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Abstract: We propose methods to quantitatively calculate the fluctuation rate of red blood 
cells with nanometric axial and millisecond temporal sensitivity at the single-cell level by 
using time-lapse holographic cell imaging. For this quantitative analysis, cell membrane 
fluctuations (CMFs) were measured for RBCs stored at different storage times. Measurements 
were taken over the whole membrane for both the ring and dimple sections separately. The 
measurements show that healthy RBCs that maintain their discocyte shape become stiffer 
with storage time. The correlation analysis demonstrates a significant negative correlation 
between CMFs and the sphericity coefficient, which characterizes the morphological type of 
erythrocyte. In addition, we show the correlation results between CMFs and other 
morphological properties such as projected surface area, surface area, mean corpuscular 
volume, and mean corpuscular hemoglobin. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

Mature erythrocytes, which are sometimes also referred to as discocytes, are the main cell 
type in the blood circulation. Their biconcave shape and corresponding deformability are an 
essential feature of their biological function. Indeed, this configuration, corresponding to the 
maximum surface area for a given volume, results from their outstanding ability to deform in 
particular when passing through narrow capillaries during microcirculation. RBCs must adapt 
to a wide range of capillary sizes, and deform while maintaining their cellular integrity and 
function. This is made possible by the absence of a three-dimensional (3D) cytoskeleton in 
RBCs. Their shape and mechanical integrity are maintained instead by a two-dimensional 
(2D) hexagonal lattice formed of flexible spectrin tetramers, which are linked by actin 
oligomers. Since the side length of actin (70-80nm) is much smaller than the contour length 
of a spectrin tetramer (approximately 200nm), it is believed that spectrins are the principal 
contributors to the bending of membranes or curvature modulus [1–3]. The cell-membrane 
fluctuations (CMFs) exhibiting by RBCs reflect their outstanding ability to deform [2]. 
However, the exact mechanisms underlying (CMFs) remain unclear. Mainly, two kinds of 
processes have been suggested as driving agents of CMFs. The first is the thermal motion, 
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which is more prominent in membrane regions with a small curvature (the dimple region) [4]. 
The second is linked to the metabolic activity that determines the adenosine triphosphate 
(ATP) content in the membrane skeleton and to the involvement of actin. The second type of 
fluctuations is believed to happen in regions of high curvature, such as the ring section of 
RBCs [5]. As mentioned earlier, different factors influence the deformability of RBCs. 
However, under storage conditions (e.g., in blood banks), RBCs undergo molecular, 
metabolic, biochemical and biomechanical changes, which are commonly referred to as 
storage lesions. Briefly, such processes result primarily in a decrease in energy metabolism, 
2,3-diphosphoglycerate (DPG), ATP, and nitric oxide. Furthermore, during storage, the 
erythrocyte shape alters from deformable discoid to an irreversibly deformed 
spheroechinocytes. It is due to the irreversible loss of membrane by the formation of micro 
vesicles, which is the cause of an increased osmotic fragility [6–11]. It is understood that 
these changes are associated with decreased deformability, poor functionality of RBC and 
consequently with the removal of RBCs from the bloodstream [12–15]. One important 
question is regarding the extent to which the RBC biomechanical properties may be altered 
during the storage time. Considering that CMFs reflect these biomechanical properties, the 
monitoring of their evolution as a function of storage time could represent an efficient way to 
address this important question. Specifically, we propose to study the evolution of CMFs 
within the discocyte RBC subpopulation, i.e. the RBCs having shown the capacity to maintain 
a biconcave shape over the storage time. Indeed, it has been described that during their 
transformation into transient echinocytes and finally spherocytes, RBCs exhibit a significant 
CMF decrease [4, 16]. In addition, when transfused the spherocytes do not recover a healthy 
discoid shape but are subjected to a phagocytic removal. Practically, discocyte RBC 
morphological properties including projected surface area (PSA), surface area, sphericity 
coefficient as well as the two clinically relevant parameters, the mean corpuscular volume 
(MCV) and the mean corpuscular hemoglobin (MCH), were measured at the single-RBC 
level. Then, the correlations between these morphological parameters and the CMFs, are 
calculated at different storage times. 

In order to address these questions, we propose automated methods for measuring 
quantitative fluctuations rate, at the single-RBC level, as a function of their storage time, 
using time-lapse digital holographic microscopy imaging. We also analyze both the ring and 
dimple regions of the cell separately, according to the observations mentioned above. 
Quantitative phase images (QPIs) were acquired every few days over a 71-day period to 
investigate the alterations of RBC parameters over storage time systematically. The 
erythrocyte concentrate (EC) from which the RBC samples were collected were prepared at 
the blood center of the Transfusion Interrégionale CRS (Epalinges, Switzerland) as follow: 
450 ± 50mL of whole blood were collected and mixed with 63mL citrate-phosphate-dextrose 
(CPD) anticoagulant. The bags were centrifuged to separate blood components. Then, semi-
automated pressure applied to distribute the blood fractions into sterile inter-connected blood 
bags (Fenwal, Lake Zurich, IL, USA). Finally, to remove residual leukocytes the erythrocytes 
were filtered and 100mL of saline-adenine-glucose-mannitol (SAGM) additive solution were 
added. Five mL of each sample were collected using a sampling site every few days during 71 
days (the 4 ECs were stored at 4°C) [16]. To prepare the RBCs, the EC samples were washed 
two times with NaCl 0.9% (centrifugation at 2000g, during 10min at 4°C) and resuspended in 
HEPA 10mM glucose. The RBCs were then seeded in a 96-well plate coated with poly-L-
Ornithine for image acquisition. 

Our quantitative analysis reveals some interesting points. First, we demonstrate that older 
discocytes (71 days storage) exhibit a slightly but statistically significant more pronounced 
stiffness than younger ones (stored for 4 days). Concretely, the fluctuations rate in the dimple 
is greater than in the ring section in younger RBCs. Furthermore, the MCV, MCH, PSA, and 
surface area do not change significantly on these time scales. Interestingly, we show that the 
CMFs of a whole cell (for cells stored for 4 days) show significant negative correlation with 
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where FFT and IFFT respectively are Fourier and inverse Fourier transforms. Since the final 
image is a phase-contrasted, the hologram should be multiplied by the digital reference wave 
RD during the reconstruction process. This is similar to what happens in classical holography 
in which the recorded hologram is illuminated by the reference wave. Here, we assume that 
the reference wave is a perfect plane wave and can be shown by: 

 ( )2
( , ) exp ,D R x yR k l A i k k x k l y

π
λ

  = Δ + Δ    
 (3) 

where AR is the amplitude, λ is the laser source wavelength, Δx and Δy are the sampling 
intervals in the hologram plane (pixel size) and kx and ky are wave vectors which need 
adjustment to be similar to the experimental reference wave. Another issue is that the MO 
inserted in the object wave arm introduces phase aberration. This can be numerically resolved 
by multiplying the reconstructed wave front with the computed complex conjugate of the 
phase aberration. Eventually the reconstruction of complex amplitude image can be expressed 
by the Fresnel approximation as following [36]: 

 

( ) ( )

( ) ( ) ( )

2 2 2 2

2 2 2 2

,

, ( , ) exp

, , ) exp ,F
D H

m n

i
m n A m n m n

d

i
FFT R k l I k l k x l y

d

π ξ η
λ

π
λ

 Ψ = Φ Δ + Δ ×  
  × Δ + Δ    

 (4) 

where A is a constant complex value, k, l, m, and n are integers (-N/2< = k, l, m, n< = N/2; and 
N × N is the number of pixels in CCD camera 1024 × 1024), F

HI  is the filtered hologram and

( , )m nΦ is the digital phase mask for the phase aberrations correction calculated by: 

 ( )2 2 2 2( , ) exp ,
i

m n m n
D

π ξ η
λ
− Φ = Δ + Δ  

 (5) 

Moreover, ,ξ ηΔ Δ are the sampling intervals in the observation plane expressed by: 

 ,
d

N x

λξ ηΔ = Δ =
Δ

 (6) 

where d denotes distance between camera plane (hologram plane) and image plane. A fine 
adjustment of kx, ky and D can be performed in the absence of fringes by removal of residual 
gradients or curvature of the reconstructed phase distribution in some area of the image where 
a constant phase is presumed [36]. D is the parameter that must be adjusted to compensate the 
wave-front curvature according to the distance between MO and specimen, and MO and the 
image plane evaluated by [36]: 

 
1 1

1 ,o

ii

d

D dd

 
= + 

 
 (7) 

where di is the distance between MO and image plane and do is the distance between the 
specimen and MO. Since ( ),m nΨ is an array of complex numbers, the intensity of amplitude 

image (Fig. 2(e)) can be obtained by: 

 ( ) ( )2 2
( , ) Re , Im , .I x y m n m n= Ψ + Ψ        (8) 

And the phase image (Fig. 2(f)) can be obtained by the argument of: 
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3. Red blood cell parameters 

3.1 Cell thickness 

After single-cell QPIs extraction and applying morphological operators, the thickness, at a 
single cell level can be calculated. The data provided by QPIs in this study are in the form of 
phase values, from which cell thickness images were obtained: 

 
( )

( , )
( , ) ,

2 RBC m

x y
h x y

n n

λ φ
π

×=
−

 (10) 

where h(x, y) is the RBC thickness, and nRBC and nm are the refractive indices of the RBC and 
HEPA medium, respectively. The value for nRBC is previously obtained by the method called 
decoupling technique [32, 38] and it is reported to be 1.418 ± 0.012 over a spherocyte 
population. This assumption is valid if the hemoglobin content remains stable in time, we 
observed within the same EC. The refractive index of HEPA (1.3334 ± 0.0002) is measured at 
room temperature precisely with Abbe-2WAJ refractometer at the wavelength similar to the 
DHM laser diode. 

3.2 Membrane fluctuation rate 

Different techniques have been proposed to measure fluctuations in RBC membranes [3–5, 
13, 39–46]. However, their separate applications to the ring and dimple sections remain to be 
carried out, since the sources of their respective fluctuations could be distinct [4]. To calculate 
the fluctuations rate, we consider the statistical model of Rappaz et al. [5]. Briefly, this 
requires the definition of a region of interest (ROI) and two independent variables: std(hcell + 
hbackground), the temporal deviation within the RBC area (combining both the cell fluctuations 
and noise), and std(hbackground), the mean temporal deviation calculated over all the pixels 
located outside the RBC area (see Fig. 3). The measured standard deviations for one pixel 
outside the cell (Fig. 4 point “A”), on the ring (Fig. 4 point “B”) and at the center (Fig. 4 point 
“C”), are 17, 42 and 29 nm, respectively, indicating that the membrane fluctuation amplitudes 
are significantly larger than the background noise level (see Fig. 4 and Visualization 1). 
Accordingly, the fluctuations at each single pixel CMF(x,y) can be evaluated as [5]. 

 ( )( ) ( )( )
1

2 2 2
( , ) ( , ) .cell cell background backgroundCMF x y std h h x y std h = + −  

 (11) 

 

Fig. 3. Distribution of temporal deviations within a ROI; the left-side distribution represents 
the background and the right side corresponds to the RBC area (cell membrane and noise 
together). 
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cells (stored for 4 days) to 0.79 ± 0.12 in older cells (stored for 71 days), consistent with 
reported values [30, 31]. In the case of older RBCs, the STD value of the sphericity 
coefficient is significantly larger ( ± 0.12). We believe that reflects the early phase of the 
gradual discocyte-spherocyte transformation process. In contrast the MCH does not change 
over the time of storage and only fluctuates around its average value of 32 ± 0.6pg (See Fig. 
9), consistent with earlier reports [3, 30, 31, 38]. Moreover, MCH is in agreement with the 
value obtained by Sysmex KX-21 in the present study (See Fig. 9). This constancy indicates 
that, while biconcave RBCs undergo morphological changes during storage, they do not leak 
hemoglobin into the storage solution [3, 13]. 

 

Fig. 9. MCH changes versus storage time. Blue points are MCH obtained by Sysmex KX-21 
hematology analyzer and red points are MCH obtained by Eq. (18). 

The CMF amplitude fluctuates over the storage time. However, the general trend of the 
CMF amplitudes as a function of the storage time of the whole RBC, the ring, and the center 
are to decrease (F-statistics suggest that the linear regression line has a slope that is 
significantly different from zero; p-value <0.05), consistent with earlier findings [3]. Our 
experimental reflecting that RBC membranes stiffen with storage time, in agreement with the 
reported decrease in deformability [3, 12, 13, 46]. According to Fig. 8, fluctuation amplitude 
at the dimple are generally larger than in the ring region (p<0.05; two-sample Kolmogorov-
Smirnov test), as expected and in agreement with the results of Rappaz et al. [5] (Age of RBC 
is 4 days). 

Figure 10 shows the correlation analyses of the fluctuation amplitudes - the whole RBC 
membrane and the dimple section - of young RBCs (stored for 4 days; n = 33) as functions of 
the morphological and MCH parameters. The ring section exhibits the same trend as the 
whole RBC membrane. We therefore decided to exclude ring-section results from our 
correlation analysis results shown in Fig. 10. Interestingly, the CMF amplitude of the whole 
RBC exhibits a strong negative correlation with the sphericity coefficient (p<0.05; Pearson 
product-moment correlation test). The greater k is the CMF amplitude of the whole RBC is 
fewer. This can rise from the fact that the more spherical RBCs are, the stiffer they become 
[12, 46]. On the other hand, there is a significant positive correlation between the CMF 
amplitude in the dimple region and the k factor (Fig. 10(a)). The lower the PSA of a RBC, the 
larger the observed CMF amplitude (Fig. 10(b)). The fluctuation amplitudes of both the 
whole RBC membrane and dimple region (Fig. 10(c)) have no significant correlation with the 
MCH, consistent with previous findings [4, 46]. Figure 10(d) and 10(e) shows that CMF 
amplitudes are not correlated with the MCV and surface area value. We also evaluated the 
correlation between the CMF amplitudes and k factor and MCH parameters of RBC for two 
storage times namely 43 and 71 days (See Fig. 11). Our statistical model for evaluating CMF 
amplitudes suggests that both the ring and dimple regions differ between young and old 
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discocyte RBCs. Furthermore, our results about MCH reveal that the hemoglobin content of 
RBCs remains constant over time. The constancy of the PSA during blood banking shows a 
tendency of biconcave RBCs to maintain their general structure. 

 

Fig. 10. Correlation measurements between he fluctuation rate and the morphological and 
hemoglobin parameters, for the entire membrane and the dimple region of discocyte RBCs. (a) 
sphericity coefficient (k factor), (b) PSA, (c) MCH, (d) MCV, and (e) surface area. Storage 
time is 4 days and n = 33. (An asterisk * indicates a significant linear correlation by Pearson 
p<0.05). 
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Fig. 11. Correlation analysis between the CMF amplitude and the sphericity coefficient (k 
factor) and MCH for the entire membrane and the dimple region of discocyte RBCs for two 
storage times of 43 days and 71 days. (a) and (b) sphericity coefficient for 43 and 71 days, 
respectively. (c) and (d) MCH for 43 and 71 days, respectively (n = 33; Asterisk * indicates a 
significant linear correlation by Pearson p<0.05). 

During circulation, normal RBCs must deform to pass through capillaries having a 
diameter almost half the size of a typical RBC. Their resistance to deformation may not, 
therefore, be substantial but not too small either, lest it compromise the integrity of the cell in 
normal circulation [45]. Previous experiments [3, 12, 13, 42] have revealed that RBCs 
become less deformable and much stiffer over longer storage periods. The consequences of 
this loss of RBC deformability are significant and potentially seriously detrimental to human 
organs. It is more difficult, if not impossible, for stiff RBCs to traverse a microcapillary 
system. Obstructed capillaries cause pain and damage to tissues and organs including 
infarction and necrosis. Longer transit times through capillaries, resulting from lower RBC 
deformability, can also hinder oxygen delivery and carbon-dioxide absorption. This increase 
in stiffness with the aging of the RBC can be explained in several ways. The membrane area 
is reduced due to the release of microvesicles [51]. Also, ATP is crucial for preserving the 
biconcave shape, since the depletion of ATP caused a change from the biconcave to the 
echinocyte shape and finally yielded a spherocyte. This change of shape suggests that ATP 
and membrane loss stiffen the cytoskeleton and hence constrains the bilayer to a smaller 
cytoskeleton-projected area. The underlying physical origin of this effect is the change in the 
number of released spectrin filaments with the reduction in the number of defects as the ATP 
concentration is reduced [42–44]. Interestingly, it has been shown that the ATP concentration 
in RBCs decreases with increasing RBC age, or near the end of the RBC lifespan [48]. It is 
presumed that lower ATP concentrations linked to increasing age should correspond to a 
denser cytoskeleton, a higher shear modulus, and a drop in fluctuations rate [52]. Figure 12 
shows two different discocyte RBCs, imaged after different storage times. Figure 12(a) 
displays a smaller sphericity coefficient and larger amplitude of fluctuations. In contrast, the 
older RBCs have a greater sphericity coefficient and a smaller fluctuation amplitude. (See 
Fig. 12(b)). 
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