Skip to main content
. 2018 Oct 10;11:56. doi: 10.1186/s12284-018-0245-y

Table 5.

Summary of multinomial logistic regression for variables characterising the different rice quality clusters. Cluster 1 is not shown in Table 5 because it is the reference cluster. Table 5 indicates the multinomial log-odds that samples represented in Cluster 2 or in Cluster 3, were compared to reference cluster 1 to calculate every unit increase or decrease in the different grain quality attributes included in the multinomial logistic regression model

Grain quality attribute Estimate
Cluster 2 Cluster 3
Intercept −25.51 (15.27) 3.61 (0.08)***
AC (%) 0.08 (0.30) −9.17 (2.94)***
G’trough −0.33 (0.19)* −1.48 (0.93)
BD 0.06 (0.03)** 0.72 (3.55)
S1 −0.88 (0.22)*** −1.37 (3.20)
tan (δ) at G’max 0.55 (0.14)*** 0.21 (11.71)
S3 −2.84 (0.84)*** −0.12 (0.66)
GT 0.54 (0.18)*** 2.03 (6.97)
COH −0.24 (0.08)*** 0.01 (11.97)
G’max −0.15 (0.06)*** 0.22 (8.68)
N 70 27

Note: Total N = 211; AIC = 106.20; Overall classification accuracy: 93.84%

Reference category for the regression model is cluster 1 (n = 114)

Standard errors of the estimates are indicated in parentheses

* p < 0.1, ** p < 0.05, *** p < 0.01.

Goodness-of-fit statistics: Residual Deviance = 66.20; Degrees of freedom = 18

–2Log-likelihood: The intercept-only model: 405.87; The final model: 66.20; χ2 = 339.66; p < 0.01

Pseudo-R2: McFadden = 0.84; Cragg & Uhler = 0.94; Cox & Snell = 0.80