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Abstract: In this study we employ a near-infrared fluorescence lymphatic imaging (NIRFLI)
technique to longitudinally image spatial and temporal changes in the lymphatics in mice
bearing vascular endothelial growth factor (VEGF)-C overexpressing B16F10 (VEGF-C-
B16F10) or mock-transduced B16F10 (mock-B16F10) melanoma tumors. Our NIRFLI data
show that ICG-laden lymph accumulates into a VEGF-C-B16F10 tumor compared to mock-
B16F10 at 3 days post implantation, presumably due to increased lymphatic vessel
permeability. Quantification shows a significantly greater percentage of ICG-perfused area in
VEGF-C-B16F10 (7.6 + 2) as compared to MOCK-B16F10 (1 + 0.5; p = 0.02), which is also
confirmed by quantification of the lymphatic leakage of evans blue dye (optical density at
610nm; VEGF-C-B16F10, 10.5 + 2; mock-B16F10, 5.1 + 0.5; p = 0.009); thereafter,
lymphatic leakage is visualized only in the peritumoral region. Our imaging data also show
that anti-VEGF-C treatment in VEGF-C-B16F10 restores normal lymphatic vessel integrity
and reduces dye extravasation. Because NIRFLI technology can be used to non-invasively
detect lymphatic changes associated with cancer, it may provide a new diagnostic to assess
the lack of lymphatic vessel integrity that promotes lymphovascular invasion and to assess
therapies that could arrest invasion through normalization of the lymphatic vasculature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
1. Introduction

Tumor-associated lymphatic vessel networks undergo significant changes in response to
tumor cells, such as lymphatic vessel dilation and leakiness, and sprouting from pre-existing
vessels [1,2]. These structural features of tumor lymphatic vessels might make them more
susceptible for invasion by malignant cells, resulting in the increased probability of lymphatic
metastasis [2]. One of the key lymphangiogenic factors for these changes is vascular
endothelial growth factor (VEGF)-C, which has been shown to be critical for the proliferation
of lymphatic endothelial cells (LECs) and initial lymphatic vessel sprouting [2].

VEGEF-C binds to VEGF receptor (VEGFR)-3, which is predominantly expressed on
lymphatic vessels [3]. Overexpression of VEGF-C in cancer cells induces tumor
lymphangiogenesis and enhances tumor spread to the regional draining LNs in several mouse
models of cancer [4]. Previous studies demonstrate that mice bearing VEGF-C
overexpressing tumor show an increase in regional LN metastasis, retrograde lymph flow
direction, and an increased number of dilated but functional peri-tumoral lymphatic vessels
[5,6]. None of these studies provides longitudinal data showing when and how structural
changes of the lymphatics occur in response to VEGF-C overexpressing tumor growth.
Moreover, despite the importance of lymphatic vascular permeability in pathophysiological
conditions [7], there are limited techniques to image lymphatic leakage due to enhanced
permeability in vivo.

Recently, we developed non-invasive, dynamic near-infrared fluorescence lymphatic
imaging (NIRFLI), and translated it within investigational studies in the clinic to examine
lymphatic function of cancer patients and survivors using a microdose of fluorescent imaging
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agent [8]. In this study, we investigate how VEGF-C impacts the lymphatics imaged by
NIRFLI, longitudinally assessing the lymphatics in the hindlimb of mice where VEGF-C
overexpressing B16F10 (VEGF-C-B16F10) or mock-transduced B16F10 (MOCK-B16F10) is
implanted. Our data demonstrates that dynamic and longitudinal NIRFLI assessment of the
lymphatic system may provide a companion diagnostic for therapies that seek to interrupt
metastasis through arresting lymphangiogenesis.

2. Materials and methods
2.1 Cells and mice

VEGF-C- and mock-B16F10 cells were kindly provided by Dr. Timothy Padera at
Massachusetts General Hospital and Harvard Medical School. To transfect VEGF-C- and
MOCK-B16F10 cells expressing iRFP gene reporter (iRFP-VEGF-C-B16F10 and iRFP-
MOCK-B16F10, respectively), cells were cultured as monolayer in DMEM-F12/10% fetal
bovine serum (FBS, BioExpress, Kaysville, UT, USA). At near confluency, the culture was
transfected with piRFP plasmid (Addgene, Cambridge, MA, USA) by Lipofectamine 2000
(Invitrogen, Grand Island, NY, USA) as suggested by the manufacturer. Transfected cells
were grown under 0.8 mg/ml G418 selection in DMEM-F12/10% FBS growing medium.
Transfected cells that survived the antibiotic selection were then sorted through flow
cytometry outfitted with 690 nm/730 nm (excitation/emission) wavelengths to obtain the
population of high iRFP expressers.

Six to eight week old female C57BL6 mice (Charles River, Wilmington, MA) were
housed and fed sterilized pelleted food and sterilized water at the Brown Foundation Institute
of Molecular Medicine at the University of Texas Health Science Center — Houston (UTHSC-
H). All experiments were performed in accordance with the guidelines of the Institutional
Animal Care and Use Committee of UTHSC-H.

2.2 Blocking antibody and treatment

A neutralizing rat monoclonal antibody specific for mouse VEGFR-3 (n = 6; mF4-31C1; 800
pg/mouse; ImClone Systems Inc., New York, NY) or control rat IgG (n = 5; 800 pg/mouse;
Antibodies incorporated, Davis, CA) was administered at the time of tumor cell injection and
every second day.

2.3 In vivo fluorescence imaging

Mice were imaged for baseline information with i.d. injection of 10 pl of 645 pM of ICG
(Akorn, Inc. Buffalo Grove, IL) using 31 gauge needles (BD Ultra-FineTM II Short Needle,
Becton and Dickinson Medical, Franklin, NJ). After baseline imaging, iRFP expressing or
non-expressing VEGF-C- or mock-B16F10 cells (5 x 10°) in 10 pl PBS were inoculated
intradermally into the left hindlimb and thereafter, tumor volume was longitudinally
measured using a digital caliper. Tumor volume (mm®) was calculated using the following
formula: 0.52 x D1? x D2, where D1 and D2 are short and long tumor diameters, respectively.
NIRFLI with i.d. injection of 10ul of ICG was performed longitudinally at 3, 7, and 10 days
post tumor implantation (p.i.). Therefore, mice were injected four times with ICG (at baseline,
and day 3, 7, and 10). In addition, in order to explore whether increased vessel permeability
seen with ICG was evident with high MW vascular agents known not to extravasate from
intact vasculatures, a subset of mice (n = 2) were injected with 10 pl (10 mg/ml) of FITC-
Dextran (2M Da; Sigma) several millimeters proximally away from the ICG injection site at 3
days p.i.. For imaging FITC-Dextran, an Argon-Krypton laser system (50mW, 488nm) was
used to illuminate mice. Bandpass (510nm center wavelength) and holographic filters (488nm
center wavelength) were used to collect re-emitted fluorescence light and reject the excitation
light, respectively. A series of sequential NIRF and FITC-Dextran images were acquired with
200ms exposure time immediately before and for up to 20 min after i.d. injection. NIRF and
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iRFP images were acquired using a custom-built imaging system described elsewhere [9,10].
A macrolens (Infinity K2/SC video lens, Edmund Optics Inc., Barrington, NJ) was also used
to zoom in on a specific area in fluorescent lymphatic vessels. For all procedures, mice were
anesthetized with isofluorane and maintained at 37 °C on a warming pad.

2.4 Measurement of lymphatic vascular leakage and perfused area analysis

Two pl of Evans blue dye (EBD; 3% by weight) was injected intradermally at the base of the
tail 3 days after VEGF-C (n = 6) or MOCK (n = 5) B16F10 inoculation. Twenty minutes after
injection, animals were euthanized and tumors collected, weighed, and incubated for 48 hrs in
1 ml of formamide at 60°C to extract EBD from the tissue. The optical density at 610 nm
(OD610; absorption) was measured for each sample using spectrophotometer.

The percentage of the perfused area from NIRFLI was calculated using Image]. In
addition, a fixed region of interest (ROI) was defined in the tumor on sequential frames of
fluorescence images. The mean of the fluorescence intensity within the ROI in each
fluorescence image was calculated and then plotted as a function of imaging time.

2.5 Statistics

Data were presented as average values *+ standard error (SE). Statistical analysis was
performed with Prism 5 (Graphpad Software, Inc). The data were tested for normality using a
D’Agostino and Pearson Omnibus normality test prior to analysis. The Mann-Whitney test
was used for comparisons between two groups or Kruskal-Wallis test with Dunn’s multiple
comparisons test was used. The significance level is set as p < 0.05.

3. Results

3.1 VEGF-C overexpression results in leakage of ICG-laden lymph into VEGF-C-
B16F10 at early post implantation
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Fig. 1. Representative fused images of fluorescence with white light images in mice bearing
VEGF-C or MOCK-B16F10 in the left hindlimb. NIRFLI showed dye accumulation in the
tumor after ICG administration (See Visualization 1). The insets show magnified fluorescent
images of the red rectangles. A dashed red circle in the inset indicates the location of a tumor.
Arrow, tumor. Double arrow, ICG injection site. Asterisk, ILN. Scale, 1mm. I. The fluorescent
intensity profiles in the VEGF-C- (n = 6; black) and MOCK- (n = 6; grey) BI6F10 tumor
region at 3 days p.i. were plotted as a function of time. Data was shown mean + SE. J.
Quantification showing percentage of ICG perfused area in VEGF-C (n = 6) and MOCK- (n =
6) BI6F10. * P =0.02.

Using non-invasive, dynamic NIRFLI immediately following i.d. injection of ICG to the base
of the tail, different lymphatic drainage networks are shown in the hind limb of each mouse
draining the base of the tail into the inguinal LN (ILN), which is connected to the axillary
LNs (ALNs) through internodal collecting lymphatic vessels (Fig. 1). To explore the temporal
nature of lymphatic changes, we longitudinally imaged mice from 3 days after inoculation of
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VEGF-C-B16F10 or mock-B16F10. Dynamic NIRFLI at 3 days p.i. of tumor cells revealed
extravasation of ICG tracer into VEGF-C-B16F10 as evidenced by strong ICG fluorescence
in the tumor (arrow in Fig. 1(B)) and the fluorescent intensity profiles in the tumor over time
(Fig. 1(I)). We observed this feature in all VEGF-C-B16F10 bearing mice where fluorescent
lymphatic vessels pass through the tumor after i.d. injection to the base of the tail. ICG-laden
lymph leaked out of lymphatic vessels at the tumor margin and diffused into the tumor as
shown in Visualization 1. Magnified fluorescent images showed that VEGF-C-B16F10
draining lymphatic vessels gradually dilated during tumor progression (insets in Figs. 1(B) —
1(D)). In contrast, we could not observe extravasation of ICG into mock-B16F10 as seen in
VEGF-C-B16F10. ICG-laden lymph drained along the lymphatic vessels in the skin above
mock-B16F10 at 3 days p.i. (Fig. 1(F)) and stained around the tumor margin at later time
points (Figs. 1(G) and 1(H)). Quantification of the perfused area shows a significant
difference between VEGF-C- and MOCK-B16F10 (Fig. 1(J)). Lymphatic permeability assay
showed significant leakage of EBD in VEGF-C-B16F10 as compared to MOCK-B16F10
(Fig. 2(A)), confirming the in vivo imaging data shown in Fig. 1. There was no significant
difference in tumor growth rate between VEGF-C- and mock-B16F10 (Fig. 2(B)).
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Fig. 2. A. Quantification of tissue retention of EBD normalized to tissue weight. * p
0.009. B. In vivo growth of VEGF-C-B16F10 (circle; n = 8) and MOCK-B16F10 (square; n
11).

3.2 VEGF-C overexpression also results in leakage of high molecular weight FITC-
Dextran into VEGF-C-B16F 10 at early post implantation

white light FITC-Dextran

.

MOCK-C-B16F10 VEGF-C-B16F10

Fig. 3. White and fluorescence images in mice (n = 2 for each tumor) at 3 days p.i. of VEGF-C
or MOCK-B16F10 following FITC-Dextran and ICG. The insets show magnified fluorescent
images of the red rectangles. A dashed red circle in the inset indicates the location of a tumor.
The injection sites were covered. Scale, Imm.

Molecular weight can be a key factor in extravascular distribution out of the leaky lymphatic
vessels. Therefore, we tested if lymphatic vessel leakage as shown from ICG in Fig. 1 is still
observed using the high molecular weight FITC-Dextran (MW 2,000 KDa), which is largely
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retained by intact blood vasculature [11]. FITC-dextran stained patterns of lymphatic vessel
networks similar to that observed with ICG fluorescence (Fig. 3). We observed the leakage of
FITC-dextran into VEGF-C-B16F10, but not into mock-B16F10 at 3 days p.i. (Fig. 3).

3.3 Anti-VEGFR-3 treatment restores normal lymph flow drainage patterns

We next tested if NIRFI can image the ability of VEGFR-3 blockade to reverse altered
lymphatic drainage patterns. To this end, a rat monoclonal antibody to murine VEGFR-3,
mF4-31Cl1 [12], was injected intraperitoneally beginning the day of implantation of VEGF-C-
B16F10 tumor cells. NIRFI data showed that extravasation of ICG-laden lymph into the
tumor due to VEGF-C- overexpression was significantly reduced by anti-VEGFR-3 treatment
as compared to control IgG (Fig. 4(B)).
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Fig. 4. A. Representative in vivo fluorescence images of mice at 3 days p.i. of iRFP-VEGF-C-
B16F10 (red; n =9 for each treatment) 20 mins after i.d. injection of ICG (green) to the base of
the tail. The insets show magnified fluorescent images of the white dashed rectangles. For
comparison of mock-B16F10, see Fig. 1. B. Quantification showing percentage of ICG
perfused area in the tumor region. * P =0.001. Scale, lmm.

4. Discussion

The lymphatic system provides a major route of cancer cell dissemination from the primary
lesion site to regional draining LNs. A consequence of complex multistep processes is
required to develop LN metastasis, including the dissemination of tumor cells from the
primary tumor site by invading pre-existing or lymphangiogenic lymphatic vessels [1,2].
Lymphangiogenic growth factor VEGF-C induces increased formation of tumor-directed
lymphatic vessel sprouts with open lumen structure, enveloping tumor cells, and dilation of
peri-tumor lymphatic vessels [5,13,14]. Non-invasive imaging of tumor-associated
lymphatics has been used to show that these tumor-associated lymphatic vessels are tortuous,
leaky, and highly disorganized [5,6,13,14]. However, most tumors in past studies were
located in the ear or tail, where visual observation was directly made following
intra/peritumoral injection. More importantly these imaging studies were performed at one
time point and did not show the dynamic aspects of lymphatic structural plasticity. In this
study, we non-invasively imaged dramatic changes of tumor-associated lymphatic
architecture during VEGF-C or MOCK-B16F10 tumor progression, including significant
extravasation of ICG and FITC-dextran from disrupted pre-existing lymphatic vessels around
the tumor at early stages and gradual dilation of tumor-draining lymphatic vessels over time
in response to excess VEGF-C, which were not observed in mock-B16F10 and baseline
imaging. Previous studies to measure the permeability of isolated normal lymphatic vessels
showed that small molecular hydrophilic substances less than 4 kDa are permeable from the
intraluminal to extraluminal space of lymph vessels. ICG binds to plasma proteins, among
which albumin is the prevalent protein in the interstitial space. Therefore, if one considers that
intradermally injected ICG binds to albumin, the effective molecular weight of ICG-albumin
binding reaches 67 kDa. The ICG leakage presented in this study may be not due to its low
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molecular weight, since we also observed extravasation of 2000 kDa FITC-Dextran. FITC-
Dextran has been used for fluorescence microlymphangiography (FML) in tumor-associated
lymphatics [5]. Although FML is useful to understand changes in lymphatic capillaries and
cutaneous lymphatic vessels, clinical application is limited owing to the limited penetration
depth of light at visible wavelengths and tissue scattering, and the inability to visualize deeper
collecting and conducting lymphatic vessels.

We show that ICG leakage in VEGF-C expressing tumors occurred at early stages (Fig.
1). When solid tumors grow, interstitial fluid pressure (IFP) is elevated compared with normal
tissues due to mechanical stress generated by tumor cell growth [15]. Although we did not
measure IFP at 3 days p.i. (as small as 8 mm”® in tumor volume), previous data showed that
IFP in VEGF-C overexpressing tumors is higher than that in normal tissues, but similar to that
in control tumors [5]. Therefore, extravasation of ICG-laden lymph in early stage VEGF-C-
B16F10 tumors presented in this study may be due to destabilization of the lymphatic vessel
wall by tumor-secreted VEGF-C, while anti-VEGFR-3 treatment significantly normalized
these vessels.

In conclusion, we demonstrated our ability to image architectural changes of tumor-
associated lymphatics in vivo during tumor progression with i.d. injection of ICG. Increasing
the permeability of the lymphatic vasculature is one of the hallmarks of cancer and
inflammation. Therefore, a better understanding of changes to lymphatic structure and
drainage patterns in disease may provide new strategies to improve drug exposure to targets
in the lymphatic system and enhance therapeutic utility. Since technology is already used
within investigational studies in the clinic to image the lymphatic system longitudinally [16],
NIRFLI may also provide information in lymphatic response to anti-VEGF-C and other
therapies.
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