV infections, provide formal evidence 

that viruses can function as a subset of the microbiome in a manner analogous to intestinal 

bacteria (Table I). Many MNV strains establish persistent infection in the intestine, 

frequently in the absence of obvious symptoms. Infection by a persistent strain of MNV 

compensates for the absence of bacteria in germ-free mice by restoring intestinal 

morphology and promoting lymphocyte differentiation (57). In addition, MNV protects 

antibiotics-treated mice from DSS-induced intestinal injury in a manner dependent on 

IFNAR1 (57). MNV can also protect antibiotics-treated mice from pathology during 

superinfection with the intestinal bacterial pathogen Citrobacter rodentium and reduces 

colonization by VRE (27, 57). The recent discovery that MNV infects tuft cells, which 

coordinates type 2 immune responses and mucus production, suggests that infection by this 

virus could directly influence the function of the intestinal epithelium and warrants further 

Neil and Cadwell Page 5

J Immunol. Author manuscript; available in PMC 2019 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



investigation (30). It is possible that these effects extend beyond the gastrointestinal tract 

because MNV infection protects mice from lung injury following infection with 

Pseudomonas aeruginosa (69), and MNV restores serum immunoglobin in germ-free mice to 

levels observed in conventional mice (57). The observation that norovirus RNA is detected 

in up to 16% of healthy humans reinforces the need to understand how enteric viral 

infections impact host biology when they are not causing diarrheal disease (70).

Other animal viruses may also promote intestinal homeostasis. Treatment of mice with a 

cocktail of antivirals increases the severity of DSS-induced colitis, while treatment with 

inactivated rotavirus or TLR3/7 agonists reduces disease (71). In this case, the protective 

effect of TLR ligation was attributed to IFN-I expression by plasmacytoid DCs. This 

response to viruses may be conserved in humans because TLR3 and TLR7 gene variants are 

associated with increased severity of inflammatory bowel disease (IBD) in patients (71). 

Murine cytomegalovirus (CMV), a herpesvirus that chronically infects a variety of tissues 

and cell types, promotes turnover of the epithelium in multiple organs including the 

intestine. This effect was attributed to epithelial proliferation induced by the ISG Apol9a/b 
expressed by macrophages downstream of elevated IFN-I and was shown to enhance 

intestinal wound healing (72). When taken together, these studies show that IFN-I and other 

antiviral responses induce factors that promote intestinal epithelial health in addition to those 

that inhibit viral replication. Whether IFNs in the gut are beneficial to the host may be 

context-specific and not without controversy (24). A major future direction is to elucidate 

the specific mechanisms of action downstream of IFN signaling in the models described 

above.

Negative impact of viruses in the gut

Excess IFN-I production and other antiviral responses in the gut can potentiate disease 

(Table I). Until recently, IFN-I in combination with antiviral drugs was standard treatment 

for chronic hepatitis C virus (HCV) infection and was associated with significant toxicity, 

including gastrointestinal illness. There is also evidence from case studies to suggest that 

IFN-I therapy may potentiate the development of celiac disease, an autoimmune disorder 

that mainly occurs in individuals harboring HLA-DQ2 or DQ8 alleles where inappropriate 

responses to gluten leads to intestinal damage (73). This side effect of antiviral therapy is 

consistent with the observation that patients with celiac disease display increased levels of 

IFN-I production by intestinal DCs that promote Th1 responses in the gut (74). It is 

therefore unsurprising that virus infections have long been suspected to be involved in the 

development of celiac disease (75). A compelling recent study demonstrated that celiac 

disease may be caused by reoviruses, dsRNA viruses that commonly infect humans and 

typically associated with mild or undetectable disease (76). In an animal model, reovirus 

infection blocked the differentiation of peripheral regulatory T cells through IFN-I and 

enhanced dietary antigen-specific Th1 responses through the transcription factor interferon 

regulatory factor 1 (IRF1) (76). Patients with celiac disease were also more likely to have 

higher anti-reovirus antibody titers, which was associated with higher expression of IRF1 in 

the small intestinal mucosa (76). Therefore, enteric viruses that are otherwise tolerated may 

induce serious intestinal disease in susceptible individuals.
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The paradigm of virus-plus-susceptibility gene interaction was initially demonstrated in 

experiments with MNV, and reinforces the concept that viruses function as members of the 

gut microbiome. A common variant of ATG16L1, a gene that mediates the cellular 

degradative pathway of autophagy, is associated with increased susceptibility to a form of 

IBD known as Crohn’s disease. IBD is widely considered a disorder originating from a 

perturbed microbiome (77). Atg16L1 mutant mice and Crohn’s disease patients harboring 

the ATG16L1 risk allele display morphological defects in Paneth cells (78), antimicrobial 

epithelial cells in the small intestine that are essential for preventing inflammation (79). In 

the Atg16L1 mutant mice, the Paneth cell defects and other inflammatory pathologies were 

dependent on infection by MNV (78, 80). In this model, loss of Atg16L1 in the intestinal 

epithelium sensitizes Paneth cells to necroptosis mediated by TNFα produced in response to 

viral infection (81). MNV also accelerates the onset of intestinal inflammation in mice 

deficient in the toxin transporter MDR1a that are colonized by Helicobacter bilis (82) and 

IL-10-deficient mice (83). Thus, immune responses to an otherwise beneficial or innocuous 

virus can contribute to intestinal disease when combined with genetic susceptibility.

Although host responses to MNV and Paneth cell properties are likely conserved between 

mice and humans, further evidence is required to support the role of IFN-I or the virome in 

Crohn’s disease. A number of other viruses, including enterovirus, have been linked to 

Crohn’s disease (84, 85). In a virome study, expansion of the Caudovirales bacteriophages in 

the gut was observed in Crohn’s disease patients (86). Here, bacteriophage expansion was 

associated with decreased bacterial diversity suggesting that virus-microbiome interactions 

contribute to disease pathogenesis (86). A similar expansion of bacteriophage diversity is 

observed in patients with colorectal cancer and specific bacteriophage signatures can 

delineate patients in early or late stage and those with reduced survival (87). Also, a gut 

virome analysis of patients displaying GVHD with intestinal involvement revealed a marked 

increase in animal viruses with a DNA genome and bacteriophage richness (88). In 

particular, the presence of a dsRNA Picobirnaviridae species is predictive of a severe enteric 

disease (88). The combined approach of metagenomics through deep sequencing and 

targeted investigation of specific viral agents (like reovirus and celiac disease) may be 

necessary to explore the contribution of viruses to Crohn’s disease, GVHD, and other 

complex inflammatory disorders that are likely influenced by multiple infectious and genetic 

factors.

Impact of intestinal viruses beyond the gastrointestinal tract

The impact of the intestinal virome may extend beyond the gastrointestinal tract to influence 

autoimmune diseases (Table I). One explanation for such extra-intestinal effects of viruses is 

the spread of infectious particles or viral RNA/DNA from the intestine to other body sites. 

Indeed, the transit of antigens between the gastrointestinal tract and pancreatic lymph nodes 

has been suggested as a mechanism for the effects of environmental agents on type 1 

diabetes (T1D), an autoimmune disease where insulin-producing β cells are destroyed by 

pancreas-infiltrating autoreactive lymphocytes (89). Polymorphisms in MDA5 (IFIH1) and 

an IFN-I gene expression signature are associated with disease onset, supporting a role for 

viruses in disease progression (90, 91). Also, the appearance of autoantibodies in patients 

correlates with infection by coxsackievirus B1 (CVB1), a +ssRNA virus that belongs to a 
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diverse and prevalent group of picornaviruses that transmit fecal-orally (92). Infection with 

CVB3 and CVB6, which may provide cross-protection against CVB1, reduces the risk of 

T1D development in pre-diabetic children (92). Similar protection against virus-induced 

T1D is induced by CVB vaccination of mice (93). Although direct causation has not been 

established, CVB is believed to induce T1D by chronically infecting the pancreas and 

altering the local immune response (91). Rotavirus infection is also associated with 

progression to T1D (94). In the non-obese diabetic (NOD) mouse model of T1D, oral 

infection of adult mice with rotavirus leads to IFN-I-dependent bystander activation of 

lymphocytes in the pancreatic lymph nodes and acceleration of T1D onset, likely due to 

spread of infectious virus to the mesenteric and pancreatic lymph nodes (95–98). In contrast, 

neonatal infection of NOD mice with rotavirus or reovirus delays the onset of disease 

suggesting that timing of virus infections impacts the course of autoimmunity (99, 100).

A recent prospective study of infants at risk for T1D performed a longitudinal virome 

analysis and showed that increased bacteriophage diversity predicts a lack of progression to 

disease (101). Increased bacteriophage diversity correlated with changes in abundance of 

specific bacterial taxa, which may be related to the extensive literature using NOD mice 

demonstrating that the composition of the bacterial microbiome is an important factor in 

disease development (102). The same study also found an enrichment of sequences 

belonging to Circoviridae in the controls compared with individuals who develop T1D, 

raising the possibility that these group of poorly characterized small ssDNA animal viruses 

are protective (101). Although these studies implicate multiple viruses in disease 

pathogenesis, an exact mechanistic role for viruses in humans has yet to be established and 

requires additional research.

Metagenomic studies of HIV+ individuals have been particularly informative in that they 

reveal the presence of a dynamic gut virome in a disease state. Low peripheral CD4 cells 

counts leads to the development of AIDS which is marked by increased susceptibility to 

secondary infection and other immunopathologies. The gut is a major site of HIV 

replication, HIV-specific immune responses and pathology (103). Enteric adenoviruses and 

anelloviruses are increased in HIV+ patients with low peripheral CD4+ T cell counts (104). 

Similar expansion of the virome is observed in primates infected with simian 

immunodeficiency virus (SIV), with intestinal adenovirus associated with increased enteritis 

and parvovirus viremia associated with increased progression to AIDS (105). It is possible 

that this increased presence of viruses contributes to AIDS in a manner similar to the 

proposed role of the bacterial microbiome, where depletion of T cells in the gut disrupt the 

barrier, leading to the systemic dissemination of bacterial products that fuel chronic and 

pathological immune activation (106). Given that the majority of humans by the time they 

reach adulthood become transiently or chronically infected by the animal viruses discussed 

in this section (Anelloviridae, Adenoviridae, and Picornaviridae), careful analyses of the gut 

virome in other immune-related disorders is warranted.

Lessons from extra-intestinal virus infection

When considering how the enteric virome might influence inter-individual variation, it is 

worth examining the known mechanisms by which viruses at other sites of the body alter the 
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immune system. Detailed immunological studies in mice have supported a role for the IFN 

response, but also highlight other pathways (Table II). Viruses that are traditionally 

considered to display localized infection and disease can provoke systemic responses, such 

as influenza A virus that induces hepatitis and intestinal damage without local infection 

(107, 108). Liver damage induced by influenza A virus is caused by the accumulation of 

pathogen-specific CD8+ T cells and intestinal damage is the result of an altered bacterial 

microbiome and increased IL-17a (107, 108). Therefore, an important possibility to examine 

is whether enteric viruses select for T cells that exert pathological outcomes once they 

migrate to other sites.

Latent viral infections may be a particularly potent modulator of host responses. 

Gammaherpesvirus 68 (γHV-68) or CMV infection in mice enhances macrophage and NK 

cell activation, and improves the outcome of secondary infection with Listeria 
monocytogenes, Yersinia pestis and influenza A (109–111). In an animal model of primary 

immune-deficiency, latent γHV-68 infection rescues survival following L. monocytogenes 
infection by inducing an inflammatory reaction that compensates for inadequate cytokine 

levels, suggesting that deleterious mutations can be masked by an individual’s virome (112). 

γHV-68 also protects against allergic asthma by altering the composition of macrophage 

subsets in the lung (113). In this case, the effect of viral infection was not dependent on 

latent infection and occurred during a developmental window. These findings in animal 

models are supported by elegant human cohort studies taking advantage of monozygotic 

twins with discrepancies in their history of exposure to infectious agents. CMV infection 

was identified as a particularly significant environmental variable that influences a broad 

range of immune parameters (114). Further, young adults previously exposed to CMV show 

a superior antibody and CD8+ T cell response to influenza A vaccination (110). Thus, 

exposure to viruses can explain inter-individual heterogeneity when other factors fail to 

provide an adequate explanation.

The blood virome of healthy individuals include herpesviruses, anelloviruses, 

papillomaviruses, polyomaviruses, adenoviruses, parvoviruses and pegivirus (115, 116). 

Although it is unclear whether the presence of these viruses in the blood is consequential, 

the inverse relationship between pegivirus and HIV disease progression suggests that deeper 

investigation of the blood virome will be fruitful (117). In contrast, there is a wealth of 

examples demonstrating that respiratory viruses cause or exacerbate chronic lung diseases. 

In cystic fibrosis patients who display altered mucus production due to mutations in a 

chloride channel, disease is associated with the presence of a core group of bacteriophages 

that infect bacterial species persistent in lungs (118). Cystic fibrosis patients also show 

increased susceptibility to infection with rhinoviruses, which is linked to poor recovery of 

lung function following flares (119–121). Respiratory viruses are also linked to asthma 

(122). Patients have impaired IFN-I responses following rhinovirus infection, and rhinovirus 

C (RV-C) in particular is detectable in a significant proportion of children with moderate to 

severe asthma (122, 123). Consistent with this observation, the Y529 variant of cadherin-

related family member 3 (CDHR3) that leads to increased binding of the virus to the lung 

epithelium confers susceptibility to RV-C-associated asthma (124, 125). As gene variants 

such as the loss of function allele of fucosyltransferase 2 (FUT2) can determine whether 
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intestinal viruses bind cells (126, 127), an important area of research will be to examine how 

heritable factors affect the gut virome.

To summarize, virus-host interactions at extra-intestinal sites inform areas of future enteric 

virome research in the following ways. First, a number of these studies suggest that viruses 

that cause local infections such as in the lung have long range immunomodulatory effects. 

Therefore, examining the presence of viruses in affected tissues may not be sufficient, and a 

role for the gut virome should be considered. Second, the effect of a virus is not always 

apparent directly subsequent to virus exposure. This is clearly an important consideration for 

blood transfusions as viruses not routinely screened prior to blood donation could be 

transmitted to patients and have consequences for future disease pathogenesis. Perhaps 

similar concerns apply to FMTs that are routinely performed for C. difficile treatment and 

being considered for many other conditions. Finally, studies with CMV highlight the effect 

of viruses on the lymphocyte compartment and how adaptive immunity to subsequent 

antigens (i.e., not the original virus) may be altered. Molecular mimicry and bystander 

effects have been discussed extensively in other contexts (18), but are rarely considered 

downstream possibilities of intestinal virus infections in healthy individuals.

Conclusions

Significant progress has been made in the last decade towards understanding enteric viruses 

beyond their role as pathogens. While we continue to perform essential research into the 

pathogenic role of viruses and develop antivirals and vaccines, we can no longer ignore the 

possibility that they function as components of the microbiome. Like bacteria, the effects 

that viruses have are critically dependent on their tissue location, microenvironment and 

host. These factors will directly influence whether the virus acts beneficially, detrimentally 

or remains neutral for the host. With recent advances in metagenomics coupled with 

techniques that enrich in sensitivity (1, 2, 128), we can now preform large human studies 

with the aim of linking changes in specific viral populations with disease pathogenesis. 

These studies can then support the development of more defined animal and cell culture 

studies that address the mechanisms that individual viruses use to contribute to these 

phenotypes. This research will certainly lead to the discovery of novel ways in which viruses 

interact with the host that we can potentially harness for disease prevention and therapies. It 

may even be possible to engineer enteric viruses with desirable traits, much like current 

attempts at administering oncolytic viruses as adjuvants for cancer therapy (129–131).
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Figure 1. Virus-microbiome and virus-host genome interactions in immune variation
The host microbiome is a complex network of viruses, bacteria and other organisms (fungi, 

archaea, protozoans and helminths) that reside in the human body. The virome is comprised 

of animal viruses, bacteriophages and endogenous retroviruses. The gastrointestinal tract is 

inhabited by vast numbers of viruses and is an important site for virus-microbiome 

interactions and virus-host genome interactions. Intestinal bacteria interact with the virome 

by harboring bacteriophages and facilitating infection of barrier cells by animal viruses. 

Although typically investigated as pathogens, this review highlights how animal viruses in 

the gut serve as immune modulators that potentially explains inter-individual differences in 

disease susceptibility. The responses induced by various virus-microbiome and virus-host 

genome interactions likely alter the magnitude and function of the immune response to 

either the detriment or benefit of the host leading to either potentiation or protection from 

disease.
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Table I

Examples in which intestinal viruses contribute to protection against or potentiation of diseases.

Virus Model Outcome Mechanism Reference

Murine norovirus (MNV) Germ-free and broad-
spectrum antibiotics-

treated wild type mice

Restoration of intestinal 
architecture, immune cell 

populations, and resistance to 
chemically-induced colitis

Dependent on IFN-I Kernbauer et 
al., 2014 (49)

Ampicillin-treated 
wild type mice

Colonization resistance to 
vancomycin-resistant 

enterococcus

Increased IL-22+ ILC3 Abt et al., 
2016 (19)

Atg16L1 mutant mice Crohn’s like pathology in the 
small intestine

Paneth cell necroptosis due to 
virally-induced TNFα

Cadwell et al., 
2010 (72)

Matsuzawa-
Ishimoto et al., 

2017 (73)

IL-10−/− mice Intestinal inflammation Dependent on bacteria Basic et al., 
2014 (75)

H. bilis-infected 
MDR1a−/− mice

Intestinal inflammation Unknown Lencioni et al., 
2008 (74)

Wild type mice Protection from lung damage 
following P. aeruginosa 

infection

Unknown Thepaut et al., 
2015 (61)

Reovirus DQ8 transgenic mice 
and humans

Celiac disease manifestations Suppression of peripheral 
Tregs and promotion of IRF1 
and TH1 immunity to dietary 

antigen

Bouziat et al., 
2017 (68)

Caudovirales bacteriophage Humans Crohn’s disease Virus-microbiome interaction Norman et al., 
2015 (78)

Successful treatment of C. 
difficile by FMT

Transfer of species from 
healthy donors

Zuo et al., 
2017 (59)

Picobirnaviridae Humans Sever enteric GVHD Unknown Legoff et al., 
2017 (79)

Coxsackievirus B NOD mice Accelerated autoimmune 
diabetes onset

Virus spread to the pancreas 
and local IFN-I response

Reviewed in 
Jean-Baptiste 
et al., 2017 

(82)

Rotavirus NOD mice Accelerated autoimmune 
diabetes onset

IFN-I dependent bystander 
activation of lymphocytes in 
the pancreatic lymph nodes

Pane et al., 
2014 (87)
Pane et al., 
2016 (88)

Circovirus Humans Protection from T1D Unknown Zhao et al., 
2017 (92)

Adenovirus and anellovirus Human HIV disease progression Unknown Monaco et al., 
2016 (95)

Animal models and observations in patients provide evidence for a role of intestinal viruses in modulating susceptibility to a range of disease 
conditions including intestinal inflammation (inflammatory bowel diseases, celiac disease and opportunistic colonization by antibiotic-resistance 
bacteria) and extra-intestinal disorders (T1D, lung infections, and HIV). Mechanisms frequently involve cytokines produced in response to viral 
infection that act on surrounding tissue or induce the mobilization of lymphoid cells. The outcome can be beneficial or detrimental to the host 
depending on whether a heightened state of immunity is desirable (e.g., protection against an infection versus fueling a chronic inflammatory 
disease). Abbreviations: IFN-1, type I interferon; ILC3, type 3 innate lymphoid cell; IRF1, interferon regulatory factor 1; FMT, fecal microbiome 
transplantation; NOD, non-obese diabetic; T1D, type 1 diabetes.
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