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Abstract: Multiple scattering is a major barrier that limits the optical imaging depth in 
scattering media. In order to alleviate this effect, we demonstrate aberration-diverse optical 
coherence tomography (AD-OCT), which exploits the phase correlation between the 
deterministic signals from single-scattered photons to suppress the random background 
caused by multiple scattering and speckle. AD-OCT illuminates the sample volume with 
diverse aberrated point spread functions, and computationally removes these intentionally 
applied aberrations. After accumulating 12 astigmatism-diverse OCT volumes, we show a 
10 dB enhancement in signal-to-background ratio via a coherent average of reconstructed 
signals from a USAF target located 7.2 scattering mean free paths below a thick scattering 
layer, and a 3× speckle contrast reduction from an incoherent average of reconstructed signals 
inside the scattering layer. This AD-OCT method, when implemented using astigmatic 
illumination, is a promising approach for ultra-deep volumetric optical coherence microscopy. 

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Deep imaging inside scattering biological media is desirable for many applications. Such a 
capability could extend the investigation of biological systems into new regimes. It can be 
beneficial for both fundamental in vitro studies in engineered cell cultures or animal models 
of disease in vivo, as well as for clinical diagnostics or monitoring of therapies. However, 
current optical imaging technologies experience severe limitations in these studies because 
multiple scattering (MS) photons corrupt the sample information carried by single scattering 
(SS) or so-called ‘ballistic’ photons. In label-free coherent imaging at optical frequencies, e.g. 
with optical coherence tomography (OCT), the imaging depth within scattering tissues is 
limited to ~1-2 mm [1–3]. 

Various approaches have been demonstrated to overcome MS [4, 5]. Traditional 
approaches include the use of a confocal gate to suppress or reject multiply scattered light [6–
8]. The level of MS rejection can be further enhanced through the combination of a confocal 
and coherence gate, which is particularly beneficial for higher numerical aperture (NA) 
optical coherence tomography/microscopy (OCT/OCM) [9]. Longer wavelengths that have a 
lower scattering coefficient in tissue have been shown to provide increased imaging depth in 
coherent imaging [10–12], as well as nonlinear microscopy [13, 14]. 

Recently, several ‘non-traditional’ approaches for deep optical microscopy have generated 
significant excitement [5]. A major class of methods is time reversal wavefront shaping [15–
19], which ‘pre-scrambles’ the phase of incident light with hardware wavefront shaping to 
conjugate the effect of sample induced MS and wavefront distortion. These techniques can 
form a tight focal spot within a turbid medium, but they require spatially-variant wavefront 
shaping to account for region-dependent phase distortions across a wide field-of-view (FOV). 
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This adds complexities in live imaging environments where dynamic sample fluctuations can 
occur. Another class of techniques for MS suppression exploits different correlation 
characteristics between SS and MS photons [20–22], in which the MS signal becomes 
decorrelated across multiple acquisitions, while the SS signal maintains its correlation. Other 
related methods have been demonstrated to produce decorrelated speckle patterns [23, 24]. 
This class of techniques for MS/speckle reduction is usually accompanied by confocal and/or 
coherence gating for further MS suppression. 

Previously, we demonstrated OCT with hybrid adaptive optics (hyAO) [25] to enhance 
the volumetric imaging throughput of optical coherence microscopy (OCM), by splitting the 
work of image formation between both hardware and computation. In [25], we utilized an 
astigmatic illumination beam produced via hardware adaptive optics (HAO) to enhance signal 
collection compared to a standard Gaussian beam, and the resolution penalty of this 
intentionally applied aberration was mitigated in post-processing via computational adaptive 
optics (CAO) [26]. However, hyAO relies on single scattered photons to achieve a good CAO 
reconstruction, and imaging performance can be degraded in highly scattering samples [25]. 

In this paper, we use aberration-diverse OCT (AD-OCT) to extend this astigmatic imaging 
into the MS regime, by exploiting phase correlation behaviors (similar with [20, 22]) to 
distinguish SS from MS photons in volumetric reconstructions. AD-OCT takes advantage of 
the principle that a diversified illumination point spread function (PSF) passes through 
different spatial regions of a scattering medium, and therefore generates differing realizations 
of MS signal. By using various aberrated illumination PSFs (such as a rotating astigmatic PSF 
in this paper), the patterns formed by multiple realizations of the MS field decorrelate 
between acquisitions, while the SS field remains deterministically correlated. A coherent 
accumulation of multiple volumes then extracts the SS signal while suppressing the MS 
components. Meanwhile, since the aberration diversity also generates multiple decorrelated 
realizations of speckle, an incoherent accumulation can reduce the speckle contrast. By using 
AD-OCT, we achieved a 10 dB enhancement in signal-to-background ratio (SBR) when 
imaging a USAF target hidden beneath a scattering layer consisting of TiO2 beads with 7.2 
scattering mean free paths (MFP), and a 3× reduction in speckle contrast within this layer. 

2. Theory 

When imaging inside a scattering medium, the complex signal reconstructed from a spectral 
domain OCT (SD-OCT) system can be described by the superposition of the following 
components: 

 OCT 0 SS 0 BG 0( , , ; ) ( , , ) ( , , ; ).S x y z S x y z S x y zθ θ= +    (1) 

In Eq. (1), OCTS is the detected OCT signal at a particular depth 0z imaged with certain 

orientation angle θ , defined as the orientation of the first astigmatic line focus in the 

transverse (xy-) plane. SSS is the single-scattered signal from the sample after CAO 

reconstruction, and in theory it does not depend on astigmatism rotation angleθ after the 

aberration has been removed. The background BGS (which is not related to the self-

interference signal from the OCT reference arm) includes the MS contribution MSS and OCT 

system noise SYSS (e.g. optical shot/intensity noise or thermal/electronic noise), that is 

 BG 0 MS 0 SYS 0( , , ; ) ( , , ; ) ( , , ).S x y z S x y z S x y zθ θ= +    (2) 

The OCT system noise SYSS is assumed to be circularly Gaussian distributed in the shot noise 

limit and can be reduced by temporal averaging [27–29]. However, the MS contribution MSS is 
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not inherently randomized in time. Suppressing MSS requires inducing a decorrelation of the 

MS signal (e.g. by rotating the astigmatic angle θ ) across multiple acquisitions and can be 
accomplished via imaging with a diverse set of aberrated PSFs in AD-OCT. 

In this paper, AD-OCT utilizes astigmatism as the aberration and rotates the astigmatic 
angle across volumetric acquisitions. Since the optical illumination and collection paths in the 
scattering medium are altered by this rotation, the patterns formed by MS photons at the 
detector become decorrelated. However, the SS signals, as acquired with different astigmatic 
PSFs, still converge to the same correlated signal after CAO reconstruction. Therefore, as 

illustrated in Fig. 1, assuming SSS and BGS does not change appreciably across aberration 

states, by coherently summing the complex field from AD-OCT acquisitions, the SS signal 

grows with the number of states N , while the background from uncorrelated BGS phasor 

sums increases with N  . 

 

Fig. 1. The summation of complex signals from SS and background contributions. A complex 
SS signal which maintains a stable phase grows proportionally with N (left), while a 
background exhibiting a random phase grows analogous to a random walk, proportional to

N (right). 

We can then define the SBR of a coherent average coh(SBR ) as the SS signal magnitude 

over the background magnitude, as 

 
SS, SS SS1
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N
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 (3) 

where SS,iS and BG,iS represent the single-scattered and background contributions respectively, 

from the ith aberration state. 
Although the coherent average is able to suppress the background, it cannot reduce the 

speckle contrast (in the context of this paper, speckle refers to the interference pattern formed 
by both sub-resolution SS scatterers and MS photons), because this coherent process 
generates a new speckle pattern that has the same statistics as the old one. However, since 
AD-OCT acquires decorrelated speckle patterns resulting from aberration diversity, an 
incoherent magnitude-based average can achieve speckle reduction, with the speckle contrast 

reduced by a factor of N  [24, 30–32], that is 

 inc
inc

inc

CR / .N
S S

σ σ= 


 (4) 
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particles inside a silicone medium, which consisted of 1:10:100 w/w/w of RTVb, RTVa 
(Momentive, RTV615) and silicone oil, respectively. The scattering MFP was measured from 
the exponential decaying confocal responses fused with multiple focal depths inside the layer, 
as described in [33], with the sensitivity fall-off removed by simultaneously adjusting the 
sample and reference arm. The USAF target helped to characterize the improvement of SBR 
and speckle reduction, and was placed at the second line foci of the astigmatic beam. The DM 
in the sample arm was used to rotate the astigmatism across acquisition volumes. In the 
experiment, the astigmatism induced by the deformable mirror resulted in a line foci 
separation of 100 μm (in air), and a complete rotation (180°) was covered by 100 volumes 
(corresponding to 100 astigmatic states). As shown and discussed later in the paper, using 
only 12 states (equally spaced over the 100 astigmatic states; 15° angular separation between 
volumes) was adequate to observe significant improvements. The purpose of acquiring more 
states than necessary was to demonstrate a saturation effect when finer angular separation was 
applied. 

3.2 Data processing 

The workflow in AD-OCT post-processing involves standard OCT reconstruction, phase 
registration across volumes, and CAO aberration compensation. 

Standard OCT reconstruction corrects for dispersion mismatch between the sample and 
reference arms, resamples the wavenumber to a linear spacing, and performs a Fourier 
transforms along wavenumber to convert the signal into the space domain. 

Phase registration corrects phase drifting which takes place across multiple volumes and is 
essential for a coherent average of sequentially acquired volumes. The first step is to utilize 
the upper surface of the cover glass as a phase reference, which is then used to conjugate the 
phase across the entire A-scan. The details of this phase stabilizing approach can be found in 
[34, 35]. 

The second step is to account for any tilt in the optical system alignment or sample, which 
produces an offset in the Fourier-domain OCT signal with respect to the center of the 
computed pupil coordinate system. If the Fourier-domain OCT signal bandwidth is not 
centered in the computed pupil coordinate system, the application of CAO defocus or 
astigmatic correction centered about the pupil origin will lead to a residual 2D phase ramp in 
the CAO-corrected Fourier-domain signal. For a given Fourier-domain signal offset, the 
magnitude and orientation of the residual 2D phase ramp depends on the magnitude and 
orientation of the astigmatic correction. Therefore, application of different astigmatic CAO 
correction kernels, corresponding to the rotating astigmatic line foci, will produce a residual 
2D linear phase ramp in the CAO-corrected Fourier domain signal whose orientation rotates 
with the orientation of the astigmatic line foci. This 2D linear phase ramp with rotating 
orientation in the CAO-corrected Fourier domain signal leads to an astigmatic-state-
dependent shift of the spatial-domain image, resulting in a ‘wobbling’ FOV, as shown in Fig. 
3b. Assuming the Fourier domain offset is constant across data sets, one solution to this FOV 
wobble is to correct the residual astigmatic-state-dependent phase ramp, or alternatively (as 
we implemented in this paper), to remove the offset of the Fourier-domain OCT signal before 
applying the CAO correction. The final step is to fix small, bulk space-domain offsets using 
cross correlation, and adjust the constant phase offsets (i.e. piston aberration), across the 
acquired volumetric data sets. 
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with the forward model [37], as attenuated portions of the signal aperture may be fall below 
the noise floor. 

For in vivo/vitro live imaging, sample motion may cause phase instabilities that degrade 
the CAO reconstruction of each volume and the coherent average across multiple volumetric 
acquisitions. Nevertheless, achieving the necessary phase stability for AD-OCT of live 
samples may still be feasible through increased acquisition speed and/or the use of additional 
phase registration algorithms [38]. For example, the use of swept-source FDML lasers can 
support video-rate volumetric acquisition [39–41]. On our current SD-OCT system, AD-OCT 
may still be feasible for ultra-deep cross-sectional imaging. A potentially feasible acquisition 
scheme would involve the acquisition of smaller, aberration diverse volumetric data sets, with 
the length of the slow-axis dimension being just long enough to enclose the full transverse 
width of the aberrated PSFs (this will typically be much smaller than the length of the fast-
axis dimension). The fast refresh rate of the DM (~1 ms in open loop) can be leveraged to 
rapidly switch aberration states between the acquisition of each small volume, and a cross-
sectional AD-OCT image can be reconstructed at the central slice position along the slow 
axis. In our SD-OCT system, assuming the use of a comparable level of astigmatism to that 
used in this study, we estimate a total acquisition time of less than 25 seconds for a 12 state 
AD-OCT cross-sectional image with FOV 1 × 1 mm2 (depth × fast axis, 1024 × 1500 × 100 
voxels per aberration state, at 75 kHz line scan rate) at 2 μm isotropic FWHM resolution. For 
in vivo AD-OCT applications, even though saturation can be a potential concern for absolute 
performance in MS suppression, sample motion may not allow for the acquisition of a 
sufficient number of stable volumes to reach the saturation limit. When compared to other 
methods for ultra-deep or speckle-reduced imaging [20–22, 24], even though AD-OCT may 
encounter an earlier saturation at the current level of astigmatism, it offers a larger depth 
coverage than similar approaches using SD-OCT [22, 24] (due to the use of hyAO [25]), and 
can serve as a cross-sectional complement to the en face techniques [20, 21]. 

In this paper, we placed the USAF target plane at the second line focus of the astigmatic 
beam, in order to obtain a good illumination intensity. One question that remains open is how 
sample placement will affect the decorrelation level of MS or speckle provided by the 
aberration diversity. For example, it is worthwhile to investigate whether there is any 
difference to place the USAF target at the first line focus, plane of least confusion, or second 
line focus, given the same scattering layer thickness that the imaging beam passes through. 
This depth dependency with respect to the astigmatic beam structure needs to be studied in 
future work, as it may lead to the development of alternative PSF conventions for volumetric 
AD-OCT. 

The functionality of the DM in AD-OCT could in principle be performed with other 
alternatives, such as a cylindrical lens, a liquid-crystal-on-silicon spatial light modulator 
(LCoS SLM), or a digital micro-mirror device (DMD). For example, a cylindrical lens in 
conjunction with a mechanical rotation stage would be able to support a comparable data 
acquisition scheme. However, the use of wavefront shaping devices may provide more 
precise wavefront control and better high-speed phase stability due to a lack of bulk moving 
parts during astigmatism rotation, and offer greater flexibility to enable a wide range of 
applications in the future, including simultaneous realization of AD-OCT and HAO 
correction of sample-induced aberrations [42–45]. An SLM or DMD can also provide real-
time wavefront shaping capabilities. However, compared to a DM, an SLM has a slower 
refresh rate that may impose limitations for high speed imaging and can only impart a group 
delay to the optical wavefront when the required peak-to-valley correction is less than a 
wavelength, and a DMD has a poorer diffraction efficiency that degrades the quality of the 
wavefront [46]. Therefore, a DM with high-speed, precise aberration control is an attractive 
choice for AD-OCT. 
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6. Conclusion 

We have presented AD-OCT as a novel approach for MS suppression and speckle reduction. 
AD-OCT uses aberration diversity to randomize the MS field and obtain decorrelated speckle 
realizations across CAO-reconstructed volumes. A coherent average of these reconstructed 
aberration-diverse volumes provides suppression of MS, and an incoherent average leads to 
speckle reduction. We utilized AD-OCT to demonstrate a 10 dB SBR improvement of a 
USAF target hidden beneath a scattering layer via coherent accumulation, and a 3× speckle 
contrast reduction inside the scattering layer via incoherent accumulation. The total level of 
aberration diversity can also be split between a partial MS suppression and partial speckle 
reduction. AD-OCT extends astigmatic beam imaging into the MS regime, and thus is 
potentially beneficial for various biomedical applications that require volumetric imaging 
inside a scattering medium. Future work will investigate the ultimate imaging depth limits of 
AD-OCT, compare its performance to Gaussian confocal gating, and explore additional or 
alternative options for aberration diversity. 
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